DO WE KNOW IF OUR UNIVERSE IS STABLE?

Rutgers Seminar February 24, 2015

> Matthew Schwartz Harvard University

Based on arXiv:1408.0287 (PRD 91) and arXiv:1408.0292 (PRL 113) with Anders Andreassen and William Frost

July 4, 2012: Higgs boson discovered!

What did we learn?

The Standard Model

1980-2012

2012 -- ??

What is the Higgs field?

- The Higgs field h(x) pervades all space
- The Higgs field h(x) has charge under the weak force
 - If <h> = 0 space is not empty it has weak charge too
- The Higgs field h(x) has a potential

What do we know about this potential?

Classical potential: $V(h) = \Lambda + m^2 h^2 + \lambda h^4$

- 3 free parameters (Λ , m λ)
 - Must be measured from data

Classical potential: $V(h) = \Lambda + m^2 h^2 + \lambda h^4$

- 3 free parameters (Λ , m, λ)
 - Must be measured from data

Why are the values of Λ , m, λ in nature **interesting**?

1. Fine tuning

2. Vacuum stability

1. Fine tuning

Classical potential: $V(h) = \Lambda + m^2 h^2 + \lambda h^4$

- 3 free parameters (Λ , m λ)
 - Must be measured from data \checkmark
- Only 3 free parameters
 - Quantum Field Theory determines V(h) for arbitrarily large h
 - Called the quantum-corrected or Effective Potential

Matthew Schwartz

Fine tuning

Absolute stability or metastability depends on Higgs and top masses

From Degrassi et al (arXiv:1205.6497)

Absolute stability or metastability depends on Higgs and Top masses

This is now precision Standard Model physics. Is it correct?

Standard Model Effective Potential

Are these scales physical?

How do we compute V_{eff}?

Classical potential: $V(h) = \Lambda + m^2 h^2 + \lambda h^4$

- Renormalizable
- Three parameters (Λ , m² and λ), measured from data

How can the quantum-corrected potential be computed?

How do we compute V_{eff} ? Method 1: $\int \mathcal{D}H e_{f}^{i\Gamma} \equiv \int \mathcal{D}H \mathcal{D}\psi \cdots \mathcal{D}A e^{iS}$ Effective Action $\Gamma = \int d^{4}x \left\{ -Z[H]H\Box H - V_{\text{eff}}(H) + \cdots \right\}$ Problems:

- Generally non-local (has nasty things like $\ln \frac{1 + \Box/m_t^2}{H^2}$ in it)
- Nearly impossible to compute
- Can't include loops of H itself this way

If we integrate over everything, effective action is just a number

$$e^{i\Gamma} = \int \mathcal{D}H \cdots \mathcal{D}Ae^{iS}$$

OK if $Hpprox \langle H
angle$

Method 2: Legendre transform

• Agrees with method 1 in perturbation theory

What do you get?

$$V_{\text{eff}} = \frac{1}{4}\lambda h^4 - m^2 h^2$$

$$+ h^4 \frac{1}{2048\pi^2} \Big[-5g_1^4 + 6(g_1^2 + g_2^2)^2 \ln \frac{h^2(g_1^2 + g_2^2)}{4\mu^2} - 10g_1^2g_2^2 - 15g_2^4 + 12g_2^4 \ln \frac{g_2^2h^2}{4\mu^2} + 144y_t^4 - 96y_t^4 \ln \frac{y_t^2h^2}{2\mu^2} \Big]$$

$$= \frac{-1}{256\pi^2} \Big[\xi_B g_1^2 \Big(\ln \frac{\lambda h^4(\xi_B g_1^2 + \xi_W g_2^2)}{4\mu^4} - 3 \Big) + \xi_W g_2^2 \Big(\ln \frac{\lambda^3 h^{12}\xi_W^2 g_2^4(\xi_B g_1^2 + \xi_W g_2^2)}{64\mu^{12}} - 9 \Big) \Big] \lambda h^4$$

$$+ \cdots$$

1. Gauge-dependence

Method 1 to compute Γ is gauge-invariant:

$$\int \mathcal{D}He^{i\Gamma} \equiv \int \mathcal{D}H \underbrace{\mathcal{D}\psi\cdots\mathcal{D}Ae^{iS}}_{}$$

Completely integrate over gauge-orbits

Action/energy at minimum also gauge-invariant: $e^{i\Gamma} = \int \mathcal{D}H \cdots \mathcal{D}Ae^{iS}$

Method 2 to compute Γ introduces a charged source J

$$e^{W[J]} \equiv \int \mathcal{D}H \cdots \mathcal{D}Ae^{i \int d^4x \{\mathcal{L}+JH\}}$$

$$\frac{\Gamma}{\delta \Gamma} = W - HJ$$
• Action away from minimum has current present
• Action at minimum has no current, should be gauge-invariant

Encoded in Nielsen identity
$$\left[\xi \frac{\partial}{\partial \xi} + C(h,\xi) \frac{\partial}{\partial h}\right] V_{\rm eff}(h,\xi) = 0$$

Potential at minimum indep. of rescaling

• Rescaling field leaves V_{min} unchanged

Nielsen identity

$$\left[\xi\frac{\partial}{\partial\xi} + C(h,\xi)\frac{\partial}{\partial h}\right]V_{\rm eff}(h,\xi) = 0$$

But is it?

 $(-V_{\min})^{1/4}$ appears linearly-dependent on gauge parameter ξ

What about field values?

2. Large Logarithms

Can be resummed with RGE:

Explicit
$$\mu$$
 dependence
$$\left(\mu \frac{\partial}{\partial \mu} + \beta_i \frac{\partial}{\partial g_i} - \gamma h \frac{\partial}{\partial h}\right) V_{\text{eff}} = 0$$
compensated for by rescaling couplings and fields

- Same RGE as 1PI Green's functions or off-shell matrix elements
- Observables/S-matrix elements satisfy simpler RGE:

$$\left(\mu\frac{\partial}{\mu} + \beta_i\frac{\partial}{\partial g_i}\right)\sigma = 0$$

• Field-rescaling term canceled by LSZ wavefunction Z-factors

Effective potential depends on the normalization of fields??!!

Resum logarithms

1. Compute V_{eff} to fixed order (say 2-loops) at scale (say) $\mu_0 \sim 100 \text{ GeV}$

2. Solve RGE
$$\left(\mu \frac{\partial}{\partial \mu} + \beta_i \frac{\partial}{\partial g_i} - \gamma h \frac{\partial}{\partial h}\right) V_{\text{eff}} = 0$$

$$\begin{split} V_{\mathrm{eff}}(h,g_i,\mu) &\to V_{\mathrm{eff}}(e^{\Gamma(\mu_0,\mu)}h,g_i(\mu),\mu) \\ & \swarrow \\ \Gamma(\mu_0,\mu) \equiv \int_{\mu_0}^{\mu} \gamma(\mu')d\ln\mu' \end{split}$$
3. Set $\mu \sim h$

$$V_{\text{eff}}(h,\mu_0) = V_{\text{eff}}(e^{\Gamma(\mu_0,h)}h, g_i(h), h)$$

Potential depends on scale μ_0 where it is calculated??!!

$$\left(\frac{\partial}{\partial\mu_0} - \gamma h \frac{\partial}{\partial h}\right) V(h,\mu_0) = 0$$

Potential at minimum

Nielsen identity (gauge invariance)

$$\left[\xi \frac{\partial}{\partial \xi} + C(h,\xi) \frac{\partial}{\partial h}\right] V_{\text{eff}}(h,\xi) = 0$$

Calculation-scale invariance

$$\left(\frac{\partial}{\partial\mu_0} - \gamma h \frac{\partial}{\partial h}\right) V(h,\mu_0) = 0$$

 V_{min} should be gauge invariant and independent of how it is calculated

Even gauge-invariant Γ is unphysical

Even if we source a gauge-invariant field $e^{W[J]} \equiv \int \mathcal{D}H \cdots \mathcal{D}Ae^{i\int d^4x \{\mathcal{L}+JH\}}$

$$e^{W[J]} \equiv \int \mathcal{D}H \cdots \mathcal{D}Ae^{i \int d^{4}x \{\mathcal{L}+JH^{\dagger}H\}} \\ e^{W[J]} \equiv \int \mathcal{D}H \cdots \mathcal{D}Ae^{i \int d^{4}x \{\mathcal{L}+J|H|\}} \\ \int \Gamma(\mathsf{h}) \text{ is now gauge-invariant}$$

Effective potential still depends on how it is calculated

$$\left(\frac{\partial}{\partial\mu_0} - \gamma h \frac{\partial}{\partial h}\right) V(h,\mu_0) = 0$$

- This is OK.
- Off-shell quantities can be unphysical

Observables should be physical

- S-matrix elements
- Vacuum energy (V_{min})
- Tunnelling rates
- Critical temperature

But are they?

What about field values?

Instability scale? Inflation scale? Planck/new physics sensitivity?

Are these questions about observables?

Matthew Schwartz

SCALAR QED

Scalar QED

QED

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}^{2} + \frac{1}{2}|D_{\mu}\phi|^{2} - V(\phi)$$

$$\mathcal{V}_{0}(\phi) = \frac{\lambda}{24}\phi^{4}$$

• mass term gives small corrections, so we drop it

1-loop potential in R_{ξ} gauges:

$$V_{1}(\phi) = \phi^{4} \frac{\hbar}{16\pi^{2}} \left[\frac{3}{4} e^{4} \left(\ln \frac{e^{2} \phi^{2}}{\mu^{2}} - \frac{5}{6} \right) + \frac{\lambda^{2}}{16} \left(\ln \frac{\lambda \phi^{2}}{2\mu^{2}} - \frac{3}{2} \right) \\ + \left(\frac{\lambda^{2}}{144} - \frac{1}{12} e^{2} \lambda \xi \right) \left(\ln \frac{\phi^{2}}{\mu^{2}} - \frac{3}{2} \right) + \frac{1}{4} K_{+}^{4} \ln K_{+}^{2} + \frac{1}{4} K_{-}^{4} \ln K_{-}^{2} \right] \\ K_{\pm}^{2} = \frac{1}{12} \left(\lambda \pm \sqrt{\lambda^{2} - 24\lambda e^{2} \xi} \right)$$

• Not gauge-invariant
• For most values of e and λ , there is no minimum
• When $\lambda \approx \frac{e^{4}}{16\pi^{2}} \Rightarrow V_{0} \approx V_{1}$
• And.... V_{\min} depends on ξ
Spontaneous symmetry breaking

February 24, 2015

When is
$$\lambda \approx \frac{e^4}{16\pi^2}$$
 ?

Solve RGEs:

$$\beta_e = \frac{n}{16\pi^2} \left(\frac{c}{3}\right) + \cdots$$
$$\beta_\lambda = \frac{\hbar}{16\pi^2} \left(36e^4 - 12e^2\lambda + \frac{10\lambda^2}{3}\right)$$

ħ

 $\left(\rho^{3} \right)$

$$e^{2}(\mu) = \frac{e^{2}(\mu_{0})}{1 - \frac{e^{2}(\mu_{0})}{24\pi^{2}} \ln \frac{\mu}{\mu_{0}}}$$
$$\lambda(\mu) = \frac{e^{2}(\mu)}{10} \left[19 + \sqrt{719} \tan\left(\frac{\sqrt{719}}{2} \ln \frac{e(\mu)^{2}}{C}\right) \right]$$

- e runs relatively slowly
- For any e, λ runs through all values
- There is always a scale μ_X where

$$\lambda(\mu_X) \approx \frac{e(\mu_X)^4}{16\pi^2}$$

- Near this scale, V_{eff} is pertubative

Proper loop expansion

$$V_{0}(\phi) = \frac{\lambda}{24}\phi^{4}$$

$$V_{1}(\phi) = \phi^{4}\frac{\hbar}{16\pi^{2}} \left[\frac{3}{4}e^{4} \left(\ln \frac{e^{2}\phi^{2}}{\mu^{2}} - \frac{5}{6} \right) + \frac{\lambda^{2}}{16} \left(\ln \frac{\lambda\phi^{2}}{2\mu^{2}} - \frac{3}{2} \right) + \frac{1}{4}K_{+}^{4} \ln K_{+}^{2} + \frac{1}{4}K_{-}^{4} \ln K^{2} \right] + \left(\frac{\lambda^{2}}{144} - \frac{1}{12}e^{2}\lambda\xi \right) \left(\ln \frac{\phi^{2}}{\mu^{2}} - \frac{3}{2} \right) + \frac{1}{4}K_{+}^{4} \ln K_{+}^{2} + \frac{1}{4}K_{-}^{4} \ln K^{2} \right]$$

$$K_{\pm}^{2} = \frac{1}{12} \left(\lambda \pm \sqrt{\lambda^{2} - 24\lambda e^{2}\xi} \right)$$
Comparable when
$$\lambda \approx \hbar \frac{e^{4}}{16\pi^{2}}$$
Then V0 and V1
of order \hbar

These terms all have extra \hbar suppression

Expanding in \hbar with $\lambda \sim \hbar$

order \hbar : $V^{\text{LO}} = \frac{\lambda}{24}\phi^4 + \frac{\hbar e^4}{16\pi^2}\phi^4 \left(-\frac{5}{8} + \frac{3}{2}\ln\frac{e\phi}{\mu}\right) \longrightarrow V^{\text{LO}}_{\text{min}} = -\frac{3}{128\pi^2}e^4\langle\phi\rangle^4$

order
$$\hbar^2$$
: $V^{\text{NLO}} = \frac{\hbar e^2 \lambda}{16\pi^2} \phi^4 \left(\frac{\xi}{8} - \frac{\xi}{24} \ln \frac{e^2 \lambda \xi \phi^4}{6\mu^4} \right) \longrightarrow V^{\text{NLO}}_{\text{min}} = \cdots$

Problem: higher-loop contributions also of order \hbar^2

2-Loop potential in scalar QED

- Known in Landau gauge
- Some terms computed by Kang (1974), not in MS
- Some terms at order $e^6\hbar^2$ unknown

We computed all the relevant 2-loop graphs:

$$\frac{2}{1} = \frac{\hbar^2 \phi^4 e^6}{(16\pi^2)^2} \left[12 \ln^2 \frac{e\phi}{\mu} + \left(8 - 3 \ln \frac{\lambda\xi}{6e^2}\right) \ln \frac{e\phi}{\mu} - \frac{5}{2} - \frac{\pi^2}{16} - \frac{3}{16} \ln^2 \frac{\lambda\xi}{6e^2} + \ln \frac{\lambda\xi}{6e^2} \right]$$

$$\frac{2}{1} = \frac{\hbar^2 \phi^4 e^6}{(16\pi^2)^2} \left[(2 + 6\xi) \ln^2 \frac{e\phi}{\mu} - (3 + 7\xi) \ln \frac{e\phi}{\mu} + \frac{7}{4} + \frac{\pi^2}{8} + \frac{15}{4}\xi + \frac{3\pi^2}{8}\xi \right]$$

$$\frac{1}{1} = \frac{\hbar^2 \phi^4 e^6}{(16\pi^2)^2} \left[(\frac{18 + 6\xi}{\mu}) \ln^2 \frac{e\phi}{\mu} - (21 + 7\xi) \ln \frac{e\phi}{\mu} + \frac{47}{4} + \frac{7\pi^2}{24} + \frac{15}{4}\xi + \frac{3\pi^2}{8}\xi \right]$$

$$\frac{2}{1} = \frac{\hbar^2 \phi^4 e^6}{(16\pi^2)^2} \left[-12 \ln^2 \frac{e\phi}{\mu} + 14 \ln \frac{e\phi}{\mu} - \frac{15}{2} - \frac{3\pi^2}{4} \right]$$

Then the relevant part of the 2-loop potential is

$$V_{2} = \left(\frac{\hbar}{16\pi^{2}}\right)^{2} e^{6} \phi^{4} \left[(10 - 6\xi) \ln^{2} \frac{e\phi}{\mu} + \left(-\frac{62}{3} + 4\xi - \frac{3}{2}\xi \ln \frac{\lambda\xi}{6e^{2}}\right) \ln \frac{e\phi}{\mu} + \xi \left(-\frac{1}{2} + \frac{1}{4}\ln \frac{\lambda\xi}{6e^{2}}\right) + \frac{71}{6} \right] + \cdots \text{ terms of order } \hbar^{3}$$

Potential at minimum

$$V^{\text{LO}} = \frac{\lambda}{24}\phi^4 + \frac{\hbar e^4}{16\pi^2}\phi^4 \left(-\frac{5}{8} + \frac{3}{2}\ln\frac{e\phi}{\mu}\right) \qquad V^{\text{NLO}} = \frac{\hbar e^2\lambda}{16\pi^2}\phi^4 \left(\frac{\xi}{8} - \frac{\xi}{24}\ln\frac{e^2\lambda\xi\phi^4}{6\mu^4}\right) \\ + \frac{\hbar^2 e^6}{(16\pi^2)^2}\phi^4 \left[(10 - 6\xi)\ln^2\frac{e\phi}{\mu} + \left(-\frac{62}{3} + 4\xi - \frac{3}{2}\xi\ln\frac{\lambda\xi}{6e^2}\right)\ln\frac{e\phi}{\mu} + \xi\left(-\frac{1}{2} + \frac{1}{4}\ln\frac{\lambda\xi}{6e^2}\right) + \frac{71}{6}\right]$$

• Solve V'(ϕ =v) =0 for λ (v):

$$\lambda = \frac{\hbar e^4}{16\pi^2} \left(6 - 36\ln\frac{ev}{\mu} \right) + \frac{\hbar e^6}{(16\pi^2)^2} \left\{ -160 - 24\xi + (376 + 90\xi)\ln\frac{ev}{\mu} - 240\ln^2\frac{ev}{\mu} + 9\xi\ln\left[\frac{\xi\hbar\mu^2}{16\pi^2v^2}\left(1 - 6\ln\frac{ev}{\mu}\right)\right] \right\}$$

• Plug in to V(v):

$$V_{\min} = v^4 \frac{e^4 \hbar}{16\pi^2} \left(-\frac{3}{8} \right) + v^4 \frac{e^6 \hbar^2}{(16\pi^2)^2} \frac{1}{12} \left\{ 62 - 9\xi + (-60 + 18\xi) \ln \frac{ev}{\mu} + \frac{9}{2}\xi \ln \left[\frac{e^2 \xi \hbar}{16\pi^2} \left(1 - 6\ln \frac{ev}{\mu} \right) \right] \right\}$$

Still gauge-dependent!

Problem : $v = \langle \phi \rangle$ is gauge-dependent

Express V_{min} in terms of only other dimensionful scale: μ

In terms of μ_X

Define
$$\mu_{\mathsf{X}}$$
 by $\lambda(\mu_X) \equiv \frac{\hbar}{16\pi^2} e^4(\mu_X) \Big[6 - 36 \ln[e(\mu_X)] \Big]$.

- Tree-level vev is $v=\mu_X$
 - Exact (non-perturbative) definition of μ_X

Then, vev is:

$$v = \mu_X + \mu_X \frac{\hbar e^2}{16\pi^2} \left\{ -\frac{40}{9} + \frac{94}{9} \ln e - \frac{20}{3} \ln^2 e - \frac{\xi}{2} + \frac{3}{2} \xi \ln e + \frac{\xi}{4} \ln \left[\frac{\xi \hbar}{16\pi^2} (1 - 6\ln e) \right] - \frac{1}{6} \xi + \xi \ln e \right\}$$

• gauge-dependent vev is OK – not physical

Potential at minimum is:

$$V_{\min} = \frac{e^4\hbar}{16\pi^2}\mu_X^4 \left(-\frac{3}{8}\right) + \frac{e^6\hbar}{(16\pi^2)^2}\mu_X^4 \left(\frac{71}{6} - \frac{62}{3} + 10\ln^2 e\right) + \frac{e^6\hbar}{(16\pi^2)^2}\mu_X^4 \left(\frac{\xi}{4} - \frac{3}{2}\xi\ln e\right)$$

• gauge-dependent vacuum energy is **not OK**

Still gauge-dependent!

What's missing?

More diagrams!

Daisy resummation

Higher order graphs can scale like inverse powers of λ :

Only one series of graphs contribute at order $\sim \hbar^2$

Effective masses depend on λ

"daisy diagrams"

We can sum the series:

$$V^{e^{6}\text{daissies}} = \phi^{4} \frac{\hbar}{16\pi^{2}} \left(-\frac{e^{2}\lambda\xi}{24} \right) \left[\frac{\widehat{\lambda}(\phi)}{\lambda} + \left(1 - \frac{\widehat{\lambda}(\phi)}{\lambda}\right) \ln\left(1 - \frac{\widehat{\lambda}(\phi)}{\lambda}\right) \right]$$
$$\widehat{\lambda}(\phi) \equiv \frac{\hbar e^{4}}{16\pi^{2}} \left(6 - 36\ln\frac{e\phi}{\mu}\right)$$

 $\sum_{\substack{k \in \mathbb{Z} \\ \lambda \neq 0}} \propto (e^2)^3 (e^2 \phi^2)^3 \int \frac{d^4k}{2\pi^4} \left(\frac{i}{k^2 - \frac{\lambda}{2}\phi^2}\right)^3 \propto \phi^4 \frac{e^{12}}{\lambda}$

Full potential at NLO:

$$V^{\rm NLO} = \frac{\hbar e^2 \lambda}{16\pi^2} \phi^4 \left(\frac{\xi}{8} - \frac{\xi}{24} \ln \frac{e^2 \lambda \xi \phi^4}{6\mu^4} \right) + \frac{\hbar^2 e^6}{(16\pi^2)^2} \phi^4 \left[(10 - 6\xi) \ln^2 \frac{e\phi}{\mu} + \left(-\frac{62}{3} + 4\xi - \frac{3}{2}\xi \ln \frac{\lambda \xi}{6e^2} \right) \ln \frac{e\phi}{\mu} + \xi \left(-\frac{1}{2} + \frac{1}{4} \ln \frac{\lambda \xi}{6e^2} \right) + \frac{71}{6} \right] + \phi^4 \frac{\hbar e^2 \lambda}{16\pi^2} \left(-\frac{\xi}{24} \right) \left[\frac{\widehat{\lambda}(\phi)}{\lambda} + \left(1 - \frac{\widehat{\lambda}(\phi)}{\lambda} \right) \ln \left(1 - \frac{\widehat{\lambda}(\phi)}{\lambda} \right) \right]$$

Now... vacuum energy is gauge-invariant!

$$V_{\min} = -\frac{3\hbar e^4}{128\pi^2}\mu_X^4 + \frac{e^6\hbar^2}{(16\pi^2)^2}\mu_X^4\left(\frac{71}{6} - \frac{62}{3}\ln e + 10\ln^2 e\right)$$

Field values are still gauge-dependent:

$$v = \mu_X + \mu_X \frac{\hbar e^2}{16\pi^2} \left\{ -\frac{40}{9} + \frac{94}{9} \ln e - \frac{20}{3} \ln^2 e - \frac{\xi}{2} + \frac{3}{2} \xi \ln e + \frac{\xi}{4} \ln \left[\frac{\xi \hbar}{16\pi^2} (1 - 6\ln e) \right] - \frac{1}{6} \xi + \xi \ln e \right\}$$

$$\Lambda_I = \mu_I + \mu_I \frac{\hbar e^2}{16\pi^2} \left\{ -\frac{77}{9} + \frac{124}{9} \ln e - \frac{20}{3} \ln^2 e - \frac{\xi}{2} + \frac{3}{2} \xi \ln e + \frac{\xi}{4} \ln \left[\frac{\xi \hbar}{16\pi^2} (1 - 6\ln e) \right] - \frac{5}{12} \xi + \xi \ln e \right\}.$$

Matthew Schwartz

STANDARD MODEL

Lessons from scalar QED

1. Gauge invariance requires consistent expansion in \hbar

To NⁿLO order

Drop some n-loop contributions

Include contributions from > n loops

2. Don't resum logs by solving RGE for V_{eff}

$$\left(\mu \frac{\partial}{\partial \mu} + \beta_i \frac{\partial}{\partial g_i} - \gamma h \frac{\partial}{\partial h}\right) V_{\text{eff}} = 0$$

• Mixes up orders in \hbar in an uncontrolled way

3. Do resum logs by using couplings at some scale μ_X

• Natural condition for μ_X is that $V_{LO}'(\phi=\mu_X) = 0$

4. Don't express V_{min} in terms of $v=\langle \phi
angle$

• Express V_{min} in terms of μ_X instead

Standard Model

$$V^{(\text{LO})}(h) = \frac{1}{4}\lambda h^{4} + h^{4} \frac{1}{2048\pi^{2}} \Big[-5g_{1}^{4} + 6(g_{1}^{2} + g_{2}^{2})^{2} \ln \frac{h^{2}(g_{1}^{2} + g_{2}^{2})}{4\mu^{2}} \\ -10g_{1}^{2}g_{2}^{2} - 15g_{2}^{4} + 12g_{2}^{4} \ln \frac{g_{2}^{2}h^{2}}{4\mu^{2}} + 144y_{t}^{4} - 96y_{t}^{4} \ln \frac{y_{t}^{2}h^{2}}{2\mu^{2}} \Big]$$
Tree-level
Part of 1-loop $\lambda \sim \mathcal{O}(\hbar)$
• Scale h=ux where $\frac{d}{d}V^{(\text{LO})}(h) = 0$ is

Scale h=
$$\mu_X$$
 where $\overline{dh}V^{(10)}(h) = 0$ is

$$\lambda = \frac{1}{256\pi^2} \Big[g_1^4 + 2g_1^2 g_2^2 + 3g_2^4 - 48y_t^4 - 3(g_1^2 + g_2^2)^2 \ln \frac{g_1^2 + g_2^2}{4} - 6g_2^4 \ln \frac{g_2^2}{4} + 48y_t^4 \ln \frac{y_t^2}{2} \Big]$$

• Run couplings with 3-loop β-functions, find numerical solutions

$$\mu_X^{\text{max}} = 2.46 \times 10^{10} \text{ GeV}$$

 $\mu_X^{\text{min}} = 3.43 \times 10^{30} \text{ GeV}$

Standard Model at NLO

- We know the 1-loop contribution to $V_{\rm NLO}$

$$V^{(1,\text{NLO})}(h) = \frac{-1}{256\pi^2} \left[\xi_B g_1^2 \left(\ln \frac{\lambda h^4(\xi_B g_1^2 + \xi_W g_2^2)}{4\mu^4} - 3 \right) + \xi_W g_2^2 \left(\ln \frac{\lambda^3 h^{12} \xi_W^2 g_2^4(\xi_B g_1^2 + \xi_W g_2^2)}{64\mu^{12}} - 9 \right) \right] \lambda h^4$$

- We know the 2-loop contribution to $V_{\mbox{\scriptsize NLO}}$ in Landau gauge

$$\begin{split} \lambda_{\text{eff}}^{(2)} &= \frac{1}{(4\pi)^4} \bigg[8g_3^2 y_t^4 \left(3r_t^2 - 8r_t + 9 \right) + \frac{1}{2} y_t^6 \left(-6r_t r_W - 3r_t^2 + 48r_t - 6r_{tW} - 69 - \pi^2 \right) + \\ &+ \frac{3y_t^2 g_2^4}{16} \left(8r_W + 4r_Z - 3r_t^2 - 6r_t r_Z - 12r_t + 12r_{tW} + 15 + 2\pi^2 \right) + \\ &+ \frac{3y_t^2 g_2^4}{48} \left(27r_t^2 - 54r_t r_Z - 6r_t r_Z - 12r_t + 12r_{tW} + 15 + 2\pi^2 \right) + \\ &+ \frac{y_t^2 g_2^4}{48} \left(27r_t^2 - 54r_t r_Z - 68r_t - 28r_Z + 189 \right) + \frac{y_t^2 g_2^2 g_2^2}{8} \left(9r_t^2 - 18r_t r_Z + 4r_t + 44r_Z - 57 \right) + \\ &+ \frac{g_2^6}{192} \left(36r_t r_Z + 54r_t^2 - 414r_W r_Z + 69r_W^2 + 1264r_W + 156r_Z^2 + 632r_Z - 144r_{tW} - 2067 + 90\pi^2 \right) + \\ &+ \frac{g_2^2 g_2^2}{48} \left((2r_t r_Z - 6r_t^2 - 6r_W (53r_Z + 50) + 213r_W^2 + 4r_Z (57r_Z - 91) + 817 + 46\pi^2) + \\ &+ \frac{g_2^2 g_2^2}{64} \left(\frac{g_2^2 + g_Y^2}{g_2^2} \right) \left(18g_2^2 g_Y^2 + g_Y^4 - 51g_2^4 - \frac{48g_2^6}{g_Y^2 + g_Y^2} \right) \bigg] \,. \end{split}$$

 We don't know the Daisy contribution. But we do know if vanishes in Landau gauge at NLO

$$V^{e^{6}\text{daissies}} = \phi^{4} \frac{\hbar}{16\pi^{2}} \left(-\frac{e^{2}\lambda\xi}{24} \right) \left[\frac{\widehat{\lambda}(\phi)}{\lambda} + \left(1 - \frac{\widehat{\lambda}(\phi)}{\lambda}\right) \ln\left(1 - \frac{\widehat{\lambda}(\phi)}{\lambda}\right) \right]$$

 Assuming everything works like in scalar QED, we have everything we need for NLO

Results

Absolute stability: for what values of the Higgs and top masses is is $V_{min} = 0$?

$$m_h^{\text{pole}} = (125.14 \pm 0.23) \text{ GeV}$$

 $m_t^{\text{pole}} = (173.34 \pm 1.12) \text{ GeV}$

Results

Absolute stability: for what values of the Higgs mass is V_{min} = 0 at fixed top mass?

Holding top mass fixed

- Absolute stability bound lowered by 300 MeV
- Larger shift that including the 2-loop V_{eff}

170

168 120

178

176

 $\overset{\text{dot}}{N}$ 174

172

120

gauge dependent, since Λ_{I} is gauge-dependent

New gauge-invariant way

when is $\Lambda_{I} = \Lambda_{NP}$?

- Add $\mathcal{O}_6 = rac{1}{\Lambda_{\mathrm{NP}}^2} |H|^2$ to the SM Lagrangian
- See how big Λ_{NP} must be so that $V_{min} = 0$

February 24, 2015

Old way:

- Resummation/truncation to fixed order breaks gauge-invariance
- Is there a similar consistent perturbative calculation scheme?
- Is the rate Planck sensitive?
 - Guidice, Strumia et al (arXiv:1307.3536): minimum below Mpl, so no. β_{λ} =0 at μ = 10¹⁷ GeV < M_{Pl}
 - Sher, Brandina et al (arXiv:1408.5302): field at center of bubble greater than Mpl, so **yes** $\phi_B(r=0) = 10^{19} {
 m GeV} \sim M_{
 m Pl}$

Metastability (work in progress)

Standard Model potential Liftetime = 10⁶⁰⁰ years

- Lifetime = 0 sec
- Arbitrarily small bubbles form and grow

Add
$$\Delta V = -\alpha \frac{1}{M_{\rm Pl}^2} H^6 + \beta \frac{1}{M_{\rm Pl}^2} H^8$$

• Lifetime can be anything!

- Planck sensitivity not due to coincidence that β_{λ} =0 at $\mu \sim M_{Pl}$
- Tunnelling is **non-perturbative** and **always** UV sensitive.

- Is there a similar consistent perturbative calculation scheme?
- Is the rate Planck sensitive?

2. Temperature dependent potential

• Physical quantities also formally gauge invariant

Critical T: T_C Transition rates Gravity wave spectrum

3. Inflation

- Field values are unphysical
- What is the right way to construct short-distance models of inflation?

Conclusions

- Using effective actions consistently is tricky
- Field values φ are unphysical
 - Don't compare φ to some fixed scale
- Consistent use of perturbation theory is important

Do we know if the universe is stable?

- Our universe will probably decay, eventually.
- We don't know how long it will last