
Presentation for Physics 681 September 30th 2010

Sinisa Coh

Python: the programing language

1. What is python

2. Basics of syntax

3. PythTB tight binding package

4. Examples

What is python?

My favorite pythons

What is python?

General purpose high-level programming language

Interpreted, not compiled

Emphasizes code readability

Syntax and semantics are minimalistic

Comprehensive standard library

Why would you need python?

1. To make your homework for 681 class

2. Great tool for post-processing data from your favorite
 DFT code, high-energy simulator, biophysics code...

3. Easy access to many packages
 (numerical, data processing, plotting)

4. Complex data visualization

How to get python?

1. Python itself already installed on most UNIX systems

2. Afterwards need to install numpy package

3. After that install matplotlib package

4. Useful to have ipython installed as well

5. Useful to get an editor that supports python syntax

See also:
http://physics.rutgers.edu/grad/681/python
http://wiki.python.org/moin/PythonEditors

http://physics.rutgers.edu/grad/681/python
http://physics.rutgers.edu/grad/681/python
http://wiki.python.org/moin/PythonEditors
http://wiki.python.org/moin/PythonEditors

Basics of python + numpy + matplotlib

How to run python scripts? (1/3)

Python script files usually end with “.py”

example.py

If python is in your path you can then then execute it as

python example.py

There is no need for compiling!

How to run python scripts? (2/3)

If you make file executable with this command

chmod u+x example.py

and if example.py starts with

#! /usr/bin/env python
or

#! /usr/bin/python

you can run script simply as

./example.py

How to run python scripts? (3/3)

You can run python directly

python

or

ipython

and then start writing in your commands without having
a separate file as example.py

How to get help?

Easiest if you have ipython installed

ipython

Then execute for example

?abs

and you will get help on function “abs”.

Or if you do

a [hit tab]

you will get all functions that start on “a”

Data types

Integer variable is initialized if there is no “.”

x=1

otherwise it is a float

y=3.1416

you can also make complex types

z=3.4 + 4.5j

Anything in quotation marks is a string

s=”Test”

Python lists

Python has quite flexible support for lists

a=[3,8,4,6,9]

And then you can access each element as

a[2]

Or you can access them backwards

a[-1]

Or you can access more elements at once

a[1:3]

Python lists

You can make multidimensional lists

a=[[8,5,3],[1,2,4],[2,3,6]]

They can contain elements of various types

b=[3.14,1,”Test”,3+4j]

These lists are not convenient for numerical manipulations

a=[1,2]+[3,4]

will result in

a --> [1,2,3,4]

Numpy lists

For numerical manipulations, need to use numpy lists

First need to import numpy at the top

import numpy as nu

Then you can create numpy lists as

a=nu.array([[3,4],[2,5]])

Now you can do many linear algebra routines

Numpy lists

If you have these objects for example

a=nu.array([3,2,6])

b=nu.array([4,9,1])

mat=nu.array([[3,2,7],[4,1,0],[9,3,2]])

Then you can do
a+b

nu.dot(mat,a)

nu.linalg.det(mat)

nu.linalg.eig(mat)

For loops

For loops in python always are “looping” over python lists

lst=[3,54,61,1,7]
for i in lst:

print i

Often you want to loop over integers from 0 to n-1

for i in range(5):
print i

All blocks in python have to be indented

for i in range(5):
print i
for j in range(10):

print j
print i+j

If - else statement

Likewise if-else statement is also indented

if x > 0:
print “X is positive”
y=y+x

else:
print “X is negative”
y=y-x
if x < -5:

print “do something”
y=y+x*5

elif x > -2:
...

else:
...

Functions

Functions are defined as follows

def func(x,y,z):
r=x*y+z
return r

func(2,1,4)

You can also make them more fancy

def func(x,y,z=3,*args,**kwargs):
...

func(3,2,1,4,5,more=”Test”)

Importing packages

Python package can be imported in three ways

import numpy

import numpy as nu

from numpy import *

Usage of functions from numpy is in each case then

numpy.array([1,2,3])

nu.array([1,2,3])

array([1,2,3])

Plotting in matplotlib

Matplotlib is a package that can do very complex kind of
plotting. Here is the simplest example

import pylab as pl

pl.plot([1,2,3],[1,4,9])

pl.title(“Title”)

pl.xlabel(“x”)

pl.ylabel(“x^2”)

pl.savefig(“plot.pdf”)

And much much more:

object-oriented programing

functional programming

...

http://docs.python.org/tutorial

http://physics.rutgers.edu/grad/681/python

http://docs.python.org/tutorial
http://docs.python.org/tutorial
http://physics.rutgers.edu/grad/681/python
http://physics.rutgers.edu/grad/681/python

xkcd.org

PythTB tight binding package

Specifying model

To specify (orthogonal) tight binding model you need

1. Unit cell vectors

2. Positions of tight binding orbitals

3. On-site energies

4. Hopping parameters

Unit cell vectors

lat[0]

lat[1]

Need to define a matrix whose rows are coordinates
of unit cell vectors

lat=[[1.0,0.0],[0.2,0.9]]

Orbital positions

In terms of reduced coordinates of unit cell vectors
need to specify coordinates of orbitals

orb=[[0.0,0.0],[0.0,0.5],[0.5,0.5]]

orb[0]

orb[1] orb[2]

Orbital positions

This is just a basis for a crystal, which is periodic

orb=[[0.0,0.0],[0.0,0.5],[0.5,0.5]]

0

1 2

0

1 2

0

1 2

0

1 2

0

1 2

0

1 2

...

...

...

Object file representing model

lat=[[1.0,0.0],[0.2,0.9]]
orb=[[0.0,0.0],[0.0,0.5],[0.5,0.5]]

Using these parameters we can now generate the object
which will represent our tight-binding model

my_model=tb_model(2, 2, lat, orb)

You can think of my_model as variable which contains
all information about the model.

First two parameters are dimensionality of k and r space

For now, our model has all hamiltonian matrix elements
set to zero

Specify onsite energies

For each orbital need to specify onsite energy

my_model.set_onsite([1.0, -1.0, 0.0])

This line specifies this matrix element

<i|H|i>

0

1 2

0

1 2

Specify hopping matrix elements

0

1 2

Also need to specify all hopping terms you want to have

my_model.set_hop(thop, 2, 1, [1, 0])

This line will specifies both

<i|H|j+R> and <j+R|H|i>

Solving model

Energy at a given k-point can now easily be calculated

my_model.solve_one([0.3, 0.4])

k-vector is specified in reduced coordinates in reciprocal
space

You can also solve for many k-points at once

my_model.solve_all([[0.3, 0.4],[0.1,0.2]])

You can also create arbitrary path in k-space

p=[[0.0, 0.0],[0.0, 0.5],[0.5, 0.5]]
kpts=k_path(p, 100)
my_model.solve_all(kpts)

Special cases

Can specify dimensionality of k-space to be smaller than
dimensionality of real space

my_model=tb_model(1, 2, lat, orb)

Here lattice vectors and orbital positions are still two
dimensional but k-vector is one dimensional

By convention, first vector is the one that is periodic

0

1

Special cases

Can also make model zero dimensional

my_model=tb_model(0, 2, lat, orb)

Now there is no k-vector

0

1

PythTB examples

Simple cubic model

from pythtb import *
lat=[[1.0,0.0,0.0],
 [0.0,1.0,0.0],
 [0.0,0.0,1.0]]
orb=[[0.0,0.0,0.0]]
my_model=tb_model(3,3,lat,orb)
my_model.set_onsite([3.0])
my_model.set_hop(-1.0,0,0,[1,0,0])
my_model.set_hop(-1.0,0,0,[0,1,0])
my_model.set_hop(-1.0,0,0,[0,0,1])

from pythtb import *
lat=[[1.0,0.0],
 [0.0,1.0]]
orb=[[0.0,0.0],

[0.0,0.0],
[0.0,0.0],
[0.5,0.5],
[0.5,0.5],
[0.5,0.5]]

my_model=tb_model(1,2,lat,orb)
my_model.set_hop(-1.0,0,1,[0,0])
...

Chain model with p orbitals

Remaining examples on the website:

www.physics.rutgers.edu/pythtb

http://www.physics.rutgers.edu/pythtb
http://www.physics.rutgers.edu/pythtb

