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In this talk (based on a paper with

Nekrasov), I will explain a new viewpoint

concerning two surprising results about

Ω-deformed gauge theories with N = 2

supersymmetry in four dimensions:

(1) The connection with integrability

explored by Nekrasov and Shatashvili;

(2) The connection to Liouville theory

discovered by Alday, Gaiotto, and Tachikawa.
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There are several ideas and/or
methods we use to approach these
problems:

(a) We reinterpret the Ω deformation
away from the circle fixed points.
(b) We map to a two-dimensional
brane construction by looking at
spacetime “torically.”
(c) We use familiar facts about sigma
models in a new way.
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I will explain these in turn, starting
with (a), our approach to the
Ω-deformation.

The Ω deformation of an N = 2
supersymmetric gauge theory in four
dimensions is made as follows. Such a
theory contains a complex scalar field
φ in the adjoint representation. Let σ
be, for example, the real part of φ.
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To make the Ω-deformation, we assume that

we are given a vector field V that generates

a U(1) symmetry of spacetime. Then

formally we make a change of variables

σ → σ + εV µ D

Dxµ
.

This is not really an honest change of

variables, because we are adding a derivative

to a field.
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Still, it makes sense inside the N = 2
Lagrangian, because σ only appears
in the form of [σ, σ′] (where σ′ is
another field) or Dασ.

For example,
the former transforms by

[σ, σ′]→ [σ + V µDµ, σ
′]

= [σ, σ′] + εV µDµσ
′

which is just a function of fields, not
a differential operator.
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So the Ω-deformation gives a way to
modify the Lagrangian, and since it
does not come from an honest change
of variables, the new Lagrangian is
not equivalent to the old one. That is
why the Ω-deformation can do
something interesting.



However, the Ω-deformed theory is
equivalent to the ordinary theory in
different variables if U(1) acts freely.
In fact, suppose that spacetime is a
product M = Y × S1, where the
U(1) symmetry acts by rotation of
S1. Let θ be an angular coordinate
for this S1 and let Aθ be the
component of the gauge field in the θ
direction.



Let us supplement the formal change
of variables

σ → σ + ε
D

Dθ

with an honest change of variables

Aθ → Aθ − εσ
or equivalently

D

Dθ
→ D

Dθ
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It is not hard to see that to first order
in ε, this leaves fixed the N = 2
Lagrangian.

For example, that
Lagrangian contains a term

Tr (Dθσ)2

which is invariant to first order in ε.
Similarly for other terms∑

µ6=θ

Tr
(

[Dµ,Dθ]
2 + [Dµ, σ]2

)
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What is happening is this. Think of σ as the
component of the gauge field in a hidden new
direction, which I’ll call s. Then our transformation

σ → σ + ε
D

Dθ
D

Dθ
→ D

Dθ
− εσ

is a rotation, to first order in ε.

If we improve the

formula so that it describes exactly a rotation in the

θ − s plane, we can rotate away the Ω-deformation.
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is not an honest change of variables, but only a

mnemonic, what we have here is not the discovery

of a new symmetry of N = 2 super Yang-Mills.

Instead, we have a way to show that the

Ω-deformation can be rotated away away from the

fixed points.
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Now I’ll tell you what we will apply this to, and here
we will also get to idea (b), the idea of studying
spacetime torically.

I’ll actually consider first the case of making contact

with the work of AGT on Liouville theory. For this,

we are going to work in a Hamiltonian formalism

and take spacetime to be, roughly, R× S3, with a

topological twist that preserves some

supersymmetry.
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Actually, S3 has SO(4) symmetry, and a

maximal torus in SO(4) is

SO(2)× SO(2) = U(1)× U(1). We make

an Ω-deformation for both U(1)’s with

parameters ε1, ε2 and we symbolically refer to

the resulting theory as N = 2 on R× S3
ε1,ε2

.



Thinking of S3 as the locus∑4
i=1 y 2

i = R2, one U(1) rotates
y1, y2 and the other rotates y3, y4.
The only U(1)× U(1)-invariant is
w = y 2

1 + y 2
2 ; it ranges from 0 to R2.



The picture looks a bit like this
except near the ends:



w parametrizes a line-interval I .
What we have here except near the
endpoints of w is a T 2

compactification to R× I . The low
energy theory is an effective
two-dimensional theory with
supersymmetric branes at the two
ends. The only thing that is unusual
is that the branes come purely from
geometry.



Near each end, one circle shrinks –
the one in the y1 − y2 plane or the
one in the y3 − y4 plane. The other
circle does nothing. Schematically:



At each end, the geometry of S3

looks like D × S1 or S1 × D, where
D is a “cigar-like” geometry:



More exactly, to specify the
Ω-deformation, the geometry looks
like Dε1 × S1

ε2
at one end and

S1
ε1
× Dε2 at the other.



Here is another picture:



The cigar geometry preserves half of
the supersymmetry, so in the effective
two-dimensional description, it
produces a half-BPS brane. In the
case of compactification on S3 or
S3
ε1,ε2

, the two ends together preserve
only 1/4 of the supersymmetry.



The same cigar geometry appears in
our other problem – the link between
gauge theory and integrability
explored by Nekrasov and Shatashvili.
Here the geometry considered is
R× S1 × Dε where Dε is the cigar.
The effective two-dimensional
geometry is R× I , where I is the
“base” of the cigar, regarded as a
circle fibration.



The brane at the left end of the cigar
comes from geometry, just like in our
S3 compactification. But the brane
at the other end comes from a choice
of a supersymmetric boundary
condition in 4d gauge theory:



We can pick the boundary condition
at the far end so that the whole
picture is half-BPS. (This contrasts
with S3 or S3

ε1,ε2
compactification,

which is only 1/4 BPS.)



Now we come to the key point, which
is to understand what sort of brane
comes from geometry. Let us first do
this in the absence of the
Ω-deformation.

A vector multiplet in
four dimensions consists of a complex
scalar φ and a gauge field A. After
compactifying on T 2, φ remains and
the holonomy of A gives two more
angle-valued scalars b1, b2.
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In the case of the cigar brane

one scalar – the one
coming from the holonomy around
the shrinking circle – will have to
vanish at the boundary. The other
three scalars obey Neumann boundary
conditions and do not vanish.



There is no half-BPS boundary condition in which
three scalars in a hypermultiplet obey Neumann
boundary conditions and one obeys Dirichlet
boundary conditions.

What is happening is that in reducing from four to

two dimensions, a vector multiplet turns into a linear

multiplet, not a hypermultiplet. To turn it into a

hypermultiplet, we need to do T -duality on one of

the two fields b1, b2 that come from the holonomies

of A around T 2. We choose to do T -duality on the

holonomy around the shrinking circle.
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Once we do that, the support of the “cigar” brane

B is the full target space X of the sigma model.

This brane is half BPS.

In fact, X is a hyper-Kahler

manifold and a brane supported on all of X with

trivial Chan-Paton bundle (there is no Chan-Paton

curvature at the tip of the cigar) is a B-brane in

every complex structure I , J , K , or any linear

combination.Let us summarize this by calling B a

brane of type (B ,B ,B).
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The brane B thus preserves a whole family of topological

supercharges. But if we want to make contact with either the

work of Nekrasov & Shatashvili or that of Alday, Gaiotto &

Tachikawa, the important structure is that it is a B-brane of

complex structure I . This is the complex structure in which

the Seiberg-Witten or Hitchin fibration is holomorphic.



Now what happens when we turn on
the Ω-deformation and replace the
cigar D by its deformed cousin Dε?
Away from the tip of the cigar, the
theory is unchanged, modulo a
“rotation” that acts non-trivially on
the supersymmetries. The brane B is
no longer a B-brane of complex
structure I .



The supersymmetries that are
preserved by the Ω-deformed brane
Bε are different from the
supersymmetries that are preserved
at ε = 0.



What can happen?

In 2d, in bulk, there are four
left-moving SUSY’s Qa

L and four
right-moving ones Qa

R . The unbroken
SUSY’s in the presence of a boundary
are always linear combinations of left-
and right-moving SUSY’s.
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At ε = 0, the unbroken combinations
are Qa

L + Qa
R , a = 1, . . . , 4, where the

a index transforms in the
fundamental representation of the
SO(4) ∼= SU(2)× SU(2)
R-symmetry group.



At ε 6= 0, the unbroken SUSY’s are
Qa

L +
∑

bRa
bQ

b
R , where Ra

b is a
certain SO(4) rotation matrix, which
depends on ε.



Concretely, what happens is that the
modes traveling down the string,
when they reach the boundary, are
reflected back with an SO(4)
rotation by the matrix Ra

b.



The way that this comes about is
familiar in string theory. From the
point of view of a 1 + 1-dimensional
sigma-model, there is a B-field at the
end of the string.



Coupling to the B-field has the effect
of rotating the worldsheet modes
when they get reflected from the end
of the string.

A B-field has another consequence
that is also familiar:
noncommutativity.
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To understand the remarkable
properties of the brane Bε, we must
consider the space of (Bε,Bε) strings.

At ε = 0, Bε is a B-brane in complex
structure I and the space of these
strings is the space of functions on X
that are holomorphic in complex
structure I .
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At ε 6= 0, additively, the space of
(Bε,Bε) strings is the space of
holomorphic functions in complex
structure I, where I may or may not
coincide with I , depending on the
choice of ε.

For the
Nekrasov-Shatashvili problem, I = I ,
but for AGT, I is more generic and is
equivalent to J .
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Even more remarkable is the
multiplication of (Bε,Bε) strings. It
is given by the familiar sort of
noncommutative deformation. An
important fact is that the B-field is of
type (2, 0)⊕ (0, 2) with respect to I.



One approach to this statement is via
the theory of coisotropic A-branes, of
Kapustin and Orlov. This approach is
explained in the paper, but I will
largely skirt this language today.



Noncommutativity has the usual
open string origin:



Interactions of open strings are
always noncommutative, but usually
this does not reduce to something as
simple as deformation quantization.
For this to happen, the antisymmetric
contraction has to dominate the
symmetric one:

〈X I (σ)X J(σ′〉 ∼ G IJ ln(σ − σ′)2

+ θIJε(σ − σ′).



The usual way to ensure that the
antisymmetric contraction dominates
is to make F + B large, relying on
the fact that G IJ ∼ 1/(F + B)2 while
θIJ ∼ 1/(F + B).



Here we get another route to the
same goal: the symmetric contraction
vanishes because one only considers
holomorphic functions and G IJ is of
type (1, 1) in complex structure I.

(On the other hand, θIJ is of type
(2, 0)⊕ (0, 2).)
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For definiteness in what follows, we
specialize to a large class of N = 2
theories considered by Gaiotto. They
arise by compactification of the
six-dimensional (0, 2) theory on a
Riemann surface C . And X is a
moduli space of Higgs bundles on C .



This is a useful description in
complex structure I (where the
Hitchin fibration is holomorphic). In
complex structure J , X is a moduli
space of flat connections on C (with
structure group the complexification
of the usual gauge group G ).



Let R be the algebra of (Bε,Bε)
strings. If I = J (relevant to AGT),
then the holomorphic functions on X
in complex structure I are the traces
of holonomies of the flat connection
along arbitrary paths in the Riemann
surface C .



R has a noncommutative
deformation that arises in
three-dimensional Chern-Simons
gauge theory and also in
two-dimensional conformal field
theory.



In the case of AGT – which recall has
to do with studying the N = 2 gauge
theory on R× S3

ε1,ε2
– both branes

come from geometry.



Thus there are two similar branes, say
Bε1 at one end and Bε2 at the other
end. On the space of (Bε1,Bε2)
strings, the algebra R acts at the left
end and a dual algebra R̃ acts at the
right end.



It turns out that the deformation
parameters of the two algebras are
b = ε1/ε2 and b−1 = ε2/ε1, as one
might expect from Liouville duality
and the work of AGT.

(These
algebras were introduced in the
present context by Alday, Gaiotto,
Gukov, Tachikawa, and H. Verlinde;
and Drukker, Gomis, Okuda, and
Teschner.)
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The other problem – of NS – is a
little different. The algebra R arises
by deformation quantization of the
ring of holomorphic functions on X in
complex structure I. But we want
actual quantization of something, not
just deformation quantization.
To get the picture of NS, the second
brane does not come from geometry.



It comes from a boundary condition
that we place at the far end of the
cigar:



Simple supersymmetric boundary
conditions in the gauge theory lead in
the two-dimensional sigma-model to
an ordinary Lagrangian A-brane BL

with support a Lagrangian
submanifold L. By definition, L is
Lagrangian for the symplectic
structure ω of the A-model. But
generically, it is symplectic with
respect to ω̃ = F + B .



When this happens, the space of
(Bε,BL) strings is a quantization of L
in symplectic structure ω̃.

(Aldi and Zaslow; Gukov and EW)



When this happens, the space of
(Bε,BL) strings is a quantization of L
in symplectic structure ω̃.

(Aldi and Zaslow; Gukov and EW)



What we get this way is a quantum
integrable system.

The reason for this
statement is that the holomorphic
functions on the base of the Hitchin
fibration are Poisson-commuting with
respect to I and turn into
commuting differential operators.
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