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Introduction

Noether’s theorem: symmetries constrain the dynamics.

How do the dynamics constrain possible symmetries?

In the context of relativistic QFT the question can be restated as
follows:

What are the possible symmetries
of a theory with the non-trivial S matrix?

• The answer was given in the paper by S.Coleman and
J.Mandula “All Possible Symmetries Of The S Matrix” in 1967
which is known as the no-go Coleman-Mandula theorem.
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The Coleman-Mandula theorem (mod subtleties)

Assumptions:

• the S matrix exists: a theory has a mass gap (theory is IR
free);

• the S matrix is nontrivial: everything scatters into
something;

• the Poincare group is part of the symmetry group;

Conclusion:

• The symmetry group is the direct product of an internal
symmetry group and the Poincare group.
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Loopholes

There are many ways to evade the Coleman-Mandula
theorem

• d=2
• SUSY
• CFT
• AdS

• d>2
• superalgebra (HLS

1975)
• the S matrix does not

exist
• Vasiliev theory

Is there a Coleman-Mandula theorem for AdS physics?
Or, in other words...
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What are the possible symmetries

of a CFT with

the non-trivial spectrum and correlation functions?



Known symmetries of nontrivial CFTs

Before trying to prove that something is impossible let’s
summarize what we know is possible:

• symmetry can be infinite dimensional in d = 2 → d > 2;

• SUSY → generators or currents of half-integer spin;

• internal symmetries are definitely allowed;

• no examples of non-trivial CFTs with conserved currents of
spin higher than two.

Could we have more symmetries while having non-trivial
correlation functions?
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We arrive at the conclusion that the answer to this question is

No

Let’s proceed to the assumptions and conclusions...
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Assumptions

Let’s consider a set of QFTs for which the following is true:

• CFT: H =
⊕

[O∆,s], OPE, j2;

• the theory is unitary;

• the two-point function of stress tensors is finite;

• the theory contains conserved current js of spin higher
than two s > 2.

Additional assumptions

• d = 3 (for d > 3 the same set of ideas is applicable);

• the stress tensor (or conserved current of spin two) is
unique.



Conclusion

The theory contains an infinite number of currents js.
Their correlation functions

〈js1(x1)...jsn(xn)〉

are fixed to be the free boson or the free fermion ones up to
one real positive number.
This number is the coefficient in the two-point function of stress
tensors.
Start with N bosons or fermions. Compute the correlation
functions as the function of N. Continue them to arbitrary N.
N would be quantized if we put CFT on the nontrivial space?



Outline

• General idea

• Free fields

• Exploiting the twist gap

• Conserved currents sector

• Bi-primary fields

• Theories with higher spin symmetries broken at the 1
N level



General idea

We consider CFT on the plane.
We start from the extra conserved current js, build the extra
symmetry charges

Qζ
s =

∫

Σd−1

∗jζs

jζs = jµµ1...µs−1ζ
µ1...µs−1

[Qζ
s ,O(x)] =

∫

Sx+ε

∗jζs (x + ε)O(x)

where ζ is the conformal Killing tensor. We study Ward

identities which one gets by acting with these extra charges on
the conserved currents [Qζ , js].



Free fields
Let’s consider the free scalar field φ(x) and let’s consider the
charge built using constant CKT ζ. Then the action of this
charge on the free field is

[Qζ , φ(x)] = ζµ1...µs−1∂µ1 ...∂µs−1φ(x)

Consider now the WI that we get by acting on the correlation
function

〈[Qs, φ(x1)φ(x2)...φ(xn)]〉 = 0

in momentum space it takes the form

(

n
∑

i=1

ks−1
i )〈φ(k1)φ(k2)...φ(kn)〉 = 0

so that the correlation functions factorize!
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Free Fields II

Notice that not only higher spin charges act in a very simple
manner on the free field but also that the OPE

φ(x)φ(0) ∼
∑

[js]

allows one to extract the correlation functions of conserved
currents!
So, one can, in principle, hope to find the free field in the
spectrum of CFT as soon as higher spin charge is present.
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Free Fields III

However, this is too naive... Let’s consider N free bosons φi(x)
and limit ourselves to a singlet sector.
This is consistent CFT with higher spin symmetries but there is
no free field in the spectrum! Thus, we should look for
something else...
The next easiest object is the bi-local operator

B(x , y) = φi(x)φi(y)

• is always present;

• transforms simply under higher spin charges;

• generates conserved currents of the theory.
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Twist gap

τ = 1/2

τ = 1

s

τ

1/2 1 3/2 2

free fields

conserved currents

Figure: Spectrum of
the unitary CFT in
d = 3

The unitary constrains the possible
dimensions of operators as follows

∆ ≥ s + 1/2, s = 0,1/2

∆ ≥ s + 1, s ≥ 1

Thus, if we introduce the twist τ = ∆− s
then the operators with the twist

1/2 ≤ τ < 1

could have only 0 or 1/2 spin.



Twist gap II

Let’s imagine that we have some CFT such that there is a
scalar operator φ∆ with the twist lying inside the twist gap

∆ =
1
2
+ γ, γ < 1/2.

Suppose also that it is charged under the j4 → Q4.
Let’s build the charge Q−−− using CKT along the minus
direction.
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Twist gap II

Notice that Q−−− has dimension ∆ = 3 spin s = 3 and twist 0.
Then from the unitarity and conformal symmetry of the OPE it
follows that

[Q−−−, φ∆] =
∑

i

ci∂
3
−
φi ,∆

Diagonalizing the action of the charge and writing WI for the
four point function in momentum space one gets

(
∑

k3
−,i)〈φ∆(k1)φ∆(k2)φ∆(k3)φ∆(k4)〉 = 0

This implies factorization!
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Twist gap III

Thus, from the higher spin WI we conclude that

〈φ∆(x1)φ∆(x2)φ∆(x3)φ∆(x4)〉 = 〈φ∆(x1)φ∆(x2)〉 〈φ∆(x3)φ∆(x4)〉+...

Due to the fact that all operators couple to stress tensor
〈φ∆φ∆T 〉 6= 0 and the fact that 〈TT 〉 is finite, the stress tensor
should be present in the OPE.

Tµν

Figure: Stress tensor should be present in the OPE
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Twist gap IV

However, looking at the OPE of the factorized four point
function one can check that for ∆ 6= 1

2 such operator is absent...
Thus, our assumption about existence of such an operator was
wrong...
This excludes all charged under higher spin symmetries
operators that have the twist inside the twist gap 1/2 < τ < 1.
Now let’s switch to conserved currents...



Conserved currents: basic properties

To attack the sector of conserved currents let’s recall the basic
properties of three point functions of conserved currents
(Giombi-Prakash-Yin, Costa-Penedones-Poland-Rychkov).

〈js1 js2 js3〉 = 〈boson〉+ 〈fermion〉+ 〈odd〉

where

Feven = e
1
2 (Q1+Q2+Q3)eP1+P2(b cosh P3 + f sinh P3)

and the odd piece is given by

〈js1(~x1, λ1)js2(~x2, λ2)js3(~x3, λ3)〉odd ∼
∫

dtd3~x0ts1+s2+s3−1

(λ1/x10/x02λ2)
(s1+s2−s3)(λ1/x10/x03λ3)

(s1+s3−s2)(λ2/x20/x03λ3)
(s2+s3−s1)

(x2
10)

2s1+1(x2
20)

2s2+1(x2
30)

2s3+1
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Conserved currents: basic properties

Other useful properties to remember are

〈OOT 〉 6= 0

and also
〈js jsjs′〉 = 0

when s′ is odd.
We will be again interested in all-minus charges Qs = Q−...−.
So let’s introduce the following notations

〈js1−...−(x1)js2−...−(x2)js3−...−(x3)〉 = 〈s1s2s3〉
Rule of thumb: whenever you think that there should be a
tensor index — it is the minus index.



Conserved currents: basic properties

Other useful properties to remember are

〈OOT 〉 6= 0

and also
〈js jsjs′〉 = 0

when s′ is odd.
We will be again interested in all-minus charges Qs = Q−...−.
So let’s introduce the following notations

〈js1−...−(x1)js2−...−(x2)js3−...−(x3)〉 = 〈s1s2s3〉
Rule of thumb: whenever you think that there should be a
tensor index — it is the minus index.



Conserved currents: action of the higher spin charges
As the next step consider the action of minus-charge on the
all-minus component of conserved currents. Again, unitarity
fixes it up to several constants

[Qs, k ] =
s

∑

i=−s

ci∂
(s−i)(k + i).

We can do a little bit better

[Qs,2] ∼ ∂(s − 1).

This term must be there! And this opens the flow...

[Qs,X ] ∼ Y

[Qs,Y ] ∼ X

from 〈[Q,XY ]〉 = 0.
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Conserved currents: example

Consider the theory that contains spin four current j4. From it
we build minus charge Q4. When acting on the stress tensor

[Q4,2] ∼ ∂4

Let’s consider the 〈[Q4,224]〉 = 0 WI.On the general grounds
there will be

∂x1〈4(x1)2(x2)4(x3)〉 6= 0

thus, we get algebraic equation

c422∂x1〈4(x1)2(x2)4(x3)〉 + c222∂
3
x1
〈2(x1)2(x2)4(x3)〉

+ c022∂
3
x1
〈0(x1)2(x2)4(x3)〉+ ... = 0

on the coefficients...
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Conserved currents: results

From this simple exercise we can learn that

• there are three families of solutions (boson, fermion, odd);
Is there interacting HS CFT with odd parts?

• if 4 is present, 6 is necessary present;

• for boson and odd the scalar 0 is necessary present.

Repeating a similar exercise for the scalar 〈022〉 one can show
that uniqueness of the stress tensor restricts

〈222〉 = 〈boson〉+ 〈odd〉
〈222〉 = 〈fermion〉

This is one of the many examples when boson and fermion
solutions are separates.
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Lemma

By playing a little bit more one can be convinced that the
following is true:

A theory that contains any conserved current of spin s > 2
contains an infinite number of currents and spin four s = 4
conserved current is necessary present in the theory.

However, let’s come back to the three point function of stress
tensors to appreciate it a little bit more...



Energy one point function

Knowing something about three point functions of stress
tensors allows one to compute the so-called one point energy
correlator .

〈O[Ψ]|Ê(~n)|O[Ψ]〉

Ê(~n) = limr→∞r2
∫

∞

−∞

dtniT 0
i (t , r~n)

Some intuition about this object:

• measure the energy flow at infinity;

• small coupling - jets and showering;

• strong coupling - uniform flow (Hofman-Maldacena).



Energy one point function: no showering, no odd piece
Consider the case when three point function of stress tensors is
boson+odd. Then one can show that

〈T11 − T22|E(~n)|T11 − T22〉 =
q0

2π
(1 + cos 4θ + dodd sin 4θ)

expanding near θ = π
4 we find that for any d 6= 0

〈E(θ)〉 < 0

our theory is secretly non-unitary. So 〈222〉 is either a purely
free boson or free fermion. So that

〈E(θ)〉 = q0

2π
(1 ± cos 4θ)

Notice that for some angles the energy flow is zero.
This does not happen in the theory where the showering
occurs.



Four point functions

One can also consider the four point functions of four scalars 0.
After showing that

[Q4,0] = ∂30 + ∂2

we get the differential equation

∂3〈0000〉+ ∂〈2000〉+ ... = 0.

This time we need to solve genuine differential equations for
the functions of cross ratios...
The result is that the solution is fixed up to one constant

〈0000〉 = 〈disconnected〉+ 1
c
〈connected〉



Four point functions: conclusion

• using only one additional charge we can fix two correlation
functions 〈0000〉 and 〈2000〉;

• 〈2000〉odd must be set to zero to obey WI, by the OPE it
sets to zero odd piece of three point functions;

• the free fermion story is very similar.

We got this using only one additional charge in a very explicit
way...
But we have an infinite number of them. So there should be a
shorter way to the answer that uses all the symmetries!
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Introduction to bi-primaries

Let’s consider the scalar bilinear operator built from conserved
even spin current js

bs(x , y) =
∑

ci ,n(x − y)i∂n js(
x + y

2
)

defined by the equality

〈bs(x , y)js(z)〉 = 〈φ(x)φ(y)js(z)〉

The properties of bs(x , y)

• transforms as the bi-primary;

• obeys the Laplace equation in x and in y .

This is not a free field! For any theory there exists b2(x , y).



Taking the light-cone limit

As the next step we consider the light-cone limit of two
conserved currents js(x)js′(0). There are three types of limits
that project to three different parts of three point functions
(boson, fermion, odd).
For simplicity we present here the bosonic limit

js(x)js′(0)b
=

(

lim
y12→0+

+ lim
y12→0−

)

|y12| lim
x+

12→0
js(x1)js′(x2)

here we assumed that the only operator of a twist less than one
is the identity. All operators from the twist gap are absent due
to the argument presented before.
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Simplification of the three point functions

The crucial simplification that occurs in the limit is the following

〈js js′b js′′(x3)〉 = ∂s
1∂

s′
s 〈bs′′(x1, x2)js′′(x3)〉

where

〈bs′′(x1, x2)js′′(x3)〉 =
1√

x13x23

(

x12

x13x23

)s′′

and all indices are minuses as usual.
This allows us to analyze infinitely many WIs in a very simple
manner.



Looking for the bi-primary

To find the bi-primary that consists of two free fields we take the
light-cone limit of two stress tensors

j2(x)j2(y)b
= ∂2

1∂
2
2B(x , y) , B(x , y) =

∑

s even

csbs(x , y)

if 〈222〉b 6= 0 then, at least, c2 6= 0.
Then we would like to prove that in the theory with higher spin
symmetries B(x , y) behaves as the normal ordered product of
two bosonic free fields.
This will be done first by showing that

[Qs,B(x1, x2)] = (∂s−1
1 + ∂s−1

2 )B(x1, x2)

and then showing that this implies that correlators have the free
field form.
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Proof of the simple transformation law

We would like to compute [Qs,B(x1, x2)].
We can compute

[Qs, j2, j2b
] = [Q, j2]j2b

+ j2[Q, j2]b.

The action of Q commutes with the limit and we can write [Q, j2]
in terms of currents and derivatives (with indices and
derivatives all along the minus directions).
Thus, in the end we can write

[Qs,B(x1, x2)] = (∂s−1
1 +∂s−1

2 )B̃(x1, x2)+(∂s−1
1 −∂s−1

2 )B′(x1, x2)

To prove that B̃ = B and that B′ is absent boils down to
considering the set of WIs of the form 〈[Qs, B̂s′]〉.



Proof that B̃ = B

Consider 〈[Qs,B 2]〉 = 0.
One sees then that 〈B̃ 2〉 6= 0.
Consider B − B̃ where we normalize B̃ in such a way that the
difference does not contain b2.
To show that all the other currents will be also absent consider

〈[Qs′ , (B − B̃)2]〉 = 0

Again the chain nature of WIs and the structure of correlation
functions are extremely restrictive.



Higher spin symmetries broken at 1
N order

It is not complicated to generalize our consideration to the
cases when the higher spin symmetries are broken at the 1

N
order in large N limit.
In this case the dimensions of conserved currents will

∆s = s + 1 + O(
1
N
)

and the divergence of the currents will take the form

∂µjµ =
1√
N

∑

Oi

where we assumed vector-like large N expansion and also the
fact that we know the spectrum of operators at N = ∞.
The operators in the RHS should have the right quantum
numbers.
In a completely analogous way to the exact symmetries we can
analyze all possible structures in the RHS.
Now what will happen with the WIs?
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Shadow Ward Identities
In the case of fermions we would get

∂µjµ
−−−

=
1√
N
[a1∂− j̃0j−− + a2 j̃0∂−j−−].

If we consider 〈222〉 WI we would get terms like
∫

V
(∂〈j2(x)j2〉)〈̃j0(x)j2j2〉

using the fact that all indices are minus this can be rewritten as

∂5
∫

V
〈j0(x)j0〉〈̃j0(x)j2j2〉

Now notice that the integral has the all properties of 〈j0j2j2〉.
This is the mechanism of the appearance of the twist one
scalar in the WI story. The operator j̃0 of dimension 2 is
substituted by the scalar of dimension d − 2 which is what
sometimes is called “shadow” field.
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Conclusions

• we analyzed the problem of possible symmetries of CFTs
in d > 2;

• in d = 3 using unitarity, conformal symmetry and
uniqueness of stress tensor we showed that addition of
conserved currents of spin s > 2 makes the theory trivial;

• the case of multiple stress tensors looks very similar and
hopefully will be addressed in the near future;

• our analysis heavily relied on the structure of three point
functions of conserved currents in d = 3. The analysis for
d > 3 is completely analogous and should be easy
especially using the simplicity of the light-cone limit;

• using the same approach we can analyze the cases when
higher spin symmetries are broken at 1

N order;



Conclusions

• all gravitational higher spin symmetric theories in AdS that
preserve symmetry at the quantum level are described by
free fields at the boundary;

• there is more freedom to have a theory which has higher
spin symmetry at the classical level only;

• a theory that is dual to free fermion/scalar at the leading N
order necessarily generates odd structures at one loop
(this should be true in parity violating versions of Vasiliev
theory considered recently. Our analysis supports duality
with CS theory).

Thank you!
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