IMPROVING IDENTIFICATION OF DIJET RESONANCES AT THE LHC

Brian Shuve

Perimeter Institute for Theoretical Physics In collaboration with Eder Izaguirre, Itay Yavin arXiv:1407.7037 & work in progress

> Rutgers University 14 October 2014

Summary of LHC Run I

• Entered the era of precision Higgs physics

- Still no signs of
 - SUSY
 - Exotic EWSB mechanisms
 - Dark matter

• ...

Looking forward to Run II+

- Reach improved due to higher energies
 - Not much to do here: scale up cuts and look for obvious signs of new physics

Looking forward to Run II+

- What if new physics lies around the electroweak scale?
 - Can look very similar to SM physics
- High integrated luminosity gives a lot of signal events but....
 - **Trigger thresholds** are higher
 - **SM backgrounds** are higher
 - **Pile-up** is higher
- Cutting out the SM background cuts out most of the signal, too
 - Study BSM physics via precision SM physics
- Requires dedicated strategies to ensure we don't miss anything

- Ubiquitous in the Standard Model
 - W/Z/H/t
 - SM resonances can also decay leptonically, but suffer from smaller branching fractions
 - Want as many handles as possible on SM rates
 - (Possible) discrepancy in fully leptonic WW cross section

But see:

Meade, Ramani, Zeng arXiv:1407.4481

> Jaiswal, Okui arXiv:1407.4537

- Also ubiquitous **beyond** the Standard Model
 - Extended Higgs sectors
 - R-parity-violating supersymmetry
 - Supersymmetric cascade decays
 - Extra dimensions
 - New gauge interactions

(threshold)

- We are not guaranteed to do better at the LHC
- Extreme example: baryonic Z'

(taken from Dobrescu, Yu arXiv:1306.2629)

- Current approaches:
 - Some searches highly optimized, using sophisticated multivariable techniques (H to bb searches)
 - Others place simple cuts on jet kinematics and do a bump hunt (Z'→WW semileptonic, SM WW+WZ semileptonic,...)
 - Can we do better?

- One method to improve sensitivity: move to new kinematic regime
 - Large boost means resonance decay products merge into "fat jet"
 - QCD jet looks nothing like t/W/Z/H jet much recent progress on this!
 - Good for highly boosted regime, but suffer large kinematic penalties
 - Extra sensitivity to pile-up, underlying event (~ R³)

- Can we still use some of the same strategies to improve identification of **moderately boosted** resonances?
 - In this case, the decay products of the resonance are separately resolved

- Past work attempted to combine resolved and substructure searches
 - Gouzevitch *et al.*, arXiv:1303.6636
 - Look at pair production of dijet resonances in 2j, 3j, 4j final states
 - Use substructure when decay products merged, apply similar cuts to resolved jets when not
 - Find that jet substructure observables don't give much discriminating power away from highly boosted regime

- Are there still ways to separate resonance decay from "hard" QCD splitting?
 - We define a new observable that can be added to existing searches with a factor 2-6 gain in *S*/*B*
 - Outperforms other possible cuts; includes resolved jet masses

Outline

- 1. Jet substructure and the highly boosted regime
- 2. Resonance tagging in the mildly boosted regime
- 3. Examples
 - SM: WW+WZ
 - SM: $V(H \rightarrow bb)$
 - BSM: $Z' \rightarrow WW$
- 4. Future directions

Jet substructure at high boost

- When an object is highly boosted, its decay products are collimated
 - Can be clustered together into a single, "fat" jet

Dominant background originates from a single QCD parton

Jet substructure at high boost

- The signal typically gives two hard **subjets** from the decay of a resonance, while the QCD subjets typically come from parton shower
 - Can take either a decomposition approach or energy-flow approach

 $p_{T,R} > \text{feps}_{T,R} \not \gg few \times m_R$

Decomposition Approach

- Canonical example: BDRS mass-drop tagger (arXiv:0802.2470) (similar mass-drop procedure in HEPTopTagger)
 - 1. Cluster a jet j with the Cambridge / Aachen algorithm (R = 1.2)
 - 2. Undo the last step, splitting j into subjets j_1 , j_2 with $m_{j1} > m_{j2}$
 - 3. Discard j_2 , set $j = j_1$, and continue de-clustering until **both**:

$$\frac{m_1}{m_j} < 0.67 \qquad (\text{mass drop})$$

$$\frac{\min(p_{\mathrm{T1}}^2, p_{\mathrm{T2}}^2)}{m_j^2} > 0.09$$

(symmetric splitting)

Decomposition Approach

- This works because of their respective origins of jet masses
 - QCD masses come largely from sequences of asymmetric, wide-angle splittings
 - Signal masses come from the hard resonance decay

Energy-flow approach

- Uses inclusive, energy-flow information (algorithm-independent)
 - ex. *N*-subjettiness (Thaler, van Tilburg, arXiv:1011.2268)
 - To compute *N*-subjettiness, define *N* axes (denoted by Greek letters) and associate each particle *i* in the jet to the closest axis

$$\tau_N^\beta = \frac{1}{\mathcal{N}} \sum_{i \in j} p_{\mathrm{T}i} \, \Delta R_{i\alpha}^\beta$$

- This gives a measure of how well the radiation is aligned along *N* axes
 - For dijet resonances, τ_2/τ_1 performs better than τ_2
 - Combines information from hard and soft radiation
- Generally, both approaches work well and are complementary
 - See upcoming BOOST 2013 working group report

Moderately boosted resonances

- Often, resonances are produced near threshold, paying a high penalty in signal acceptance for going to the boosted regime
 - Direct tt, diboson, ...
- We can try to recover some of the signal discrimination in the **moderately** boosted regime
 - Still dominated by QCD splittings instead of uncorrelated emission
 - Requiring two separately resolved jets already eliminates most of the backgrounds from soft splittings
 - For further improvement, must now separate relatively hard QCD splittings from the signal
- Use decomposition approach because energy-flow observables are sensitive to all radiation between the jets
 - No longer need large-*R* jets

- Analogy of mass drop
 - The lax cut on mass drop from the boosted regime (<0.67) does not veto a hard QCD splitting
 - As jets become more widely separated, the mass drop becomes **smaller**
 - For background:

$$\langle m_1^2 \rangle \approx C \, \frac{\alpha_s}{\pi} R^2 p_{\rm T1}^2$$

$$m_{12}^2 \sim p_{\rm T1} p_{\rm T2} \, \Delta R_{12}^2$$

 $\frac{m_1}{m_{12}} \propto \frac{1}{\Delta R_{12}}$

• Interpolates between boosted and unboosted regimes

- This suggests that we scale the mass drop cut with ΔR
- Exploit differences between QCD splitting and resonance decay
 - Signal has a mass drop that is more constant in ΔR
 - QCD prefers asymmetric splittings, giving rise to larger m₁
 - In many examples with QCD backgrounds, one of the radiated partons is a gluon (C_A > C_F), giving rise to larger m₁ (on average)

• This motivates a new observable:

$$\zeta \equiv \frac{m_1}{m_{12}} \, \Delta R_{12}$$

$$\zeta < \zeta_c$$

• Other functional forms could accomplish a similar scaling

• For example:

$$\zeta(R_c) = \frac{m_1}{m_{12}} (\Delta R_{12} - R_c)$$

- These types of observables can be very effective at enhancing *S*/*B* when added on top of existing searches
 - Outperform other observables we studied
 - Robust performance under simple smearing and with different MC
 - Uses simple, small-*R* jet properties

Examples

- SM: WW+WZ
- SM: $V(H \rightarrow bb)$
- BSM: $Z' \rightarrow WW$

- Semileptonic channel is an independent check of the (possible) excess in the fully leptonic channel and an important SM measurement
- Simulate WW+WZ, W+jets events with Madgraph 5
 - Match matrix element to Pythia 6 parton shower using shower-k₁ scheme
 - Cluster and analyze events with Fastjet 3
 - Validated MC with CMS analysis
 - Include UE but no pile-up (more on this later)

- Use similar cuts as CMS 7 TeV (arXiv: 1210.7544), re-scaled to 13 TeV
 - Two jets with $p_T > 50 \text{ GeV}$
 - One lepton with $p_T > 25 \text{ GeV}$
 - MET > 50 GeV
 - $M_T > 50 \text{ GeV}$

- How does this compare to other possible cuts we could have used?
 - Look in *M*_{*j*1*j*2} window between 70-100 GeV
 - Use filtarel Greiving share energy-flb00b Greavles

- Would this be included in a BDT analysis?
 - Not currently used for SM WW+WZ
 - Seems there is substantial gain that comes from using resolved jet *masses*, which are not included in most BDT analyses
- Possible worry: jet masses are subject to uncertainties in shower mechanism & reconstruction

- Possible worry: jet masses are subject to uncertainties in shower mechanism & reconstruction
 - Show Pythia 6 vs. Pythia 8 vs. Herwig++

• Zeta performs well and is robust against various uncertainties

Limitations and Caveats

- Our observable gives a significant enhancement in *S*/*B* at the cost of a mild reduction in statistical significance
 - Most applicable to searches dominated by systematic uncertainties
 - Will become more relevant for later LHC running

- What about pile-up?
 - Serious challenge facing high-luminosity running
 - We simulated WW+WZ search with <N_{PV}> = 50, found that a more aggressive form of **jet trimming** recovered *S*/*B* gains to within 10-20%
 - Ongoing work needed for pile-up mitigation of small-*R* jet masses
 - Our observable only involves small-*R* jets

Examples

- SM: WW+WZ
- SM: V(H \rightarrow bb)
- BSM: $Z' \rightarrow WW$

W(H→bb) Analysis

- ATLAS and CMS have both dijet-mass and multivariate analyses
 - We follow the ATLAS 7+8 TeV analysis (now arXiv:1409.6212)
- Focus on dijet search, associated leptonic W
 - Dominant backgrounds are W+b+jets, tt
- Use same selection cuts as ATLAS
 - One tight lepton, $p_T > 25 \text{ GeV}$
 - Exactly 2 b-tagged jets, $p_T > 20$ GeV (leading jet $p_T > 45$ GeV)
 - MET > 25 GeV
 - $120 \text{ GeV} > M_T > 40 \text{ GeV}$
 - Loose selections on ΔR_{bb} as a function of p_T
 - Associate muons with adjacent b-jets to improve mass reconstruction

events

t

31

W(H→bb) Analysis

- Is our gain just coming from the highly boosted region?
 - BDRS requires $p_{TV} > 200 \text{ GeV}$

- If we restrict ourselves to the moderately boosted regime, 90 GeV < p_{TV} < 200 GeV:
 - We still find an *S*/*B* gain of ~ 2-3 (reduction of ~25%)

- Our observable is effective in a boost range complementary to BDRS and other substructure methods
- Consider inclusion of jet masses in more sophisticated BDT as well

Examples

- SM: WW+WZ
- SM: $V(H \rightarrow bb)$
- BSM: $Z' \rightarrow WW$

Z'→WW Analysis

- ATLAS has a search for resonant semileptonic WW/WZ production for masses up to 1 TeV (arXiv:1305.0125)
 - At higher masses, use jet substructure techniques
 - We consider a sequential SM Z' decaying to WW
 - Dominant background is W+jets

- Use same selection cuts as ATLAS
 - Two jets, at least one with $p_T > 100 \text{ GeV}$
 - One tight lepton, $p_T > 35 \text{ GeV}$
 - MET > 40 GeV
 - p_{TV} > 200 GeV for each candidate gauge boson
 - $65 \text{ GeV} < m_{jj} < 115 \text{ GeV}$
 - Various cuts on $\Delta \phi_{\ell v}$

Z'→WW Analysis

• After ATLAS selection cuts:

• Note: **large** systematic uncertainties (~30%)

Z'→WW Analysis

• After ATLAS selection AND cut on $\zeta < \zeta_c$:

Future directions

Direct resonance production

- Best bounds come from UA2/Tevatron
- At LHC, hard to pass triggers and discriminate from backgrounds
- Consider associated production
 - Provides handle for trigger
 - Gives resonance a (mild) boost

- Recast of ATLAS techni-rho W+dijet search can beat Tevatron by a factor of a few in cross section
- Can we do better with an optimized search?
- What about ζ /some similar observable?
- Work in progress

Multijet resonances

- Jet substructure can also be useful for three-jet resonances, but come at a cost of producing them well above threshold (ex. RPV gluinos in Curtin, Essig, BS arXiv:1210.5523)
- There are already good resolved 3-jet resonance searches (ex. Rutgers gp., CMS analysis arXiv:1311.1799)
 - Already in somewhat boosted regime

Conclusions

- Jet-substructure-inspired observables can improve identification of dijet resonances, even in the moderate boost regime/resolved limit
 - Interpolate between different kinematic regimes

$$\zeta \equiv \frac{m_1}{m_{12}} \Delta R_{12}$$
 (and variations)

- Works well for two important examples of SM hadronic resonances
 - WW+WZ
 - $V + (H \rightarrow bb)$
- Also useful in beyond-SM physics searches
 - $Z' \rightarrow WW$
 - $Z' \rightarrow jj$
- Uses standard-radius jets, no optimization for different *R*
- Let's find out what LHC13 has in store!

Back-up slides

zeta distribution

ΔR distribution

zeta distribution

48

ΔR distribution

49

zeta distribution

q/g tagging

