
Course: Statistical Mechanics
Problem Set: 3
Due: 27th Apr 2007

1. Massless Bosons in Two Dimensions: Let us consider bosons in
two dimensions with the energy for the particle with wave number ~k being
given by

ε~k = h̄ω~k = h̄v|~k|

where v is the speed of the particles. Would there be a Bose-Einstein conden-
sate in this system and, if so, under what conditions (in terms of temperature
and number density) would it form?

2. Relativistic Fermions at High Densities: The core of collapsed
stars are often stabilized by the pressure of fermions (electrons, neutrons,..)
at high density. Remember that the relativistic energy momentum relation
is given by

ε2 = m2c4 + p2c2

(ε,m, c, p being the energy, the mass, the velocity of light and the momentum,

respectively) and that p = h̄k according to quantum mechanics where k = |~k|
is the wave number. Let ρ = N/V be the number density (we have N
particles in volume V ). Imagine that, for a fixed temperature, we let ρ get
very large. In this limit there is an asymptotic relation between the pressure
P and density ρ. Find this relation.

(Hint: For very high densities, most fermions would occupy very high
values of k, because of Pauli principle. As a result, for most of them, pc >>
mc2, allowing you to neglect the mass.)

3. Mean Field Theory of Phase Transition in Potts Model: In
Ising model, spins have two values, up and down. If neighboring spins are
the same, we get an energy −J and if they are not the same, we get +J .
When J is positive, we have ferromagnetic interaction. The energy penalty
for the spins being different in neighboring sites is 2J = (+J) − (−J). We
found that, in the mean field theory, we have a phase transition at lower
temperature where all the spins are more likely to be up (or down). If we
define probability of being up(down) p↑,↓ =< N↑,↓ > /N , N being the total
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number of spins, and N↑,↓ is the number of up (down) spins in a particular
spin configuration, then the magnetization per spin is

m = p↑ − p↓.

Our mean field equation for m is given by

m =
e2βzJm − 1

e2βzJm + 1
= tanh(βzJm)

where z is the number of neighbors of each site in the lattice. We found that,
at low temperatures, there is a solution with m 6= 0.

The Potts model is a generalization of Ising model where spins can take q
values: σ = 1, 2, 3, .., q. The energy penalty of not having the same value of
σ on neighboring sites is 2J (we keep J > 0, making this the ferromagnetic
Potts model). We formalize this by defining the total energy of the system
as

E = −2J
∑
<ij>

δσiσj
,

with < ij > indicating that we sum over pairs which are nearest neighbors.
The Kronecker delta, δab = 1 if a = b and it is zero otherwise. The lowest
energy state correspond to all spins having the same value (which could be,
say, for all i, σi = 1). There are q such states, depending which of the q
possible spin values were chosen by every spin.

At high temperatures, the entropy gain from each spin fluctuating equally
among all the q possible values would favor the paramagnetic state. In this
state, the probability of the spin being in any state σ = 1, .., q, which is
pσ =< Nσ > /N is just 1/q. However, at lower temperatures, it is, in
principle, possible to get symmetry broken states where, say, p1 is different
from p2 = p3 = · · · = pq. In analogy with the Ising model, we define

m = p1 − pσ,

with σ 6= 1, for such a state.
In the following steps, you will use the variational principle to derive the

mean field equation for the Potts model, with

E0 = −2heff
∑
i

δσi,1.

Assume that on the lattice, every site has z neighbors.
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1) Find the expression for m in terms of heff in the thermal ensemble
defined by E0 (calculate pσ with the formula < Nσ >0 /N , <>0 referring to
thermal average in the ensemble defined by E0).

2) Compute
Φ =< E >0 −TS0

and express it as a function of m.
3) Minimize Φ(m) to find the mean field equation for m.
4) On a three dimensional cubic lattice, the number of nearest sites for

every site is 6. Let us take the Potts model with q = 3 on such a lattice.
What is the value of K = βJ , above which we will have an ordered state
with m 6= 0? Find the critical value Kc numerically. As K passes though
Kc, do we have a first order transition or a second order transition?
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