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Motivation

What are the most general predictions/
parameters of gauge mediation? 

Especially important question in the LHC era. 

To date many models of gauge mediation have 
been constructed.

However, it has not been clear up to now which 
features of these models are general and which 
are specific.



General Gauge Mediation

Theory decouples into separate hidden and visible 
sectors in g->0 limit. 

(Messengers, if present, are part of the hidden sector.)

Hidden sector:
spontaneously breaks SUSY at a scale M
has a weakly-gauged global symmetry         

Hidden sector
SUSY+...

Visible sector:
MSSM+...SU(3)xSU(2)xU(1)

G ⊃ GSM



General Gauge Mediation

All the information we need about the hidden 
sector is encoded in the currents of G and their 
correlation functions.



Current Supermultiplet

Current sits in a real linear supermultiplet 
defined by:

In components:

J = J (x, θ, θ̄), D2J = D̄2J = 0

J = J + iθj − iθ̄j̄ − θσµθ̄jµ

+
1
2
θθθ̄σ̄µ∂µj − 1

2
θ̄θ̄θσµ∂µj̄ − 1

4
θθθ̄θ̄!J

ordinary U(1) current, satisfies

SUSY generalization of 
current conservation

∂µjµ = 0



Current correlators

Nonzero two-point functions constrained by 
Lorentz invariance, current conservation:

(M = scale of SUSY in hidden sector)

Real

Complex

J = J + iθj − iθ̄j̄ − θσµθ̄jµ + . . .

C0(p2/M2) = 〈J(p)J(−p)〉

C1/2(p2/M2) =
1
p2

pµσαα̇
µ 〈jα(p)j̄α̇(−p)〉

C1(p2/M2) =
1
p2

〈jµ(p)jµ(−p)〉

B(p2/M2) = M−1〈jα(p)jβ(−p)〉

Dim’less
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e
Fig. 1: The graphical description of the contributions of the two point functions

to the soft masses. (a) represents the gaugino mass contribution from 〈jαjβ〉. In

(b)-(e) the various contributions to the soft scalar masses are given: (b) 〈J〉, (c)

〈JJ〉, (d) 〈jαjα̇〉, and (e) 〈jµjν〉. It should be stressed that the blobs in the figures

represent hidden sector correlation functions. The leading contribution in theories

with messengers arises from one loop of the messengers, but in general when there

are no messengers, it is more complicated.

So far we have discussed the simpler case of a single U(1) gauge group here, in the

case of the actual MSSM one has to consider the separate SU(3), SU(2) and U(1) gauge

groups. We will label the gauge groups by r = 3, 2, 1, respectively. If we want the gauge

couplings to unify, then the value of c(r) = c must be independent of r (assuming SU(5)

normalization of the U(1) factor of course) and we want the thresholds C̃(r)
a (0) to depend

weakly on r. Moreover, if we want perturbative unification, then there is an upper bound

on the magnitude of c. These are examples of some completely general constraints on the

SUSY breaking sector that can be derived using our formalism.

Now, it is straightforward to find the sfermion and gaugino masses of the MSSM.

In Figure 1 we show the diagrams involving the current correlation functions which are

responsible for the MSSM soft masses.

The gaugino masses arise at tree level in the effective theory (3.2); to leading order
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Mλ = g2MB(p = 0)

A ≡ −
∫

dp2

(2π)4
(
3C1(p2/M2)− 4C1/2(p2/M2) + C0(p2/M2)

)

Lint = 2g

∫
d4θJV + · · · = g(JD − λj − λ̄j̄ − jµVµ) + . . .

m2
f̃

= g4A
Why does this integral converge? 

Not obvious...

jα jα

J Jjµ jµ jαj̄α̇



Current Supermultiplet

An equivalent formulation of the current 
s’multiplet is to start with the defining relation:

It follows that

Analogous to chiral superfield: 

Q2J = Q̄2J = 0

jα ≡ QαJ

j̄α̇ ≡ Q̄α̇J

σµ
αα̇jµ ≡ [Qα, Q̄α̇]J

D̄Φ =0 ⇔ Qφ = 0



Rewriting the soft masses
Using action of supercharges, can show:

Similar manipulations lead to

〈�2� (�)� (−�)〉 = 〈�α� (�)�α� (−�)〉
= 〈�α(�)�α(−�)〉
= � � (�)

〈Q2Q̄2J(p)J(−p)〉 =

p2
(
3C1(p2/M2) − 4C1/2(p2/M2) + C0(p2/M2)

)



Thus:

Comments on the result:

Check: vanish when SUSY is unbroken.

Generalization of small F-term SUSY-breaking 
relations (cf. Distler & Robbins; Intriligator & Sudano)

Mλ = g2〈Q2J(0)J(0)〉

m2
f̃

= g4

∫
dp2

p2
〈Q2Q̄2J(p)J(−p)〉

Rewriting the soft masses

Mλ ∼ F, m2
f̃
∼ |F |2



Thus:

Comments on the result:

At high momentum, only the OPE of J with 
itself matters! Can use this to prove 
convergence of the scalar mass integral.

Mλ = g2〈Q2J(0)J(0)〉

m2
f̃

= g4

∫
dp2

p2
〈Q2Q̄2J(p)J(−p)〉

Rewriting the soft masses



An aside on the sign of A

Notice that A is a linear combination of two-
point functions with different signs -- it is not 
obviously positive

Indeed, simple models with A<0 already exist in 
the literature...

A ≡ −
∫

dp2

(2π)4
(
3C1(p2/M2)− 4C1/2(p2/M2) + C0(p2/M2)

)
m2

f̃
= g4A



Messengers with D-terms
Poppitz & Trivedi; Nakayama, Taki, Watari, Yanagida 

Consider a model with messengers       with 
charge +1, -1 under a U(1)’. 

If the U(1)’ breaks SUSY via an FI term, 

the messengers receive “D-type” SUSY-splittings 

Then explicit calculation shows that in this 
model, 

φ, φ̃

MF = m, M2
B =

(
m2 + D 0

0 m2 −D

)

A = −D4/M6 + · · · < 0

V ⊃ VD = (D/2 + |φ|2 − |φ̃|2)2



An aside on the sign of A

One important consequence of the indefiniteness 
of the sign of A

One cannot be sure that a given gauge 
mediation model is consistent unless the sfermion 
masses are calculable. 

In particular, the viability of many strongly-
coupled direct mediation models is now suspect.



(Phenomenological) 
Constraints on GGM



Messenger Parity

We have related the soft masses to the 
current two-point functions. However, we 
ignored the possible contribution of the one-
point function (FI parameter):

This can be nonzero for         without 
breaking gauge symmetry. 

〈J〉 = ζ #= 0

U(1)Y



Messenger Parity 

It is dangerous because it contributes to the 
scalar masses:

Not positive definite and        (vs.        for 
usual GM contributions). 

So if zeta is too large this can cause some 
scalars (esp. sleptons) to become tachyonic!

δm2
f̃

= g2
1Yfζ

O(g2) O(g4)



Messenger Parity

Thus we would like the hidden sector to be 
invariant under a symmetry that forbids J 
one-point functions. 

The simplest such symmetry is a Z2 parity:

Examples of this symmetry in the context of 
minimal gauge mediation have been discussed 
in the literature. (Dine & Fischler; Dimopoulos & 
Giudice)

J → −J



Messenger Parity
E.g. in models with weakly-coupled messengers,

So can always choose a basis in which 
messenger parity is explicitly realized as:

Couplings of the hidden sector must be 
invariant under this transformation. (In 
particular, this places restrictions on possible 
U(1)’ extensions.)

J = φ†
iφi − φ̃†

i φ̃i

φi ↔ φ̃i



CP phases

The B’s are complex and independent in 
GGM. However, B’s with arbitrary phases 
would typically lead to an unacceptable level 
of CP violation. 

So either the hidden sector is CP invariant, 
or its CP violation is somehow shielded from 
the visible sector.



Unification
We would like the hidden sector to be 
compatible with 3-2-1 gauge coupling 
unification.

Note that in GGM the beta functions are 
related to the high momentum behavior of 
the C’s -- in general they have nothing to do 
with gaugino masses.



R-symmetry breaking

DSB sector must have an R-symmetry 
(Nelson & Seiberg)

Meta-stable DSB must have an approximate 
R-symmetry (ISS).

R-symmetry must be broken for Majorana 
gaugino masses.



R-symmetry breaking
Different ways of breaking R-symmetry:

Explicitly (fine tuning for metastability? 
problem with CP phases?)

Spontaneously:

one-loop in renormalizable models (DS)

gauge interactions (small window? Dine  
& Mason; ISS2)

higher-loops

...



Covering the parameter 
space of GGM



Parameter space

The GGM parameter space consists of 9 real 
parameters: 

CP limits us to 3+3 real parameters (we 
ignore the overall phase of B)

Question: are there simple models of weakly 
coupled messengers that cover the entire 
parameter space?

We are looking for an ``existence proof”

A1,2,3, |B1,2,3|, arg(B1,2,3)



Parameter space

Carpenter, Dine, Festuccia & Mason studied 
this question recently in the context of 
messenger models with small F-type SUSY 
breaking.

They found models with the right number of 
parameters (6) but which did not cover the 
entire parameter space.



Setup
We will also consider models with messengers 
with tree-level SUSY splittings, but allow for 
the possibility of D-type splittings from a U(1)’

To satisfy the phenomenological constraints, we 
will also require our models to have

CP invariance
Messenger parity
Broken R-symmetry
Unification -- complete GUT multiplets



        : messengers in irreps of       . They 
receive tree-level SUSY breaking mass splittings 
through their coupling to X.

X: spurion for hidden sector SUSY breaking and 
R-symmetry breaking.

Loops of the messengers and SM gauge fields 
communicate SUSY- and R-breaking to the MSSM

Warmup: OGM
(Dine, Nelson, Nir, Shirman, …)

〈X〉 = M + θ2F

W = λiXφiφ̃i

φi, φ̃i GSM



1-loop gaugino masses:

2-loop sfermion mass-squareds:

Figure 6.3: Contributions to the MSSM gaugino masses
in gauge-mediated supersymmetry breaking models come
from one-loop graphs involving virtual messenger parti-
cles.

B̃, W̃ , g̃

〈FS〉

〈S〉

Replacing S and FS by their VEVs, one finds quadratic mass terms in the potential for the messenger
scalar leptons:

V = |y2〈S〉|2(|!|2 + |!|2) + |y3〈S〉|2(|q|2 + |q|2)
−

(
y2〈FS〉!! + y3〈FS〉qq + c.c.

)

+ quartic terms. (6.49)

The first line in eq. (6.49) represents supersymmetric mass terms that go along with eq. (6.44), while
the second line consists of soft supersymmetry-breaking masses. The complex scalar messengers !, !
thus obtain a squared-mass matrix equal to:

( |y2〈S〉|2 −y∗2〈F ∗
S〉

−y2〈FS〉 |y2〈S〉|2
)

(6.50)

with squared mass eigenvalues |y2〈S〉|2 ± |y2〈FS〉|. In just the same way, the scalars q, q get squared
masses |y3〈S〉|2 ± |y3〈FS〉|.

So far, we have found that the effect of supersymmetry breaking is to split each messenger super-
multiplet pair apart:

!, ! : m2
fermions = |y2〈S〉|2 , m2

scalars = |y2〈S〉|2 ± |y2〈FS〉| , (6.51)

q, q : m2
fermions = |y3〈S〉|2 , m2

scalars = |y3〈S〉|2 ± |y3〈FS〉| . (6.52)

The supersymmetry violation apparent in this messenger spectrum for 〈FS〉 $= 0 is communicated to
the MSSM sparticles through radiative corrections. The MSSM gauginos obtain masses from the 1-loop
Feynman diagram shown in Figure 6.3. The scalar and fermion lines in the loop are messenger fields.
Recall that the interaction vertices in Figure 6.3 are of gauge coupling strength even though they do not
involve gauge bosons; compare Figure 3.3g. In this way, gauge-mediation provides that q, q messenger
loops give masses to the gluino and the bino, and !, ! messenger loops give masses to the wino and
bino fields. Computing the 1-loop diagrams, one finds [142] that the resulting MSSM gaugino masses
are given by

Ma =
αa

4π
Λ, (a = 1, 2, 3), (6.53)

in the normalization for αa discussed in section 5.4, where we have introduced a mass parameter

Λ ≡ 〈FS〉/〈S〉 . (6.54)

(Note that if 〈FS〉 were 0, then Λ = 0 and the messenger scalars would be degenerate with their
fermionic superpartners and there would be no contribution to the MSSM gaugino masses.) In contrast,
the corresponding MSSM gauge bosons cannot get a corresponding mass shift, since they are protected
by gauge invariance. So supersymmetry breaking has been successfully communicated to the MSSM
(“visible sector”). To a good approximation, eq. (6.53) holds for the running gaugino masses at an RG
scale Q0 corresponding to the average characteristic mass of the heavy messenger particles, roughly of
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Warmup: OGM

Figure 6.4: MSSM scalar squared masses in gauge-mediated supersymmetry breaking models arise in
leading order from these two-loop Feynman graphs. The heavy dashed lines are messenger scalars, the
solid lines are messenger fermions, the wavy lines are ordinary Standard Model gauge bosons, and the
solid lines with wavy lines superimposed are the MSSM gauginos.

order Mmess ∼ yI〈S〉 for I = 2, 3. The running mass parameters can then be RG-evolved down to the
electroweak scale to predict the physical masses to be measured by future experiments.

The scalars of the MSSM do not get any radiative corrections to their masses at one-loop order.
The leading contribution to their masses comes from the two-loop graphs shown in Figure 6.4, with
the messenger fermions (heavy solid lines) and messenger scalars (heavy dashed lines) and ordinary
gauge bosons and gauginos running around the loops. By computing these graphs, one finds that each
MSSM scalar φi gets a squared mass given by:

m2
φi

= 2Λ2

[(
α3

4π

)2

C3(i) +
(

α2

4π

)2

C2(i) +
(

α1

4π

)2

C1(i)

]

, (6.55)

with the quadratic Casimir invariants Ca(i) as in eqs. (5.27)-(5.30). The squared masses in eq. (6.55)
are positive (fortunately!).

The terms au, ad, ae arise first at two-loop order, and are suppressed by an extra factor of αa/4π
compared to the gaugino masses. So, to a very good approximation one has, at the messenger scale,

au = ad = ae = 0, (6.56)

a significantly stronger condition than eq. (5.19). Again, eqs. (6.55) and (6.56) should be applied at
an RG scale equal to the average mass of the messenger fields running in the loops. However, evolving
the RG equations down to the electroweak scale generates non-zero au, ad, and ae proportional to the
corresponding Yukawa matrices and the non-zero gaugino masses, as indicated in section 5.5. These
will only be large for the third-family squarks and sleptons, in the approximation of eq. (5.2). The
parameter b may also be taken to vanish near the messenger scale, but this is quite model-dependent,
and in any case b will be non-zero when it is RG-evolved to the electroweak scale. In practice, b can be
fixed in terms of the other parameters by the requirement of correct electroweak symmetry breaking,
as discussed below in section 7.1.

Because the gaugino masses arise at one-loop order and the scalar squared-mass contributions
appear at two-loop order, both eq. (6.53) and (6.55) correspond to the estimate eq. (6.27) for msoft, with
Mmess ∼ yI〈S〉. Equations (6.53) and (6.55) hold in the limit of small 〈FS〉/yI〈S〉2, corresponding to
mass splittings within each messenger supermultiplet that are small compared to the overall messenger
mass scale. The sub-leading corrections in an expansion in 〈FS〉/yI〈S〉2 turn out [143] to be quite small
unless there are very large messenger mass splittings.

The model we have described so far is often called the minimal model of gauge-mediated supersym-
metry breaking. Let us now generalize it to a more complicated messenger sector. Suppose that q, q
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Ar =
1

16π2

F 2

M2

∑

i

Nrif(F/λiM
2)

Br =
1

16π2

F

M

∑

i

Nrig(F/λiM
2)



Warmup: OGM

            bounded in a small window -- can 
never cover parameter space in OGM

Most commonly considered case of small 
SUSY breaking => 

f(x), g(x)

g(x)

f(x)

f(x)

0 0.2 0.4 0.6 0.8 1.0

1.0

1.2

1.4

0.8

x

Figure 2: The functions f(x), g(x), and
√

f(x).

The functions g(x) and f(x), which represent the corrections with respect to the F ! M2 case,

are shown in fig. 2; g(x) is always larger than 1, reaching the maximum value g(1) = 2 ln 2 = 1.4;

f(x) is approximately equal to 1, within 1%, for x < 0.8, and reaches the minimum value

f(1) = (2 ln 2)(1 + ln 2) − π2/6 = 0.7.

The leading contributions to ΛG,S, in an expansion in F/M2, are universal for the different

GUT components of messengers. This is true because these leading contributions are propor-

tional to the ratio F/M , which is a universal quantity, independent of the coupling constant λ

between the messenger superfields and the goldstino superfield X, see eq. (2.5). On the other

hand, the argument of the functions g and f in eqs. (2.19) and (2.21) is F/M2, a quantity which

is not equal for messengers with different SM quantum numbers. Therefore, depending on the

particular choice of λ, the inclusion of the correction functions g and f can be relevant only

for part of the messenger multiplet. This effect gives an uncertainty on the mass prediction

which is typically small for squarks and sleptons, but could be up to 40% for gauginos. Notice

that, if the messengers form degenerate multiplets at the GUT scale, then F/M2 is larger for

a messenger weak doublet than for a messenger colour triplet. Therefore, the enhancement of

the gaugino mass due to the correction function g is larger for the W -ino than for the gluino.

This will result in an apparent violation of gaugino-mass unification.

15

f, g → 1



In this limit, OGM only covers a 1-d subspace 
of GGM parameter space.

Leads to many specific and well-known 
predictions of “gauge mediation”: 

Gaugino unification

Sfermion mass hierarchy

Bino or slepton NLSP

Positive sfermion masses

....

Warmup: OGM



Beyond OGM

“(Extra)Ordinary Gauge Mediation” (Cheung, 
Fitzpatrick, DS)

Most general model of weakly-coupled F-
term messengers 

At small F, can easily compute soft masses

Can get interesting deviations from OGM 
phenomenology, but still can’t cover the 
entire GGM parameter space

W = λijXφiφ̃j + mijφiφ̃j



General Result

Consider a collection of vectorlike messengers 
all transforming in the same rep        of 
3-2-1. Then they contribute 

       : trivial group theory factors

In general, A(R) and B(R) are independent 
functions of hidden sector parameters. 

So on general grounds, need at least three 
different 3-2-1 representations.

δAr = arA(R), δBr = brB(R)

ar, br

(R, R̃)



Applications

Case 1: any number of        (not necessarily 
OGM) -- only two reps (D,L) => can cover at 
most a 4d subspace

Case 2: single          -- right # of reps, but 
messenger parity allows only OGM => can’t 
cover entire space (cf. CDFM). 

(5, 5̄)

D               L

Q               U                E

5→ (3̄, 1, 1/3)⊕ (1, 2,−1/2)
10→ (3, 2, 1/6)⊕ (3̄, 1,−2/3)⊕ (1, 1, 1)

(10, 1̄0)



Applications

Case 3: single         +       -- same as case 2

Case 4: that leaves             

as the minimal possibilities.

(5, 5̄)(10, 1̄0)

(10, 1̄0) + 2(5, 5̄) and 2(10, 1̄0)

Can show that by including D-type SUSY 
breaking, one can cover the entire parameter 

space of GGM with these models.



Example

V ⊃ VD =

(
a +

∑

R

qR(|R1|2 − |R2|2 − |R̃1|2 + |R̃2|2)
)2

W =
∑

R=Q,U,E
i=1,2

(
λRiXRiR̃i + mRiRiR̃i

)

MF =
(

mR1 0
0 mR2

)

M2
B =





m2
R1 + qRa 0 0 λR1f

0 m2
R2 − qRa λR2f 0

0 λR2f m2
R2 + qRa 0

λR1f 0 0 m2
R1 − qRa







Example

Thanks to the nonzero U(1)’ D-term, can 
easily cover the parameter space A,B>=0.

B =
λR1f

mR1
+

λR2f

mR2

A =
(

λR1f

mR1

)2

+
(

λR2f

mR2

)2

+ aqR log(mR1/mR2)



Summary

We have a new and improved presentation of 
GGM in terms of supercharge commutators 
which makes manifest certain aspects of the 
framework.

We discussed the phenomenological 
constraints on GGM. 

We presented weakly-coupled messenger 
models which satisfy these constraints and 
still cover the entire GGM parameter space.



Outlook

Can one derive the supercharge relations 
directly, e.g. using supergraphs?

Imposing precision unification on messenger 
models, can we still cover the entire space?

Is there a theorem for positivity of A for 
pure F-term breaking?

Detailed study of GGM at colliders

mu/Bmu still an important open problem...



Messenger supertrace

Supertrace indicates sensitivity to UV physics



Integrate out chiral messengers => 
supertrace positive



Integrate out vector messengers => 
supertrace negative



EOGM

n=0,1,...,N => gaugino masses can be zero!

Example of CP phase shielding: no relative 
phase between gaugino masses even though 
messenger sector need not respect CP!

Can cover 4d subspace -- but still can’t make 
Ar arbitrary small...

Br =
1

16π2
ΛG =

1
16π2

nF

X
, Ar =

1
16π2

Λ2
GN−1

eff,r


