SOLUTIONS FOR HW?2 - don't’ distribute!

(9.2) Normal Modes of a One-Dimensional
Monatomic Chain

(a)f Explain what is meant by “normal mode” and by
“phonon”.

> Explain briefly why phonons obey Bose statistics.

(b)t Derive the dispersion relation for the longitudinal
oscillations of a one-dimensional mass-and-spring crystal
with N identical atoms of mass m, lattice spacing a, and
spring constant k (motion of the masses is restricted to
be in one dimension).

(c)i Show that the mode with wavevector k has the
same pattern of mass displacements as the mode with
wavevector k + 27/a. Hence show that the dispersion
relation is periodic in reciprocal space (k-space).

> How many different normal modes are there.

(d)t Derive the phase and group velocities and sketch

them as a function of k.
> What is the sound velocity?
> Show that the sound velocity is also given by vs =
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1/y/Bp where p is the chain density and 3 is the com-
pressibility.

(e) Find the expression for g(w), the density of states
of modes per angular frequency.

> Sketch g(w).

(f) Write an expression for the heat capacity of this
one-dimensional chain. You will inevitably have an inte-
gral that you cannot do analytically.

(g)* However, you can expand exponentials for high
temperature to obtain a high-temperature approxima-
tion. It should be obvious that the high-temperature
limit should give heat capacity C/N = kp (the law of
Dulong—Petit in one dimension). By expanding to next
non-trivial order, show that

C/N =kg(1—A/T? +...)
where
_ Wk
T 6mky

(a) A normal mode is a periodic collective motion where all particles
move at the same frequency. A phonon is a quantum of vibration.

[I do not like the definition "a quantum of vibrational energy”. The
vibration does carry energy, but it carries momentum as well, so why

specify energy only?]

Each classical normal mode of vibration corresponds to a quantum
mode of vibration which can be excited multiple times. A single mode
may be occupied by a single phonon, or it may be occupied with mul-
tiple phonons corresponding to a larger amplitude oscillation. The fact

that the same state may be multiply occupied by phonons means that

phonons must be bosons.

(b) The equation of motion for the n'" particle along the chain is given

by

MEy = K(Tpy1 — Tn) + K(Tn—1 — Tn) = K(Tpg1 + Tno1 — 22,)

note that na is the equilibrium position of the n'"* particle. Using the

ansatz
Ty = Aelwt—lkna
we obtain
_w2mezwt—zkna — IQEZWt(EZk(n+1)a + elk(n—l)a _
wm= = 2r(cos(ka)—1)
or

2eikn)

w = +/(25/m)(cos(ka) — 1) = 2/k/m |sin(ka/2)|



Fig. 9.1 Dispersion relation for
vibrations of the one-dimensional
monatomic harmonic chain. The
dispersion is periodic in k — k + 27/a.
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efi(k+27r/a)na _ efi(k+27r/a)na _ e*ikna

If you assume periodic boundary conditions, then k = 2wm/L but k is
identified with k 4+ 27/a so that there are therefore exactly N = L/a
different normal modes.

(d)
Uphase = wW(k)/k = 2+v/Kk/m|sin(ka/2)|/k

and

Vgroup = dw(k)/dk = \/k/macos(|kla/2) = (a/2)woy/1 — w?/wd

units of Sqrt[kappa/m]a

Fig. 9.2 The monatomic harmonic chain. Right: Phase velocity. Left: Group
velocity. Note velocities are signed quantities, to the left of the origin, the velocity
should have negative sign.

where wy = 24/k/m. Note that the phase velocity is not periodic in the
Brillouin zone! One can understand this if you think carefully about
aliasing of waves. The phase velocity is the velocity at which the peaks
of waves move. However, the waves are only defined at the position of
the masses along the chain. We write cos(kna) for the positions of the
masses at some time, but this only defines the value of the wave for
integer n. For integer n, we have k is the same as k + 27/a. However,
the ”"peak” of this function may be between the integer values of n.
However, when we make n non-integer, then & is no longer the same as
k+ 27 /n.
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For sketches see figure 9.2
The sound velocity is the velocity at small k. This is

v=a\/k/m
. The density of the chain is p = m/a and the compressibility is § =
—(1/L)dL/dF = 1/(ka). Thus we obtain v=2 = pj
(e) Note first that

(w(]f)/Q)g + (Ugroup(k>/a>2 =K/m (9.1)

Density of states is uniform in k. If there are N sites in the system,
there are N modes total. The density of states in k is therefore dN/dk =
Na/(2mw) = L/(2m) where L is the length of the system.

Thus we have

g(w) = dN/dwz(dN/dk)(dk/dw):#
_ N
2m\/k/mcos(|kla/2)
2N

2my/(i/m) — (w(k)/2)?

where we have used Eq. 9.1.

Fig. 9.3 The one dimensional harmonic chain. Density of states g(w). Note that the
DOS diverges at w = 24/k/m where the group velocity goes to zero.

The additional factor of 2 that appears up top is to account for the
fact that for each value of w > 0 there are actually two values of k with
that w. (Note if you integrate over frequency you correctly get back N
degrees of freedom).

(f) The energy stored in the chain is given by

U= /dwg(w)hw(nB(w) +1/2)

so the heat capacity is C = OU/OT. Note that we can drop the +1/2
since it has no derivative.



(g) To recover the law of Dulong-Petit, one takes the high temperature
limit of np(w) = kT /hw so th at we have

C= (9% /dwg(w)(kBT) =kp /dwg(w) =kpN

To go further, we use the high temperature expansion (expanding
1/(e” — 1) for small z)

kT 1 hw
nB(w)+1/2—E+EkB—T+...
So that we now have
oU 1 1 hw
= —— = N—— —_—
C 5T ks T2 /dwhwg(w) [12 kB]

So that the coefficient A defined in the problem has the values
h2
A= —— | dww?
12N, / wwg(w)

Inserting our expression for g(w) we obtain

w2

h2 Wmazx
T N ORI

Defining = = (w/2)+/m/k we obtain
B2 8k (! d z?
= ——— "Ei
127k%3 m Jo V11— 22

The integral is evaluated to give m/4 (make the substitution z = sin9).

Thus we obtain
B kK

T kL m

as required.
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(9.3) More Vibrations called k1 and the spring constant between second neigh-
Consider a one-dimensional spring and mass model of bors be called k2. Let the mass of each atom be m.
a crystal. Generalize this model to include springs not (a) Calculate the dispersion curve w(k) for this model.
only between neighbors but also between second nearest (b) Determine the sound wave velocity. Show the group

neighbors. Let the spring constant between neighbors be velocity vanishes at the Brillouin zone boundary.

(a) Use the same approach
miEn, = Ki(Tnt1 — 2n) + K1(Tn—1 — Tn) + K2(Tng2 — Tn) + K1 (Tn—2 — Tn)
= K1(@Tny1 + Tno1 — 225) + K2 (Tpg2 + Tn_o — 22,)

Using the same ansatz
Ty = Aezwt—zkna

we obtain

—mw? = 2k1(cos(ka) — 1) + 2k (cos(2ka) — 1) (9.3)

SO

w= \/%(cos(ka) -1)+ %(COS(WM) -1

(b) To obtain the sound velocity, expand for small k to obtain

_ 251 (ka)? n 2k (2ka)? _ (a [ K1 —|—4/-£2> i
m 2 m 2 m

Thus the sound velocity is

K1+ 4ko
vy = a\| ——
m

The easiest way to examine dw/0dk at the zone boundary is to differ-
entiate Eq. 9.3 to given

mwiw/0k = —2ak sin(ka) — 4akg sin(2ka)

At the zone boundary k = 7/2 both terms on the right hand side are
zero, hence we have zero group velocity.



(10.1) Normal modes of a One-Dimensional Di-
atomic Chain

(a) What is the difference between an acoustic mode
and an optical mode.

> Describe how particles move in each case.

(b) Derive the dispersion relation for the longitudi-
nal oscillations of a one-dimensional diatomic mass-and-
spring crystal where the unit cell is of length a and each
unit cell contains one atom of mass m; and one atom of
mass ma connected together by springs with spring con-
stant r, as shown in the figure (all springs are the same,
and motion of particles is in 3ne dimension only).
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(c) Determine the frequencies of the acoustic and op-
tical modes at £ = 0 as well as at the Brillouin zone
boundary.

> Describe the motion of the masses in each case (see
margin note 4 of this chapter!).

> Determine the sound velocity and show that the
group velocity is zero at the zone boundary.

> Show that the sound velocity is also given by vs =
v/B~1/p where p is the chain density and f is the com-
pressibility.

(d) Sketch the dispersion in both reduced and extended
zone scheme.

> If there are N unit cells, how many different normal
modes are there?
> How many branches of excitations are there? l.e.,
in reduced zone scheme, how many modes are there there
at each k?
(e) What happens when m; = mgo 7

The following figure depicts a long wavelength acoustic wave: All
atoms in the unit cell move in-phase with a slow spatial modulation.

Acoustic waves w ~ k for small k.

acoustic

The following depicts a long wavelength optical wave: The two differ-
ent types of atoms move out of phase, with a slow spatial modulation.
(In general a long wavelength optical mode is any long wavelength mode
where not all atoms in the unit cell are moving in phase). Note that the
amplitude of motion of the different atoms in the cells is generally not
the same. Optical modes have w nonzero as k — 0.

optical



(b) Let x,, be the position of the nt? particle of mass m; and Yn be
the position of the n'® particle of mass ms. We can assume that the
equilibrium position of x, is given by na and the equilibrium position

of y, is given by na + d.

We write the equations of motion for the deviations from these equi-

librium positions dx,, and dy,,.

midr, = —k(0xpn — 0Yn—1) — k(0 — dyn)
—k(0yn — 0xy) — K(OYn — 0Zpt1)

m25yn

Writing the ansitze

Sz - A eikan—iwt
n = x

5?;/71 _ Ayeikan—iwt

we obtain the equations

_m1w2Aw6ikna _ _2/€Aweikna + HAy(eikna + eik(nfl)a)
_m2w2Ayeikna _ —QKAyeikna + HAx(eikna + eik(nJrl)a)
WA, = 2(k/m1)As — (k/ma)(1+ e *)A, (10.1)
WA, = 2(k/m2)A, — (k/ma2)(1 + ) A, (10.2)

which is an eigenvalue problem from w?. Thus we need to find the roots

of the determinant

’ 2(k/mq) —w? —(k/m1)(1 + e~ ka)
~(/m2)(1+ €*0) 2 /m) —

which gives the equation

2

0 = w'—w?(2r(1/m1+1/my))+ (4— (1 + ™) (14 e )
mimeso
2 2
0 = wi—w? ( (m1 + m2)l€> T (2 — 2cos(ka)))
mimso mimso
with the solution (skipping a few steps)
2 K 2 2
— + 2 2
w P (ml + Mo \/m1 + m3 + 2myma cos( a))
= + 2_4 in?(ka/2
P (ml + Mo \/(ml + mg) mimag sin®(ka/ ))

(c) At k =0, cos(ka) = 1, the acoustic mode has zero energy, whereas
the optical mode has energy

2k(m1 + ms)

w =
mimso
At the zone boundary cos(ka) = —1, so the two modes have energy
2kmy 2Kkmea
w = and —
mimso mimso

the greater of which is the optical mode, the lesser being the acoustic
mode.
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To find the motions corresponding to these modes we need to plug
our frequencies back into Egs. 10.1 and 10.2 to find the relation between
A, and A,. For the acoustic mode at k = 0 we obtain A, = A, which
means the two masses move in phae with the same amplitude. For the
optical mode at k = 0 we have A, = —(mg/m1)A, meaning that the
two different masses move in opposite directions with the heavier mass
moving with lower amplitude. At the zone boundary the two modes cor-
respond to one of the masses staying still and the other mass moving.
For example, for the lower frequency mode, the higher mass particles
move and the lower mass particle stays fixed. Since we are at the zone
boundary, every other higher mass particle moves in the opposite di-
rection (thus compressing symmetrically around the fixed particle. An
example of a zone boundary mode is shown in the following figure

zone boundary

To find the sound velocity, expand the cos around k = 0, one obtains

the acoustic mode velocity w = vk with

Rk
2(m1 + ’I’?’LQ)

We check that v=2 = pf. The density of the chain is p = (my + m2)/a,
the compressibility of two springs in series is k/2 so the compressibility

of the chain is § = —(1/L)dL/dF = 2/(ka).

Near the zone boundary, since the group velocity is dw/dk and since
dw/d cos(ka) is nonsingular, the group velocity must be zero by using
the chain rule since dcos(ka)/dk = asin(ka) = 0 at the zone boundary

(k=m/a).

omega in units of the optical mode at k=0

T

k in units of 1/a

-6 -4 -2 2 4 6
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omega in units of the optical mode at k=0
\ l /
0.8

0.6

0.2

k in units of 1/a

6 4 2 2 4 6

Fig. 10.1 Diatomic Chain. Top Reduced Zone Scheme. Bottom Extended Zone
Scheme. Both pictures use mi/mo = 4.

If there are N unit cells, therefore 2N atoms, there are 2N modes.
There are 2 modes per k in the reduced zone scheme, therefore two
branches.

(e) When m; = mg the unit cell is now of size a/2 so the Brillouin
zone is doubled in size. In this limit, the gap at the Brillouin zone
boundary vanishes and the two branches become the single branch of
the monatomic chain (this is most easily described in extended zone
scheme).
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