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such that the spectrum can be written as

Enrel,ncm = !ωrel(nrel +
1

2
) + !ωcm(ncm +

1

2
)

At temperature T , the expectation of the energy of this system will
correspondingly be

⟨E⟩ = !ωrel(nB(β!ωrel) + 1/2) + !ωcm(nB(β!ωcm) + 1/2)

where nB(x) = 1/(ex − 1) is the usual Bose factor.
The purpose of this exercise is not just to do another quantum me-

chanics problem. It is here to point out that coupled deg rees of freedom
act just like a single simple harmonic oscillator once the degrees of free-
dom are “rediagonalized”. This is important motivation for treating
phonons (coupled modes of springs) as individual harmonic oscillators.

(9.2) Normal Modes of a One-Dimensional
Monatomic Chain

(a)‡ Explain what is meant by “normal mode” and by
“phonon”.

! Explain briefly why phonons obey Bose statistics.
(b)‡ Derive the dispersion relation for the longitudinal

oscillations of a one-dimensional mass-and-spring crystal
with N identical atoms of mass m, lattice spacing a, and
spring constant κ (motion of the masses is restricted to
be in one dimension).

(c)‡ Show that the mode with wavevector k has the
same pattern of mass displacements as the mode with
wavevector k + 2π/a. Hence show that the dispersion
relation is periodic in reciprocal space (k-space).

! How many different normal modes are there.
(d)‡ Derive the phase and group velocities and sketch

them as a function of k.
! What is the sound velocity?
! Show that the sound velocity is also given by vs =

1/
√
βρ where ρ is the chain density and β is the com-

pressibility.
(e) Find the expression for g(ω), the density of states

of modes per angular frequency.
! Sketch g(ω).
(f) Write an expression for the heat capacity of this

one-dimensional chain. You will inevitably have an inte-
gral that you cannot do analytically.

(g)* However, you can expand exponentials for high
temperature to obtain a high-temperature approxima-
tion. It should be obvious that the high-temperature
limit should give heat capacity C/N = kB (the law of
Dulong–Petit in one dimension). By expanding to next
non-trivial order, show that

C/N = kB(1−A/T 2 + . . .)

where

A =
!
2κ

6mk2
B .

(a) A normal mode is a periodic collective motion where all particles
move at the same frequency. A phonon is a quantum of vibration.
[I do not like the definition ”a quantum of vibrational energy”. The

vibration does carry energy, but it carries momentum as well, so why
specify energy only?]
Each classical normal mode of vibration corresponds to a quantum

mode of vibration which can be excited multiple times. A single mode
may be occupied by a single phonon, or it may be occupied with mul-
tiple phonons corresponding to a larger amplitude oscillation. The fact58 Vibrations of a One-Dimensional Monatomic Chain

that the same state may be multiply occupied by phonons means that
phonons must be bosons.

(b) The equation of motion for the nth particle along the chain is given
by

mẍn = κ(xn+1 − xn) + κ(xn−1 − xn) = κ(xn+1 + xn−1 − 2xn)

note that na is the equilibrium position of the nth particle. Using the
ansatz

xn = Aeiωt−ikna

we obtain

−ω2meiωt−ikna = κeiωt(eik(n+1)a + eik(n−1)a − 2eikn)

ω2m = = 2κ(cos(ka)− 1)

or
ω =

√
(2κ/m)(cos(ka)− 1) = 2

√
κ/m | sin(ka/2)|

Fig. 9.1 Dispersion relation for
vibrations of the one-dimensional
monatomic harmonic chain. The
dispersion is periodic in k → k + 2π/a.

 ω

0  k=+π/a k=−π/a

 ω = 2√ m
κ 

(c)
e−i(k+2π/a)na = e−i(k+2π/a)na = e−ikna

If you assume periodic boundary conditions, then k = 2πm/L but k is
identified with k + 2π/a so that there are therefore exactly N = L/a
different normal modes.

(d)
vphase = ω(k)/k = 2

√
κ/m | sin(ka/2)|/k

and

vgroup = dω(k)/dk =
√
κ/ma cos(|k|a/2) = (a/2)ω0

√
1− ω2/ω2

0
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0
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Fig. 9.2 The monatomic harmonic chain. Right: Phase velocity. Left: Group
velocity. Note velocities are signed quantities, to the left of the origin, the velocity
should have negative sign.

where ω0 = 2
√
κ/m. Note that the phase velocity is not periodic in the

Brillouin zone! One can understand this if you think carefully about
aliasing of waves. The phase velocity is the velocity at which the peaks
of waves move. However, the waves are only defined at the position of
the masses along the chain. We write cos(kna) for the positions of the
masses at some time, but this only defines the value of the wave for
integer n. For integer n, we have k is the same as k + 2π/a. However,
the ”peak” of this function may be between the integer values of n.
However, when we make n non-integer, then k is no longer the same as
k + 2π/n.
For sketches see figure 9.2
The sound velocity is the velocity at small k. This is

v = a
√
κ/m

. The density of the chain is ρ = m/a and the compressibility is β =
−(1/L)dL/dF = 1/(κa). Thus we obtain v−2 = ρβ

(e) Note first that

(ω(k)/2)2 + (vgroup(k)/a)
2 = κ/m (9.1)

Density of states is uniform in k. If there are N sites in the system,
there are N modes total. The density of states in k is therefore dN/dk =
Na/(2π) = L/(2π) where L is the length of the system.
Thus we have

g(ω) = dN/dω = (dN/dk)(dk/dω) =
Na

2πvgroup

=
N

2π
√
κ/m cos(|k|a/2)

=
2N

2π
√
(κ/m)− (ω(k)/2)2

(9.2)

where we have used Eq. 9.1.
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60 Vibrations of a One-Dimensional Monatomic Chain

Fig. 9.3 The one dimensional harmonic chain. Density of states g(ω). Note that the

DOS diverges at ω = 2
√

k/m where the group velocity goes to zero.

The additional factor of 2 that appears up top is to account for the
fact that for each value of ω > 0 there are actually two values of k with
that ω. (Note if you integrate over frequency you correctly get back N
degrees of freedom).

(f) The energy stored in the chain is given by

U =

∫
dωg(ω)!ω(nB(ω) + 1/2)

so the heat capacity is C = ∂U/∂T . Note that we can drop the +1/2
since it has no derivative.

(g) To recover the law of Dulong-Petit, one takes the high temperature
limit of nB(ω) = kBT/!ω so th at we have

C =
∂

∂T

∫
dωg(ω)(kBT ) = kB

∫
dωg(ω) = kBN

To go further, we use the high temperature expansion (expanding
1/(ex − 1) for small x)

nB(ω) + 1/2 =
kBT

!ω
+

1

12

!ω

kBT
+ . . .

So that we now have

C =
∂U

∂T
= kBN −

1

T 2

∫
dω!ωg(ω)

[
1

12

!ω

kB

]

So that the coefficient A defined in the problem has the values

A =
!2

12Nk2B

∫
dωω2g(ω)

Inserting our expression for g(ω) we obtain

A =
!2

12πk2B

∫ ωmax

0
dω

ω2

√
(κ/m)− (ω/2)2
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Defining x = (ω/2)
√
m/κ we obtain

A =
!2

12πk2B

8κ

m

∫ 1

0
dx

x2

√
1− x2

The integral is evaluated to give π/4 (make the substitution x = sin θ).
Thus we obtain

A =
!2

6k2B

κ

m

as required.

(9.3) More Vibrations
Consider a one-dimensional spring and mass model of

a crystal. Generalize this model to include springs not
only between neighbors but also between second nearest
neighbors. Let the spring constant between neighbors be

called κ1 and the spring constant between second neigh-
bors be called κ2. Let the mass of each atom be m.

(a) Calculate the dispersion curve ω(k) for this model.
(b) Determine the sound wave velocity. Show the group

velocity vanishes at the Brillouin zone boundary.

(a) Use the same approach

mẍn = κ1(xn+1 − xn) + κ1(xn−1 − xn) + κ2(xn+2 − xn) + κ1(xn−2 − xn)

= κ1(xn+1 + xn−1 − 2xn) + κ2(xn+2 + xn−2 − 2xn)

Using the same ansatz
xn = Aeiωt−ikna

we obtain

−mω2 = 2κ1(cos(ka)− 1) + 2κ2(cos(2ka)− 1) (9.3)

so

ω =

√
2κ1
m

(cos(ka)− 1) +
2κ2
m

(cos(2ka)− 1)

(b) To obtain the sound velocity, expand for small k to obtain

ω =

√
2κ1
m

(ka)2

2
+

2κ2
m

(2ka)2

2
=

(

a

√
κ1 + 4κ2

m

)

k

Thus the sound velocity is

vs = a

√
κ1 + 4κ2

m

The easiest way to examine ∂ω/∂k at the zone boundary is to differ-
entiate Eq. 9.3 to given

mω∂ω/∂k = −2aκ1 sin(ka)− 4aκ2 sin(2ka)

At the zone boundary k = π/2 both terms on the right hand side are
zero, hence we have zero group velocity.
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Vibrations of a
One-Dimensional Diatomic
Chain 10

(10.1) Normal modes of a One-Dimensional Di-
atomic Chain

(a) What is the difference between an acoustic mode
and an optical mode.

! Describe how particles move in each case.
(b) Derive the dispersion relation for the longitudi-

nal oscillations of a one-dimensional diatomic mass-and-
spring crystal where the unit cell is of length a and each
unit cell contains one atom of mass m1 and one atom of
mass m2 connected together by springs with spring con-
stant κ, as shown in the figure (all springs are the same,
and motion of particles is in one dimension only).

a

m1
m2

κ κ

(c) Determine the frequencies of the acoustic and op-
tical modes at k = 0 as well as at the Brillouin zone
boundary.

! Describe the motion of the masses in each case (see
margin note 4 of this chapter!).

! Determine the sound velocity and show that the
group velocity is zero at the zone boundary.

! Show that the sound velocity is also given by vs =√
β−1/ρ where ρ is the chain density and β is the com-

pressibility.
(d) Sketch the dispersion in both reduced and extended

zone scheme.
! If there are N unit cells, how many different normal

modes are there?
! How many branches of excitations are there? I.e.,

in reduced zone scheme, how many modes are there there
at each k?

(e) What happens when m1 = m2 ?

The following figure depicts a long wavelength acoustic wave: All
atoms in the unit cell move in-phase with a slow spatial modulation.
Acoustic waves ω ∼ k for small k.

a

m1 m2

κ κ
acoustic
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72 Vibrations of a One-Dimensional Diatomic Chain

The following depicts a long wavelength optical wave: The two differ-
ent types of atoms move out of phase, with a slow spatial modulation.
(In general a long wavelength optical mode is any long wavelength mode
where not all atoms in the unit cell are moving in phase). Note that the
amplitude of motion of the different atoms in the cells is generally not
the same. Optical modes have ω nonzero as k → 0.

a

m1 m2

κ κ
optical

(b) Let xn be the position of the nth particle of mass m1 and yn be
the position of the nth particle of mass m2. We can assume that the
equilibrium position of xn is given by na and the equilibrium position
of yn is given by na+ d.
We write the equations of motion for the deviations from these equi-

librium positions δxn and δyn.

m1δ̈xn = −κ(δxn − δyn−1)− κ(δxn − δyn)

m2δ̈yn = −κ(δyn − δxn)− κ(δyn − δxn+1)

Writing the ansätze

δxn = Axe
ikan−iωt

δyn = Aye
ikan−iωt

we obtain the equations

−m1ω
2Axe

ikna = −2κAxe
ikna + κAy(e

ikna + eik(n−1)a)

−m2ω
2Aye

ikna = −2κAye
ikna + κAx(e

ikna + eik(n+1)a)

or

ω2Ax = 2(κ/m1)Ax − (κ/m1)(1 + e−ika)Ay (10.1)

ω2Ay = 2(κ/m2)Ay − (κ/m2)(1 + eika)Ax (10.2)

which is an eigenvalue problem from ω2. Thus we need to find the roots
of the determinant

∣∣∣∣
2(κ/m1)− ω2 −(κ/m1)(1 + e−ika)

−(κ/m2)(1 + eika) 2(κ/m2)− ω2

∣∣∣∣
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∣∣∣∣ 73

which gives the equation

0 = ω4 − ω2 (2κ(1/m1 + 1/m2)) +
κ2

m1m2

(
4− (1 + eika)(1 + e−ika)

)

0 = ω4 − ω2

(
2(m1 +m2)κ

m1m2

)
+

κ2

m1m2
(2− 2 cos(ka)))

with the solution (skipping a few steps)

ω2 =
κ

m1m2

(
m1 +m2 ±

√
m2

1 +m2
2 + 2m1m2 cos(ka)

)

=
κ

m1m2

(
m1 +m2 ±

√
(m1 +m2)2 − 4m1m2 sin

2(ka/2)

)

(c) At k = 0, cos(ka) = 1, the acoustic mode has zero energy, whereas
the optical mode has energy

ω =

√
2κ(m1 +m2)

m1m2

At the zone boundary cos(ka) = −1, so the two modes have energy

ω =

√
2κm1

m1m2
and

√
2κm2

m1m2

the greater of which is the optical mode, the lesser being the acoustic
mode.
To find the motions corresponding to these modes we need to plug

our frequencies back into Eqs. 10.1 and 10.2 to find the relation between
Ax and Ay . For the acoustic mode at k = 0 we obtain Ax = Ay which
means the two masses move in phae with the same amplitude. For the
optical mode at k = 0 we have Ax = −(m2/m1)Ay meaning that the
two different masses move in opposite directions with the heavier mass
moving with lower amplitude. At the zone boundary the two modes cor-
respond to one of the masses staying still and the other mass moving.
For example, for the lower frequency mode, the higher mass particles
move and the lower mass particle stays fixed. Since we are at the zone
boundary, every other higher mass particle moves in the opposite di-
rection (thus compressing symmetrically around the fixed particle. An
example of a zone boundary mode is shown in the following figure

a

m1 m2

κ κ
zone boundary
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which gives the equation

0 = ω4 − ω2 (2κ(1/m1 + 1/m2)) +
κ2

m1m2

(
4− (1 + eika)(1 + e−ika)

)

0 = ω4 − ω2

(
2(m1 +m2)κ

m1m2

)
+

κ2

m1m2
(2− 2 cos(ka)))

with the solution (skipping a few steps)

ω2 =
κ

m1m2

(
m1 +m2 ±

√
m2

1 +m2
2 + 2m1m2 cos(ka)

)
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κ

m1m2
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(m1 +m2)2 − 4m1m2 sin
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Ax and Ay . For the acoustic mode at k = 0 we obtain Ax = Ay which
means the two masses move in phae with the same amplitude. For the
optical mode at k = 0 we have Ax = −(m2/m1)Ay meaning that the
two different masses move in opposite directions with the heavier mass
moving with lower amplitude. At the zone boundary the two modes cor-
respond to one of the masses staying still and the other mass moving.
For example, for the lower frequency mode, the higher mass particles
move and the lower mass particle stays fixed. Since we are at the zone
boundary, every other higher mass particle moves in the opposite di-
rection (thus compressing symmetrically around the fixed particle. An
example of a zone boundary mode is shown in the following figure

a

m1 m2

κ κ
zone boundary

74 Vibrations of a One-Dimensional Diatomic Chain

To find the sound velocity, expand the cos around k = 0, one obtains
the acoustic mode velocity ω = vk with

v = a

√
κ

2(m1 +m2)

We check that v−2 = ρβ. The density of the chain is ρ = (m1 +m2)/a,
the compressibility of two springs in series is κ/2 so the compressibility
of the chain is β = −(1/L)dL/dF = 2/(κa).
Near the zone boundary, since the group velocity is dω/dk and since

dω/d cos(ka) is nonsingular, the group velocity must be zero by using
the chain rule since d cos(ka)/dk = a sin(ka) = 0 at the zone boundary
(k = π/a).

Fig. 10.1 Diatomic Chain. Top Reduced Zone Scheme. Bottom Extended Zone
Scheme. Both pictures use m1/m2 = .4.

If there are N unit cells, therefore 2N atoms, there are 2N modes.
There are 2 modes per k in the reduced zone scheme, therefore two
branches.
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(e) When m1 = m2 the unit cell is now of size a/2 so the Brillouin
zone is doubled in size. In this limit, the gap at the Brillouin zone
boundary vanishes and the two branches become the single branch of
the monatomic chain (this is most easily described in extended zone
scheme).

(10.2) Decaying Waves
Consider the alternating diatomic chain dispersion as

discussed in the text Eq. 10.6 and shown in Fig. 10.6.
For frequencies above ω+(k = 0) there are no propagat-
ing wave modes, and similarly for frequencies between
ω−(k = π/a) and ω+(k = π/a) there are no propagating

wave modes. As in Exercise 9.4, if this chain is driven at
a frequency ω for which there are no propagating wave
modes, then there will be a decaying, or evanescent, wave
instead. By solving 10.6 for a complex k, find the length
scale of this decaying wave.

As in problem 9.4, we simply want to analytically extend k to complex
numbers. From the text Eq. 10.6 we can rearrange to obtain

ka = cos−1

{
1

2κ1κ2

[
(mω2 − κ1 − κ2)

2 − κ21 − κ22
]}

The argument on the right hand size is greater than 1 for ω larger than
the q = 0 optical mode freuquency, whereas for ω between the zone
boundary acoustic and optical model frequencies, the right hand side is
less than −1. The arccos of a number greater than one is pure imaginary
and grows from 0 as the argument increases from unity. Whereas the
arcos of a number less than -1 is π+ imaginary with the imaginary part
growing from zero as the argument decreases from -1. The length scale
of decay is always given by L = a/q with q the imaginary part of k.

(10.3) General Diatomic Chain*
Consider a general diatomic chain as shown in Fig. 10.1

with two different masses m1 and m2 as well as two dif-
ferent spring constants κ1 and κ2 and lattice constant a.

(a) Calculate the dispersion relation for this system.
(b) Calculate the acoustic mode velocity and compare

it to vs =
√
β−1/ρ where ρ is the chain density and β is

the compressibility.

(a) This is the same approach as the prior cases, just a bit more
algebra to keep track of

m1δ̈xn = −κ1(δxn − δyn−1)− κ2(δxn − δyn)

m2δ̈yn = −κ2(δyn − δxn)− κ1(δyn − δxn+1)

Writing the ansätze

δxn = Axe
ikan−iωt

δyn = Aye
ikan−iωt


