

Exclusive vector meson electroproduction (a) CLAS6, CLAS12 and EIC

Werview of existing data (valence region)

Perspectives with CLAS12 & EIC

Perspectives with CLAS12 & EIC

xclusive p °, 🛛 , 🇳 🕹 p + electroproduc on the proton @ CLAS6

e1-6 experiment (E_e =5.75 GeV) (October 2001 - January 2002)

$ep \rightarrow ep \pi^{+}(\pi^{-})$

Mm(epπ + X)

 σ_{ρ} ($\gamma^* p \rightarrow p \rho^{-0}$) vs W

Angular distribution analysis, $\cos \theta_{cm}$

Longitudinal cross section $\sigma_{L} (\gamma_{L}^{*} p \rightarrow p \rho_{L}^{0})$

Interpretation "a la Regge" : Laget model

$\sigma_{L} (\gamma *_{L} p \rightarrow p \rho_{L}^{0})$

Strong power corrections... but seems to work at large W...

Exclusive *p* + *electroproduction*

Channel selection

$\rho \rightarrow e'[n] \rho + \rightarrow e'[n] \pi + \pi^{0} \rightarrow e'[n] \pi + \gamma \gamma$

One event in CLAS

Regge "hadronic" approach

GPD "partonic" approach

₽ ⁰	e _u H ^u - e _d H ^d
	$\mathbf{e}_{\mathbf{u}}\mathbf{E}^{\mathbf{u}} - \mathbf{e}_{\mathbf{d}}\mathbf{E}^{\mathbf{d}}$
۵ ۵	e _u H ^u + e _d H ^d
	$\mathbf{e}_{\mathbf{u}}\mathbf{E}^{\mathbf{u}} + \mathbf{e}_{\mathbf{d}}\mathbf{E}^{\mathbf{d}}$
P ⁺	H ^u - H ^d
1	$\mathbf{E}^{\mathbf{u}} = \mathbf{E}^{\mathbf{d}}$

H, **E**

"Partonic approach": GPDs

σ_L(ρ⁺) [CLAS@5.776 GeV]

σ_L(ρ⁺) [VGG]

Exclusive \overline\$ electroproduction

V + [V -])

ep-

Exclusive *o electroproduction*

0.40 0.51 X₈

0.62

0.18

0.29

Cross section σ ($\gamma * p \rightarrow p\omega$)

in the valence region (σ_{L,P}, dσ/dt,...)

A aget Regge model describes well most of the features of $(\rho^0, \omega, \phi, \rho^+)$ cross sections (total and diff., L and T) up to $Q^2 \sim 3.5$ GeV².

Solution Second Structures (k_{perp}), **Solution** Second Structures (k_{perp}), **Describes well data for W** - 5 GeV for the (ρ^{0}, ω, ϕ) channels. For ϕ channel: continues to work for W < 5 GeV

For ρ^o channel: fails by large for W<~5 GeV (can potentially be cured by adding new contribution to GPD DD parametrisation)

For $\boldsymbol{0}$ channel: fails by large for W < 5 GeV (won't be cured by the same ansatz than the ρ^{0} ; π^{0} vs H&E VM GPD dominance) For ρ^{+} channel: fails by large for W < 5 GeV (won't be cured by the same ansatz than the ρ^{0} ; π^{+} , ρ^{+} exchanges are higher-twist)

Motivation to go to higher Q² (but stay in valence region):

XE Approach asymptotic regime and test validity of power corrections

If (power corrected) handbag diagram in valence region: same Q² dependence at low W than at large W: p^o and of should be different from of and p⁺, these latter having higher-twist t-channel exchanges

******* If higher twist contribution in valence region: cross section will drop faster as a function of **Q**² at **low W** than at **large W**:

Werview of existing data (valence region)

3

W (GeV)

-1

2

0.5

×₿

O

0

-0.5 -t (GeV²)

3

0.3

0.4

100% acceptance & integrated over all variables but (x_B,Q^2)

11 GeV e 60 GeV p

100% acceptance & integrated over all variables but (x_B,Q^2)

6 GeV e fixed p target

11 GeV e fixed p target

11 GeV e 60 GeV p

CLAS@6 GeV S. Morrow et al., Eur.Phys.J.A39:5-31,2009 (p @05.75GeV)

Back-up slides

Background Subtraction (normalized spectra)

1) Ross-Stodolsky B-W for $\rho^{-0}(770)$, $f_0(980)$ and $f_2(1270)$

with variable skewedness parameter,

2) $\Delta^{++}(1232) \pi^{+}\pi^{-}$ inv.mass spectrum and $\pi^{+}\pi^{-}$ phase space.

$d\sigma / dt (\gamma^* p \rightarrow p \rho^{-0})$

Comparison with ρ^{0} , ω , ϕ

