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Motivation/Outline

• Embed the supercurrent in a super-

multiplet – not always well defined

• A new supermultiplet

• Field theory applications

• Supergravity applications

• String construction applications
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The conserved currents

• Energy momentum tensor Tµν

Ambiguity (improvement):

T ′
µν = Tµν +

(
ηµν∂

2 − ∂µ∂ν
)
t

• Supersymmetry current Sµα

Ambiguity (improvement):

S′
µα = Sµα + (σµν)

β
α ∂νsβ

Improvement terms do not affect the

conserved charges and the current con-

servation.
2



The Ferrara-Zumino multiplet

The most widely known multiplet which

includes Tµν and Sµα is the FZ-multiplet

Jαα̇

Dα̇Jαα̇ = DαX .

X is chiral

X = x+ θασ
µ
αα̇S

α̇
µ + θ2(Tµ

µ + i∂ · j) .

jµ = Jαα̇

∣∣∣∣
θ=θ=0

is an R-current.

It includes 12 fermionic operators Sµα

and 12 bosonic operators: Tµν (10 −

4 = 6), jµ (4) and x (2).
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The FZ-multiplet in

superconformal theories

Superconformal theories are character-

ized by X = 0, i.e.

Dα̇Jαα̇ = 0 .

The R-current is conserved, Tµν is trace-

less and Sµα has only spin 3
2.

This multiplet includes 8 fermionic op-

erators Sµα (with σ
µα
α̇ Sµα = 0) and 8

bosonic operators: Tµν (10−4−1 = 5),

jµ (4− 1 = 3).
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Ambiguity – improvement

The defining relation

Dα̇Jαα̇ = DαX

is invariant under

J ′
αα̇ = Jαα̇ − i∂αα̇

(
Ω−Ω

)
X ′ = X +

1

2
D2Ω

with any chiral Ω.

Tµν and Sµα change by improvement

terms.
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Example 1: Wess-Zumino

models

In a theory based on a Kähler potential

K and a superpotential W

Jαα̇ = 2gii(DαΦ
i)(Dα̇Φ

i)−
2

3
[Dα, Dα̇]K

X = 4W −
1

3
D2K .

These are not invariant under Kähler

transformations – they change by im-

provement terms.

Hence, if the Kähler class is nontrivial,

J is not globally well defined – not a

good operator.
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Example 2: Fayet-Iliopoulos

terms

An FI-term shifts K → K + ξV . As in

the previous example

Jαα̇ = ...−
2

3
ξ[Dα, Dα̇]V

X = ...−
1

3
ξD2V .

These are not gauge invariant – they

change by improvement terms.

Now J is not gauge invariant – not a

good operator.
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The R-multiplet

If the theory has a U(1)R symmetry, we

can embed Tµν, Sµα and the conserved

R-current in Rαα̇ which satisfies

Dα̇Rαα̇ = χα

where χα is chiral and

Dα̇χ
α̇ = Dαχα .

These Tµν and Sµα differ from those in

the FZ-multiplet by improvement terms.

This multiplet is Kähler invariant and

gauge invariant even with FI-terms.
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Generic theories

Generic theories do not have a contin-

uous R-symmetry.

Do they have a well defined (gauge in-

variant, globally well defined) energy

momentum tensor and supersymmetry

current?

Are they in a good supermultiplet?
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Goal

Look for a globally well defined and

gauge invariant multiplet which exists

even when the target space has a non-

trivial Kähler class or when FI-terms

are present.
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The S-multiplet

We combine the ideas in the FZ-multiplet

and the R-multiplet and embed Tµν and

Sµα in Sαα̇ which satisfies

Dα̇Sαα̇ = DαX + χα

where χα and X are chiral and

Dα̇χ
α̇ = Dαχα .

These Tµν and Sµα differ from those in

the FZ-multiplet by improvement terms.

We will see that this multiplet is always

Kähler invariant and gauge invariant!
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The components of the

S-multiplet

The S-multiplet is a larger multiplet.

It includes 16 + 16 operators.

In addition to the 12 + 12 operators

of the FZ multiplet it includes 4 + 4

operators from χα.

The 4 additional bosons are a closed

2-form (3 operators) and a scalar.

12



Examples

In Wess-Zumino models

Sαα̇ = 2gii(DαΦ
i)(Dα̇Φ

i)

X = 4W

χα = D2DαK .

With nonzero FI-terms

χα = −4ξWα .

We see that Sαα̇ is gauge invariant and

Kähler invariant and hence it is globally

well defined.
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Ambiguity – improvement

The defining relation

Dα̇Sαα̇ = DαX + χα

is invariant under

S ′
αα̇ = Sαα̇ + [Dα, Dα̇]U

X ′ = X +
1

2
D2U

χ′
α = χα +

3

2
D2DαU

for any real U .

It changes the components by improve-

ment terms.
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Consequences of the
improvement

If we can solve

χα = D2DαU

with a globally well defined and gauge

invariant U , we can set χα = 0, and

find the FZ-multiplet.

If we can solve

X = D2U

with a well defined U , we can set X = 0,

and find the R-multiplet – the theory

is R-invariant.
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Field theory applications

Consider a supersymmetric field theory

in which the FZ-multiplet exists in the

UV description.

For example, consider a gauge theory

with canonical kinetic terms and with-

out FI-terms.

A nonrenormalization theorem: since

the FZ-multiplet exists in the UV, it

exists at all length scales. Hence the

IR effective theory should also have an

FZ-multiplet.
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The low energy theory

• It does not have FI-terms either for

elementary or emergent gauge fields.

• Its target space (and moduli space

of vacua) has an exact Kähler form.

• The topology of the moduli space

of vacua can be different than in

the UV, but its Kähler class remains

trivial (e.g. SQCD with Nf = Nc).
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Previous related results

Similar nonrenormalization theorems from

different points of view were given be-

fore:

• about FI terms by [Shifman, Vain-

shtein, Dine, and Weinberg]

• about the topology by [Witten]
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Coupling to supergravity

We limit ourselves to field theories with

no dimensionful parameters of order the

Planck scale (e.g. no mass, or FI-term

∼ MP) and consider the large MP limit.

In this limit we can focus on linearized

supergravity – small coupling of matter

to the graviton and the gravitino.
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SUGRA from the FZ-multiplet

The most common presentation of su-

pergravity is based on the FZ-multiplet

[Wess, Zumino, Stelle, West, Ferrara,

van Nieuwenhuizen].

At the linearized level we couple the

gravity multiplet Hαα̇ to the FZ-current∫
d4θHαα̇J αα̇

This is the old minimal multiplet of su-

pergravity.

It cannot be used when Jαα̇ does not

exist.
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SUGRA from the R-multiplet

If the rigid theory has a U(1)R symme-

try we can couple the gravity multiplet

Hαα̇ to the R-current.

This leads to the new minimal multi-

plet [Akulov, Volkov, Soroka, Sohnius,

West]

General considerations of gravity the-

ory exclude the existence of global con-

tinuous symmetries and hence we will

not pursue it.
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SUGRA from the S-multiplet

Recall the S-multiplet which every SUSY

field theory has

Dα̇Sαα̇ = DαX + χα

If we can solve χα = D2DαU with a well

defined U , the FZ-multiplet exists and

we can use standard SUGRA.

Alternatively, we couple

∫
d4θHαα̇Sαα̇ .
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SUGRA from the S-multiplet –
the spectrum

The S-multiplet is larger than the FZ-

multiplet. Correspondingly, the off-shell

gravity multiplet includes 16 + 16 fields.

On shell spectrum: graviton, gravitino,

complex scalar and Weyl fermion.

The 4 additional fields are similar to

the dilaton, two-form field (dual to a

scalar) and dilatino of string theory.

This theory is related to 16+16 SUGRA

[Girardi, Grimm, Muller and Wess].
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SUGRA from the S-multiplet –

an alternate description

This theory can be describe as ordi-

nary SUGRA (based on FZ-multiplet)

where the matter theory includes an

additional chiral superfield Φ.

The ill defined U in χα = D2DαU al-

ways appears in the combination

Û = U +Φ+Φ
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SUGRA from the S-multiplet –

solving the problems of the

FZ-multiplet

The theory depends on

Û = U +Φ+Φ .

When U is not gauge invariant or not

Kähler invariant:

U → U +Λ+Λ

the field Φ is also not invariant:

Φ → Φ− Λ

such that Û is invariant.
25



Example 1: FI-terms

Û = U +Φ+Φ

When there are FI-terms, U ∼ ξV is not

gauge invariant. Φ makes the FI-term

“field dependent.”

It has the effect of Higgsing the gauge

symmetry.

This is common in string theory when

a theory on a brane has FI-terms, a

closed string modulus Φ appears in Û .
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Example 2: nontrivial Kähler

class

Û = U +Φ+Φ

When U is not globally well defined, Φ

extends the target space and makes its

Kähler class trivial. Û is well defined.

This is common in string theory. When

a brane moves on a space with certain

2-cycles the Kähler form of its target

space is not exact. A closed string

mode Φ couples as in Û and removes

the problem.
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Constraints on string models

Many string constructions use D3-branes.

In the field theory limit (large extra

dimensions limit) the theory on these

D3-branes often has FI-terms and mod-

uli with nontrivial target space.

When these theories are coupled to grav-

ity (i.e. the additional dimensions are

compactified) a massless superfield like

our Φ must be present.

Typically this is the dilaton/radion mul-

tiplet.
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Constraints on string models –

moduli stabilization

Often we would like to stabilize the

modulus Φ in a supersymmetric fash-

ion leaving a low energy theory with

FI-terms or nontrivial topology.

This is impossible.

Many (not all!) published models, e.g.

some of those based on sequestering,

flux vacua, KKLT, F-theory, etc. need

to be revisited.
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Conclusions

• The energy momentum tensor and

the supersymmetry current should

be embedded in a supermultiplet.

• The most common supermultiplet

is the Ferrara-Zumino multiplet.

• When there are nonzero FI-terms or

the Kähler form of the target space

is not exact the FZ-multiplet is ill

defined.
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Conclusions, cont.

• A larger multiplet, the S-multiplet

is always well defined.

• When a UV theory has a good FZ-

multiplet, so should the IR theory.

It cannot have FI-terms and the Kähler

form of its target space must be ex-

act.
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Conclusions, cont.

• When the FZ-multiplet exists we can

easily couple it to supergravity.

• When the FZ-multiplet does not ex-

ist we must couple the S-multiplet

to supergravity.

• The resulting theory is ordinary su-

pergravity with an additional chiral

superfield.
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Conclusions, cont.

• Interpreting this chiral superfield as

part of the matter, it fixes the prob-

lems with the FZ-multiplet.

• This leads to constraints on many

string constructions.
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