Course: Statistical Mechanics Problem Set: 3 Due: 27th Apr 2007

1. Massless Bosons in Two Dimensions: Let us consider bosons in two dimensions with the energy for the particle with wave number \vec{k} being given by

$$\epsilon_{\vec{k}} = \hbar \omega_{\vec{k}} = \hbar v |\vec{k}|$$

where v is the speed of the particles. Would there be a Bose-Einstein condensate in this system and, if so, under what conditions (in terms of temperature and number density) would it form?

2. Relativistic Fermions at High Densities: The core of collapsed stars are often stabilized by the pressure of fermions (electrons, neutrons,..) at high density. Remember that the relativistic energy momentum relation is given by

$$\epsilon^2 = m^2 c^4 + p^2 c^2$$

 $(\epsilon, m, c, p \text{ being the energy, the mass, the velocity of light and the momentum, respectively) and that <math>p = \hbar k$ according to quantum mechanics where $k = |\vec{k}|$ is the wave number. Let $\rho = N/V$ be the number density (we have N particles in volume V). Imagine that, for a fixed temperature, we let ρ get very large. In this limit there is an asymptotic relation between the pressure P and density ρ . Find this relation.

(Hint: For very high densities, most fermions would occupy very high values of k, because of Pauli principle. As a result, for most of them, $pc >> mc^2$, allowing you to neglect the mass.)

3. Mean Field Theory of Phase Transition in Potts Model: In Ising model, spins have two values, up and down. If neighboring spins are the same, we get an energy -J and if they are not the same, we get +J. When J is positive, we have ferromagnetic interaction. The energy penalty for the spins being different in neighboring sites is 2J = (+J) - (-J). We found that, in the mean field theory, we have a phase transition at lower temperature where all the spins are more likely to be up (or down). If we define probability of being up(down) $p_{\uparrow,\downarrow} = \langle N_{\uparrow,\downarrow} \rangle /N$, N being the total

number of spins, and $N_{\uparrow,\downarrow}$ is the number of up (down) spins in a particular spin configuration, then the magnetization per spin is

$$m = p_{\uparrow} - p_{\downarrow}.$$

Our mean field equation for m is given by

$$m = \frac{e^{2\beta z Jm} - 1}{e^{2\beta z Jm} + 1} = \tanh(\beta z Jm)$$

where z is the number of neighbors of each site in the lattice. We found that, at low temperatures, there is a solution with $m \neq 0$.

The Potts model is a generalization of Ising model where spins can take q values: $\sigma = 1, 2, 3, ..., q$. The energy penalty of not having the same value of σ on neighboring sites is 2J (we keep J > 0, making this the ferromagnetic Potts model). We formalize this by defining the total energy of the system as

$$E = -2J \sum_{\langle ij \rangle} \delta_{\sigma_i \sigma_j},$$

with $\langle ij \rangle$ indicating that we sum over pairs which are nearest neighbors. The Kronecker delta, $\delta_{ab} = 1$ if a = b and it is zero otherwise. The lowest energy state correspond to all spins having the same value (which could be, say, for all $i, \sigma_i = 1$). There are q such states, depending which of the qpossible spin values were chosen by every spin.

At high temperatures, the entropy gain from each spin fluctuating equally among all the q possible values would favor the paramagnetic state. In this state, the probability of the spin being in any state $\sigma = 1, ..., q$, which is $p_{\sigma} = \langle N_{\sigma} \rangle / N$ is just 1/q. However, at lower temperatures, it is, in principle, possible to get symmetry broken states where, say, p_1 is different from $p_2 = p_3 = \cdots = p_q$. In analogy with the Ising model, we define

$$m=p_1-p_{\sigma},$$

with $\sigma \neq 1$, for such a state.

In the following steps, you will use the variational principle to derive the mean field equation for the Potts model, with

$$E_0 = -2h_{eff}\sum_i \delta_{\sigma_i,1}.$$

Assume that on the lattice, every site has z neighbors.

1) Find the expression for m in terms of h_{eff} in the thermal ensemble defined by E_0 (calculate p_{σ} with the formula $\langle N_{\sigma} \rangle_0 / N$, $\langle \rangle_0$ referring to thermal average in the ensemble defined by E_0).

2) Compute

$$\Phi = \langle E \rangle_0 - TS_0$$

and express it as a function of m.

3) Minimize $\Phi(m)$ to find the mean field equation for m.

4) On a three dimensional cubic lattice, the number of nearest sites for every site is 6. Let us take the Potts model with q = 3 on such a lattice. What is the value of $K = \beta J$, above which we will have an ordered state with $m \neq 0$? Find the critical value K_c numerically. As K passes though K_c , do we have a first order transition or a second order transition?