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July 4, 2012: Higgs boson discovered! 
February 24, 2015 Matthew Schwartz 

What did we learn? 
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The Standard Model 

H

1980-2012 2012 -- ?? 
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What is the Higgs field? 
•  The Higgs field h(x) pervades all space 
•  The Higgs field h(x) has charge under the weak force 

•  If <h> = 0 space is not empty – it has weak charge too 
•  The Higgs field h(x) has a potential  

V (h) = ⇤+m2h2 + �h4

•  Lowest energy state has <h> = v 
•  This Higgs field value surrounds us all  

What do we know about this potential? 

February 24, 2015 Matthew Schwartz 



V (h) = ⇤+m2h2 + �h4Classical potential: 

•  3 free parameters (Λ, m λ) 
•  Must be measured from data
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Higgs potential 

1933: Rate for beta decay (GF=<v>-2) 
        gives vacuum expectation value 

1998: acceleration of universe gives 
vacuum energy density V(v)= (10-3 eV)4 

2012: Higgs boson mass V’’(v)=(126 GeV)2 

gives curvature at minimum 
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V (h) = ⇤+m2h2 + �h4Classical potential: 

•  3 free parameters (Λ, m, λ) 
•  Must be measured from data ✓
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Why are the values of Λ, m, λ in nature interesting? 

1. Fine tuning 

2. Vacuum stability 
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1. Fine tuning 

10-124  
0 

MPl
4 = 1 

1 

10-68 

V(H) 

H 



V (h) = ⇤+m2h2 + �h4Classical potential: 

•  3 free parameters (Λ, m λ) 
•  Must be measured from data ✓



•  Only 3 free parameters 
•  Quantum Field Theory 

      determines  V(h) for arbitrarily large h 
•  Called the quantum-corrected or Effective Potential 
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Our vacuum is absolutely stable 
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Fine tuning 
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Our vacuum will eventually decay … 
… but how long will it take? 

Stability 

V(H) 

H 

Lifetime > 15 billion years  
   = metastable 

Lifetime < 15 billion years  
    = unstable 
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Absolute stability or metastability depends on Higgs and top masses 
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Figure 5: Regions of absolute stability, meta-stability and instability of the SM vacuum in the Mt–
Mh plane (upper left) and in the �–yt plane, in terms of parameter renormalized at the Planck
scale (upper right). Bottom: Zoom in the region of the preferred experimental range of Mh and
Mt (the gray areas denote the allowed region at 1, 2, and 3�). The three boundary lines correspond
to ↵s(MZ) = 0.1184 ± 0.0007, and the grading of the colors indicates the size of the theoretical
error. The dotted contour-lines show the instability scale ⇤ in GeV assuming ↵s(MZ) = 0.1184.

determined at hadron colliders su↵ers from O(⇤QCD) non-perturbative uncertainties [41]. A

possibility to overcome this problem and, at the same time, to improve the experimental

error on Mt, would be a direct determination of the MS top-quark running mass from ex-

periments, for instance from the tt̄ cross-section at a future e+e� collider operating above

the tt̄ threshold. In this respect, such a collider could become crucial for establishing the

structure of the vacuum and the ultimate fate of our universe.

As far as the RG equations are concerned, the error of ±0.2 GeV is a conservative

estimate, based on the parametric size of the missing terms. The smallness of this error,

compared to the uncertainty due to threshold corrections, can be understood by the smallness

of all the couplings at high scales: four-loop terms in the RG equations do not compete with

finite tree-loop corrections close to the electroweak scale, where the strong and the top-quark

Yukawa coupling are large.

The LHC will be able to measure the Higgs mass with an accuracy of about 100–200

MeV, which is far better than the theoretical error with which we are able to determine the

condition of absolute stability.
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scale (upper right). Bottom: Zoom in the region of the preferred experimental range of Mh and
Mt (the gray areas denote the allowed region at 1, 2, and 3�). The three boundary lines correspond
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From Degrassi et al (arXiv:1205.6497)  
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Absolute stability or metastability depends on Higgs and Top masses 

From Degrassi et al (arXiv:1205.6497)  
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determined at hadron colliders su↵ers from O(⇤QCD) non-perturbative uncertainties [41]. A

possibility to overcome this problem and, at the same time, to improve the experimental

error on Mt, would be a direct determination of the MS top-quark running mass from ex-

periments, for instance from the tt̄ cross-section at a future e+e� collider operating above

the tt̄ threshold. In this respect, such a collider could become crucial for establishing the
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As far as the RG equations are concerned, the error of ±0.2 GeV is a conservative
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compared to the uncertainty due to threshold corrections, can be understood by the smallness

of all the couplings at high scales: four-loop terms in the RG equations do not compete with

finite tree-loop corrections close to the electroweak scale, where the strong and the top-quark

Yukawa coupling are large.

The LHC will be able to measure the Higgs mass with an accuracy of about 100–200

MeV, which is far better than the theoretical error with which we are able to determine the

condition of absolute stability.
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Our standard model in  
metastability funnel region 

This is now precision Standard Model physics. 
Is it correct? 
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0 

Veff(H) 

h 

v = 247 GeV hmin = 1033 GeV  

ΛI = 1011 GeV  

hmax = 1010 GeV  

Standard Model Effective Potential 

Are these scales physical?  
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Classical potential: 

-  Renormalizable 
-  Three parameters (Λ, m2 and λ), measured from data 

How can the quantum-corrected potential be computed? 

How do we compute Veff? 
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V (h) = ⇤+m2h2 + �h4
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Z
DHei� ⌘

Z
DH D · · · DAeiS

Effective Action 

� =

Z

d4x
n

� Z[H]H⇤H � Ve↵(H) + · · ·
o

Classical action 

Integrate out everything but H 

•  Generally non-local (has nasty things like                     in it) 

•  Nearly impossible to compute 

•  Can’t include loops of H itself this way 

ln
1 +⇤/m2

t

H2

OK if H ⇡ hHi

Method 1: 

How do we compute Veff? 

ei� =

Z
DH · · · DAeiSIf we integrate over everything, 

     effective action is just a number  

Problems: 
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eW [J] ⌘
Z

DH · · · DAei
R
d4x{L+JH}1. Compute W[J]  

2. Solve for J[H]  H =
@W

@J
3. Compute  

Method 2: Legendre transform 

Classical action 

��

�H

���
H=Hq

= 0

We want an effective action 

Classical minimum  

�S

�H

���
H=v

= 0

True quantum minimum 

�[H] = W [J [H]]�
Z

d4xHJ [H]

��

�H
= J [H]Has the property that                       so that ��

�H
= 0 when J=0 (i.e. in original theory) 

Current introduced by hand 
So that Γ depends on something 

•  Agrees with method 1 in perturbation theory 
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What do you get? 

3

FIG. 1. Gauge dependence of the absolute stability bound
with mpole

t = 173.34 GeV.

is satisfied. For values ofmh andmt close to the observed
SM values, there are two solutions to this equation: the
lower µX is where V (LO) has a maximum, and the higher
µX where the minimum occurs. In the SM these scales
are

µmax
X = 2.46⇥ 1010 GeV (6)

µmin
X = 3.43⇥ 1030 GeV. (7)

These numbers and results which follow use mpole
h =

(125.14± 0.24) GeV, combined from [27, 28].

For the potential at the next-to-leading order (NLO),
one contribution comes from the ~2 terms in the 1-loop
potential with � ⇠ ~ scaling:

V (1,NLO)(h) =
�1

256⇡2


⇠Bg

2
1

✓
ln

�h4(⇠Bg21 + ⇠W g22)

4µ4
� 3

◆

+⇠W g22

✓
ln

�3h12⇠2W g42(⇠Bg
2
1 + ⇠W g22)

64µ12
� 9

◆�
�h4 (8)

Another contribution V (2,NLO)(h) comes from the �0 and
ln� terms in 2-loop potential. In Landau gauge, these

terms are h4/4 times what is written as �
(2)
e↵ in Eq.

(C.4) of the published version of [2]. Finally, there is
the contribution, V (n>2,NLO)(h) from 3-loop and higher
order graphs proportional to inverse powers of �. Includ-
ing all these terms, the potential at each extremum will
be gauge-invariant. Conveniently, the higher-loop-order
graphs contributing at NLO vanish in Landau gauge
(⇠B = ⇠W = 0). Thus the gauge-invariant NLO value
of the potential at the minimum is simply

V NLO
min = V (LO)(µX) + V (2,NLO)(µX) (9)

To derive this, we consistently truncated to O(~2) and
used d

dhV
(LO) = 0 at h = µX . Note that this is the RG-

improved e↵ective potential: the resummation is implicit
in the solution for µX . At NNLO, an infinite number of
loops are relevant, even in Landau gauge [13].

FIG. 2. Gauge dependence of the instability scale ⇤I , defined
by V (⇤I) = 0, at 1-loop in the traditional approach. There
is no known way to make this scale gauge-invariant.

Using Eq. (9) we find that for absolute stability at
NLO, the Higgs pole mass must satisfy

mpole
h

GeV
> (129.40± 0.58) + 2.26 (

mpole
t � 173.34 GeV

1.12 GeV
)

(10)
This bound is around 275 MeV lower than the bound
from the traditional approach in Landau gauge (mpole

h >
129.67 GeV). The ±0.58 is pertubative and ↵s uncer-
tainty [2]. Since the Higgs mass is known better than
the top mass, it perhaps makes more sense to write the
bound as

mpole
t

GeV
< (171.22± 0.28) + 0.12 (

mpole
h � 125.14 GeV

0.24 GeV
)

(11)
Fig. 1 compares the gauge-dependence of the bound

at 1-loop to the LO, NLO and 2-loop bounds. For this
plot we have taken the U(1) and SU(2) R⇠ gauge pa-
rameters equal to ⇠t when µ = mt and included their
RGE evolution [29]. All bounds include 2-loop thresh-
olds and 3-loop running. We find that the bound at
LO is mpole

h > 129.69 GeV which is nearly identical to
the Landau gauge 1-loop bound in the traditional ap-
proach, mpole

h > 129.70 GeV. We do not plot the gauge-
dependence of the 2-loop bound since we have not com-
puted the gauge-dependent 2-loop potential or the daisy
contribution. That the bound seems to asymptote to a
finite value in unitary gauge (⇠ = 1) may be due to
much (but not all) of the gauge-dependence being in the
e4� prefactor in Eq. (3) which drops out of the V = 0
condition.
Fig. 2 shows the gauge dependence of the instability

scale ⇤I , defined by V (⇤I) = 0 [1, 2], and its Landau-
gauge value at 2-loops, including 3-loop resummation in
both cases. Since the instability scale is a field value, it is
not obviously physical. We know of no way to compute
it in a consistent and gauge-invariant manner.
Fig. 3 shows the value of Vmax computed by various

approaches. We find approximately exponential depen-
dence of Vmax (and also Vmin) on ⇠t in the traditional

3

FIG. 1. Gauge dependence of the absolute stability bound
with mpole

t = 173.34 GeV.

is satisfied. For values ofmh andmt close to the observed
SM values, there are two solutions to this equation: the
lower µX is where V (LO) has a maximum, and the higher
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are

µmax
X = 2.46⇥ 1010 GeV (6)

µmin
X = 3.43⇥ 1030 GeV. (7)

These numbers and results which follow use mpole
h =

(125.14± 0.24) GeV, combined from [27, 28].

For the potential at the next-to-leading order (NLO),
one contribution comes from the ~2 terms in the 1-loop
potential with � ⇠ ~ scaling:

V (1,NLO)(h) =
�1

256⇡2


⇠Bg

2
1

✓
ln

�h4(⇠Bg21 + ⇠W g22)

4µ4
� 3

◆

+⇠W g22

✓
ln

�3h12⇠2W g42(⇠Bg
2
1 + ⇠W g22)

64µ12
� 9

◆�
�h4 (8)

Another contribution V (2,NLO)(h) comes from the �0 and
ln� terms in 2-loop potential. In Landau gauge, these

terms are h4/4 times what is written as �
(2)
e↵ in Eq.

(C.4) of the published version of [2]. Finally, there is
the contribution, V (n>2,NLO)(h) from 3-loop and higher
order graphs proportional to inverse powers of �. Includ-
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improved e↵ective potential: the resummation is implicit
in the solution for µX . At NNLO, an infinite number of
loops are relevant, even in Landau gauge [13].

FIG. 2. Gauge dependence of the instability scale ⇤I , defined
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is no known way to make this scale gauge-invariant.
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tainty [2]. Since the Higgs mass is known better than
the top mass, it perhaps makes more sense to write the
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olds and 3-loop running. We find that the bound at
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h > 129.70 GeV. We do not plot the gauge-
dependence of the 2-loop bound since we have not com-
puted the gauge-dependent 2-loop potential or the daisy
contribution. That the bound seems to asymptote to a
finite value in unitary gauge (⇠ = 1) may be due to
much (but not all) of the gauge-dependence being in the
e4� prefactor in Eq. (3) which drops out of the V = 0
condition.
Fig. 2 shows the gauge dependence of the instability

scale ⇤I , defined by V (⇤I) = 0 [1, 2], and its Landau-
gauge value at 2-loops, including 3-loop resummation in
both cases. Since the instability scale is a field value, it is
not obviously physical. We know of no way to compute
it in a consistent and gauge-invariant manner.
Fig. 3 shows the value of Vmax computed by various

approaches. We find approximately exponential depen-
dence of Vmax (and also Vmin) on ⇠t in the traditional
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action at tree-level produce 1PI correlation functions,
which can be gauge and scale dependent and satisfy an
RGE like Eq. (2). Gauge-invariant S-matrix elements are
related to correlation functions by amputation and (in
MS) gauge-dependent wave-function renormalization Z-
factors. These factors also compensate the scale depen-
dence, letting the S-matrix satisfy an RGE like Eq. (2)
without the � term.

Fortuitously, the value of the potential at a minimum,
Vmin, (or at any extremum) is both gauge-invariant and
independent of the scale where it is calculated, with-

out extra Z-factors. The former invariance follows from
Eq. (1) and the latter invariance holds simply because
the value of any function at any extremum is invariant
under any rescaling of its argument. Since the absolute
stability bound in the SM is determined by the condi-
tion Vmin < VEW ⇡ 0, with VEW the energy of our vac-
uum (usually renormalized to zero), the bound should be
gauge-independent. Unfortunately, gauge-invariance has
only been proven non-perturbatively. Indeed, we find
that the stability bound is gauge-dependent at each or-
der in perturbation theory if computed by the traditional
approach (see Fig. 1 or [18]). In [13], it was shown how
e↵ective potential calculations can be reorganized so that
Vmin is gauge-invariant order-by-order. In this paper, we
review this “consistent approach” and apply it to the SM.

We write the SM e↵ective potential as V (h), where
in unitary gauge the Higgs doublet is normalized as

H =
1p
2

✓
0

vEW + h

◆
. The traditional perturbation ap-

proach leads to a renormalization-group-improved e↵ec-
tive potential of the form [2]
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4 the j-loop
fixed-order e↵ective potential.

Since stability is determined by large field values and
the potential grows as h4, the quadratic term �m2h2 in
the classical potential can be neglected to excellent accu-
racy. Then the electroweak minimum is at VEW = 0
and the stability bound is determined as the critical
Higgs pole mass for which the potential has another min-
imum with Vmin = 0. The physical Higgs mass enters
through threshold corrections at the weak scale which
convert observables into MS couplings. Currently, the
�-functions and � are known to 3-loop order in general
R⇠ gauges, the fixed-order potential is known to 2-loop
order in Landau gauge (⇠ = 0), and the threshold cor-
rections are known to 2 loops (an alternate scheme is
discussed in [23]). Using Eq. (3) and the best avail-
able data, Ref. [2] found an absolute stability bound of
mpole

h > (129.1 ± 1.5) GeV. Using equations from [2],
with some minor corrections confirmed by its authors,
and including tau and bottom contributions, we have re-

produced this result. We now update the top mass to
mpole

t = (173.34± 1.12) GeV, with the central value and
±0.76 GeV of the uncertainty from [24], and an addi-
tional 0.82GeV theory uncertainty added in quadrature
due to the ambiguity in converting from a Monte Carlo
mass scheme to a pole mass scheme [25, 26]. Also in-
cluding the 3-loop QCD threshold corrections to � listed
but not used in [2], we update this traditional-approach
bound to mpole

h > (129.67± 1.5) GeV.
The gauge-dependence of the stability bound at 1-loop

is shown in Fig. 1, to be discussed more below. The rea-
son the stability bound appears gauge dependent is due
to an improper use of perturbation theory. The key in-
sight, made long ago by Coleman and Weinberg [22] is
that the usual loop expansion is inappropriate for e↵ec-
tive potentials near quantum-generated minima. Simply
put, the classical potential V0 ⇠ �h4 can only turn over

due to 1-loop corrections of the form V1 ⇠ g4~
16⇡2h

4 for

some g if � ⇠ g4~
16⇡2 . Since � ⇠ ~, each factor of � in a

diagram changes its e↵ective loop order. Thus perturba-
tion theory in ~ may still be appropriate, but since � ⇠ ~
it is not the usual loop expansion.
An additional complication is that the e↵ective poten-

tial has terms scaling like inverse powers of ~. For ex-
ample, a term ⇠ ~3g10��1 appears at 3-loops; since �
counts as ~, this term scales like ~2 and contributes com-
petitively with the 2-loop terms. Including all relevant
terms according to this modified power counting, it was
shown in [13] that Vmin is indeed gauge-invariant in scalar
QED. The required terms include the 2-loop e↵ective po-
tential in R⇠ gauge as well as an infinite series of “daisy”
loops producing terms in V proportional to g4j+2�1�j .
The consistent method for an order-by-order gauge-

independent calculation of Vmin presented in [13] trans-
lates to the SM as follows. First, we truncate the e↵ective
potential to order ~ with � ⇠ ~ power counting. This
gives the leading-order (LO) potential:
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Note that this potential includes tree-level and 1-loop
contributions, and is gauge-invariant. From this, we can
solve for the scale h = µX where dV (LO)/dh = 0. Ex-
plicitly µX is the MS scale where the condition
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RGE like Eq. (2). Gauge-invariant S-matrix elements are
related to correlation functions by amputation and (in
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FIG. 1. Gauge dependence of the absolute stability bound
with mpole

t = 173.34 GeV.

is satisfied. For values ofmh andmt close to the observed
SM values, there are two solutions to this equation: the
lower µX is where V (LO) has a maximum, and the higher
µX where the minimum occurs. In the SM these scales
are

µmax
X = 2.46⇥ 1010 GeV (6)

µmin
X = 3.43⇥ 1030 GeV. (7)

These numbers and results which follow use mpole
h =

(125.14± 0.24) GeV, combined from [27, 28].

For the potential at the next-to-leading order (NLO),
one contribution comes from the ~2 terms in the 1-loop
potential with � ⇠ ~ scaling:

V (1,NLO)(h) =
�1
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Another contribution V (2,NLO)(h) comes from the �0 and
ln� terms in 2-loop potential. In Landau gauge, these

terms are h4/4 times what is written as �
(2)
e↵ in Eq.

(C.4) of the published version of [2]. Finally, there is
the contribution, V (n>2,NLO)(h) from 3-loop and higher
order graphs proportional to inverse powers of �. Includ-
ing all these terms, the potential at each extremum will
be gauge-invariant. Conveniently, the higher-loop-order
graphs contributing at NLO vanish in Landau gauge
(⇠B = ⇠W = 0). Thus the gauge-invariant NLO value
of the potential at the minimum is simply

V NLO
min = V (LO)(µX) + V (2,NLO)(µX) (9)

To derive this, we consistently truncated to O(~2) and
used d

dhV
(LO) = 0 at h = µX . Note that this is the RG-

improved e↵ective potential: the resummation is implicit
in the solution for µX . At NNLO, an infinite number of
loops are relevant, even in Landau gauge [13].

FIG. 2. Gauge dependence of the instability scale ⇤I , defined
by V (⇤I) = 0, at 1-loop in the traditional approach. There
is no known way to make this scale gauge-invariant.

Using Eq. (9) we find that for absolute stability at
NLO, the Higgs pole mass must satisfy

mpole
h

GeV
> (129.40± 0.58) + 2.26 (

mpole
t � 173.34 GeV

1.12 GeV
)

(10)
This bound is around 275 MeV lower than the bound
from the traditional approach in Landau gauge (mpole

h >
129.67 GeV). The ±0.58 is pertubative and ↵s uncer-
tainty [2]. Since the Higgs mass is known better than
the top mass, it perhaps makes more sense to write the
bound as

mpole
t

GeV
< (171.22± 0.28) + 0.12 (

mpole
h � 125.14 GeV

0.24 GeV
)

(11)
Fig. 1 compares the gauge-dependence of the bound

at 1-loop to the LO, NLO and 2-loop bounds. For this
plot we have taken the U(1) and SU(2) R⇠ gauge pa-
rameters equal to ⇠t when µ = mt and included their
RGE evolution [29]. All bounds include 2-loop thresh-
olds and 3-loop running. We find that the bound at
LO is mpole

h > 129.69 GeV which is nearly identical to
the Landau gauge 1-loop bound in the traditional ap-
proach, mpole

h > 129.70 GeV. We do not plot the gauge-
dependence of the 2-loop bound since we have not com-
puted the gauge-dependent 2-loop potential or the daisy
contribution. That the bound seems to asymptote to a
finite value in unitary gauge (⇠ = 1) may be due to
much (but not all) of the gauge-dependence being in the
e4� prefactor in Eq. (3) which drops out of the V = 0
condition.
Fig. 2 shows the gauge dependence of the instability

scale ⇤I , defined by V (⇤I) = 0 [1, 2], and its Landau-
gauge value at 2-loops, including 3-loop resummation in
both cases. Since the instability scale is a field value, it is
not obviously physical. We know of no way to compute
it in a consistent and gauge-invariant manner.
Fig. 3 shows the value of Vmax computed by various

approaches. We find approximately exponential depen-
dence of Vmax (and also Vmin) on ⇠t in the traditional
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is satisfied. For values ofmh andmt close to the observed
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action at tree-level produce 1PI correlation functions,
which can be gauge and scale dependent and satisfy an
RGE like Eq. (2). Gauge-invariant S-matrix elements are
related to correlation functions by amputation and (in
MS) gauge-dependent wave-function renormalization Z-
factors. These factors also compensate the scale depen-
dence, letting the S-matrix satisfy an RGE like Eq. (2)
without the � term.

Fortuitously, the value of the potential at a minimum,
Vmin, (or at any extremum) is both gauge-invariant and
independent of the scale where it is calculated, with-

out extra Z-factors. The former invariance follows from
Eq. (1) and the latter invariance holds simply because
the value of any function at any extremum is invariant
under any rescaling of its argument. Since the absolute
stability bound in the SM is determined by the condi-
tion Vmin < VEW ⇡ 0, with VEW the energy of our vac-
uum (usually renormalized to zero), the bound should be
gauge-independent. Unfortunately, gauge-invariance has
only been proven non-perturbatively. Indeed, we find
that the stability bound is gauge-dependent at each or-
der in perturbation theory if computed by the traditional
approach (see Fig. 1 or [18]). In [13], it was shown how
e↵ective potential calculations can be reorganized so that
Vmin is gauge-invariant order-by-order. In this paper, we
review this “consistent approach” and apply it to the SM.

We write the SM e↵ective potential as V (h), where
in unitary gauge the Higgs doublet is normalized as

H =
1p
2
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proach leads to a renormalization-group-improved e↵ec-
tive potential of the form [2]
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fixed-order e↵ective potential.

Since stability is determined by large field values and
the potential grows as h4, the quadratic term �m2h2 in
the classical potential can be neglected to excellent accu-
racy. Then the electroweak minimum is at VEW = 0
and the stability bound is determined as the critical
Higgs pole mass for which the potential has another min-
imum with Vmin = 0. The physical Higgs mass enters
through threshold corrections at the weak scale which
convert observables into MS couplings. Currently, the
�-functions and � are known to 3-loop order in general
R⇠ gauges, the fixed-order potential is known to 2-loop
order in Landau gauge (⇠ = 0), and the threshold cor-
rections are known to 2 loops (an alternate scheme is
discussed in [23]). Using Eq. (3) and the best avail-
able data, Ref. [2] found an absolute stability bound of
mpole

h > (129.1 ± 1.5) GeV. Using equations from [2],
with some minor corrections confirmed by its authors,
and including tau and bottom contributions, we have re-

produced this result. We now update the top mass to
mpole

t = (173.34± 1.12) GeV, with the central value and
±0.76 GeV of the uncertainty from [24], and an addi-
tional 0.82GeV theory uncertainty added in quadrature
due to the ambiguity in converting from a Monte Carlo
mass scheme to a pole mass scheme [25, 26]. Also in-
cluding the 3-loop QCD threshold corrections to � listed
but not used in [2], we update this traditional-approach
bound to mpole

h > (129.67± 1.5) GeV.
The gauge-dependence of the stability bound at 1-loop

is shown in Fig. 1, to be discussed more below. The rea-
son the stability bound appears gauge dependent is due
to an improper use of perturbation theory. The key in-
sight, made long ago by Coleman and Weinberg [22] is
that the usual loop expansion is inappropriate for e↵ec-
tive potentials near quantum-generated minima. Simply
put, the classical potential V0 ⇠ �h4 can only turn over

due to 1-loop corrections of the form V1 ⇠ g4~
16⇡2h

4 for

some g if � ⇠ g4~
16⇡2 . Since � ⇠ ~, each factor of � in a

diagram changes its e↵ective loop order. Thus perturba-
tion theory in ~ may still be appropriate, but since � ⇠ ~
it is not the usual loop expansion.
An additional complication is that the e↵ective poten-

tial has terms scaling like inverse powers of ~. For ex-
ample, a term ⇠ ~3g10��1 appears at 3-loops; since �
counts as ~, this term scales like ~2 and contributes com-
petitively with the 2-loop terms. Including all relevant
terms according to this modified power counting, it was
shown in [13] that Vmin is indeed gauge-invariant in scalar
QED. The required terms include the 2-loop e↵ective po-
tential in R⇠ gauge as well as an infinite series of “daisy”
loops producing terms in V proportional to g4j+2�1�j .
The consistent method for an order-by-order gauge-

independent calculation of Vmin presented in [13] trans-
lates to the SM as follows. First, we truncate the e↵ective
potential to order ~ with � ⇠ ~ power counting. This
gives the leading-order (LO) potential:

V (LO)(h) =
1

4
�h4

+ h4 1

2048⇡2

h
� 5g41 + 6(g21 + g22)

2 ln
h2(g21 + g22)

4µ2

�10g21g
2
2�15g42+12g42 ln

g22h
2

4µ2
+144y4t �96y4t ln

y2t h
2

2µ2

i

(4)
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1. Gauge-dependence  
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Method 1 to compute Γ is gauge-invariant: 

Completely integrate over gauge-orbits 
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Method 2 to compute Γ introduces a charged source J 
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•  Action away from minimum has current present 
•  Action at minimum has no current, should be gauge-invariant 
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Figure 1: Under the rescaling of the dependent variable, a function changes but its values at
extrema do not [19]. This elementary mathematical fact explains why the e↵ective potential
can depend on the field normalization, but Vmin does not.

field redefinitions, and the e↵ective action in the true vacuum is defined as a path integral in
Eq. (2.6). Indeed, gauge invariance of the action at extrema is a special case of general field
redefinition invariance, since one can view gauge-transformations as field redefinitions. In
doing so, however, one must allow for the possibility that if with one definition an extremum
is at A

µ

= 0, with another definition it may be with a nonzero and x-dependent expectation
value for A

µ

.
A corollary of the above argument is that the potential away from its extrema does

depend on how the field is normalized and defined. This is also obvious from Fig. 1. Away
from an extremum, the action describes the system in the presence of a current J . When
one rescales the field �, the J� term with J fixed breaks the invariance of the path integral
under rescaling. Equivalently, from Eq. (2.5), we see that J

�

= 1


J

�

so that when a field is
rescaled, �[�] gives the least action in the presence of a rescaled current.

A number of authors have proposed that the gauge-dependence of the e↵ective potential
can be removed through a field redefinition [8–11,14]. For example, Tye and Vtorov-Karevsky
argue that one should replace �1 + i�2 ! � exp(i⇡) [10]. Then � is a U(1) singlet and
so its source J is neutral and the interaction J� in the Lagrangian does not cause the
Ward identity to be violated. Although there is nothing wrong with this argument, physical
quantities, such as the value of the potential at its minimum, should be independent of
field redefinitions. A field redefinition is in a sense similar to a gauge-choice. It does not
make the potential away from the minimum any more physical. Moreover, with this non-
linear field redefinition, a renormalizable theory becomes nonrenormalizable and nominally
straightforward calculations can become drastically more complicated (try computing �

�

at
1-loop in this theory). The point is that physics should be independent of field redefinitions,
so one should choose a basis which makes calculations easiest, not one that makes unphysical
quantities more comforting.
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•  Rescaling field leaves Vmin unchanged 



But is it? 
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No. 

(�Vmin)
1/4 appears linearly-dependent on gauge parameter ξ	





What about field values? 
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also strongly gauge-dependent 

Instability scale ΛI =  value of h where V(h) = 0 

•  hmin  also gauge dependent 
•  hmax also gauge dependent 
•  … 

0

Veff(h) 
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v = 247 GeV hmin = 1033 GeV  
ΛI = 1011 GeV  

hmax = 1010 GeV  
Landau gauge (ξ=0) 
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ΛI  



2. Large Logarithms 
February 24, 2015 Matthew Schwartz 

Can be resummed with RGE: 

Explicit µ dependence 

compensated for by rescaling couplings and fields 
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•  Same RGE as 1PI Green’s functions or off-shell matrix elements 
•  Observables/S-matrix elements satisfy simpler RGE: 

 

               Effective potential depends on the normalization of fields??!! 

•  Field-rescaling term canceled by LSZ wavefunction Z-factors 



Resum logarithms 
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1.  Compute Veff to fixed order (say 2-loops) at scale (say) µ0 ~ 100 GeV 

2.  Solve RGE 

3.  Set µ ~ h 
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extrema do not [19]. This elementary mathematical fact explains why the e↵ective potential
can depend on the field normalization, but Vmin does not.
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Even gauge-invariant Γ is unphysical 
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Γ(h) is now gauge-invariant 

Effective potential still depends on how it is calculated 
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•  This is OK.  
•  Off-shell quantities can be unphysical 

•  Observables should be physical 
•  S-matrix elements 
•  Vacuum energy (Vmin) 
•  Tunnelling rates 
•  Critical temperature 

But are they?  

What about field values? 
Instability scale? 
Inflation scale? 
Planck/new physics sensitivity? 
 

Are these questions about observables? 
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•   Not gauge-invariant 

•  For most values of e and λ, there is no minimum 

•  When 

Scalar QED   
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L = �1

4
F 2
µ⌫ +

1
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|Dµ�|2 � V (�)

•  mass term gives small corrections, so we drop it 

4 Coleman-Weinberg Model

Now let us turn to the main subject of this paper, scalar QED with a massless scalar, also
known as the Coleman-Weinberg model. The Lagrangian is as in Eq. (3.1), with

V0 =
�

24
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4 (4.1)

and the gauge-fixing term is

LGF = � 1
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µ)2 (4.2)

These can be thought of as R
⇠

gauges (since vcl = 0 in this theory) or Fermi gauges. They
correspond to ⌥1 = ⌥2 = 0 in the 3-parameter gauge family discussed above, and so the
ghosts decouple and can be ignored. There is unavoidable kinetic mixing between � and
@

µ

A

µ

in this theory, but as in the Abelian Higgs model, this is an inconvenient but not
insurmountable complication.

The renormalized 1-loop e↵ective potential in MS in this theory is the m ! 0 limit of
Eq. (3.9):
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has been used to simplify the 1-loop potential.
The tree-level potential in this model has only a single minimum, at � = 0, where the

O(2) symmetry is unbroken. For there to be a minimum at 1-loop, the corrections must be
large enough to turn over the potential. For � small, so that the theory is perturbative, this
is only possible if the ~

16⇡2 e
4 term is as large as the tree-level �

24
piece. So let us assume

� ⇠ ~
16⇡2 e

4 and that there is a minimum at some scale v. Then the condition for the
minimum, V 0(v) = 0 provides a precise relationship between � and e:
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+O(e6) (4.6)

As discussed in [4], to understand this equation one must appreciate dimensional trans-
mutation. In scalar QED, the only scale is the scale µ at which the couplings are defined. µ
is arbitrary, so we may as well take µ = v. Then Eq. (4.6) reduces to

� =
~

16⇡2
e

4 (6� 36 ln e) +O(e6) (4.7)
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1-loop potential in Rξ gauges: 
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This equation should be thought of as a condition on � = �(µ) and e = e(µ): the minimum
occurs at the scale v = µ where Eq. (4.7) holds. Of course, v will get corrections and, as we
will see, is gauge-dependent (unlike µ). But at least at 1-loop, this is an acceptable way to
think about the minimum in the e↵ective potential in scalar QED.

Since � and e can be anything, it is natural to wonder whether Eq. (4.7) requires some
kind of finite tuning. As explained in [4] it does not. The evolution of e and � are determined
by the � functions:
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The key feature of these equations is that e is multiplicatively renormalized (e = 0 is a fixed
point of the RG flow) while � can get an additive correction even at � = 0. What this means
is that if � and e start o↵ small, e runs logarithmically, but � will grow at ever increasing
rate until it hits a Landau pole. Indeed, the exact solutions to the 1-loop RGEs are [4]
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with C an integration constant which can be traded for �(µ0). The tangent in �(µ) implies
that as e2 changes by a factor of ⇡ 1.2, � will go from �1 to 1. In particular, if � and e

are small, there will always be a point where Eq. (4.7) is satisfied.
At the minimum, we find
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This is gauge-invariant, simply because the e

4 terms in V1(�) are gauge-invariant.
The first non-trivial check on the gauge invariance of V (v) requires the terms in the

e↵ective potential of order ~2e6, with � counting as order ~e4, and ln e and ln� counting as
order e0. In scalar QED, each loop comes with a factor of ~e2 or ~� from the vertices, so ~e2�
terms come from 1-loop graphs and ~2e6 terms from 2-loop graphs. Thus we need at least
the 2-loop Coleman-Weinberg potential. In addition, e↵ective potential calculations involve
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4 Coleman-Weinberg Model

Now let us turn to the main subject of this paper, scalar QED with a massless scalar, also
known as the Coleman-Weinberg model. The Lagrangian is as in Eq. (3.1), with

V0 =
�

24
�

4 (4.1)

and the gauge-fixing term is

LGF = � 1

2⇠
(@

µ

A

µ)2 (4.2)

These can be thought of as R
⇠

gauges (since vcl = 0 in this theory) or Fermi gauges. They
correspond to ⌥1 = ⌥2 = 0 in the 3-parameter gauge family discussed above, and so the
ghosts decouple and can be ignored. There is unavoidable kinetic mixing between � and
@

µ

A

µ

in this theory, but as in the Abelian Higgs model, this is an inconvenient but not
insurmountable complication.

The renormalized 1-loop e↵ective potential in MS in this theory is the m ! 0 limit of
Eq. (3.9):
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has been used to simplify the 1-loop potential.
The tree-level potential in this model has only a single minimum, at � = 0, where the

O(2) symmetry is unbroken. For there to be a minimum at 1-loop, the corrections must be
large enough to turn over the potential. For � small, so that the theory is perturbative, this
is only possible if the ~

16⇡2 e
4 term is as large as the tree-level �

24
piece. So let us assume

� ⇠ ~
16⇡2 e

4 and that there is a minimum at some scale v. Then the condition for the
minimum, V 0(v) = 0 provides a precise relationship between � and e:
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As discussed in [4], to understand this equation one must appreciate dimensional trans-
mutation. In scalar QED, the only scale is the scale µ at which the couplings are defined. µ
is arbitrary, so we may as well take µ = v. Then Eq. (4.6) reduces to

� =
~

16⇡2
e

4 (6� 36 ln e) +O(e6) (4.7)
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These terms are important, but since � ⇠ e

4, they have e↵ects comparable to terms in the 3-
loop Coleman-Weinberg potential. Thus, an advantage of Landau gauge is that it postpones
the relevance of daisy resummation by one loop. Landau gauge does not however let us
ignore the daisy graphs completely.

Two recent papers also observed that resummation of certain graphs to all orders is
necessary starting at 3 loops in Landau gauge [40,41]. These two papers are concerned with
resolving an infrared divergence problem associated with massless Goldstone bosons starting
at 3 loops. While these two papers discuss diagrams similar to the ones here, the problem
they solve is di↵erent (infrared divergences, not gauge-dependence) and their results are not
directly transferable. However, these two papers, along with the earlier work in [35, 43], do
explain in a more systematic way how daisy and other relevant diagrams can be resummed
through a modification of the e↵ective propagators.

In summary, the full Coleman-Weinberg potential up to order e6 with � ⇠ e

4 is the sum
of Eqs. (4.1), (4.3), (5.20) and (6.10). It is helpful to write the result as
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scales as O(~) when � ⇠ ~e4 and the next-to-leading order (NLO) potential, scaling like
O(~2), is
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with b

�(�) is defined in Eq. (6.11). Note that there are tree and 1-loop contributions to the
LO potential and that the NLO potential get contributions from 1-, 2- and all higher order
loops.
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with b

�(�) is defined in Eq. (6.11). Note that there are tree and 1-loop contributions to the
LO potential and that the NLO potential get contributions from 1-, 2- and all higher order
loops.
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•  Known in Landau gauge 
•  Some terms computed by Kang (1974), not in MS 
•  Some terms at order          unknown   e6~2There are 4 diagrams that contribute at order ~2e6:

M
A

=
2

= �~2e2
2

Z

d

d

k1

(2⇡)d

Z

d

d

k2

(2⇡)d
D22(k1)�µµ

(k2)

=
~2�4

e

6

(16⇡2)2
⇠



�12 ln2 e�

µ

+

✓

8� 3 ln
�⇠

6e2

◆

ln
e�

µ

� 5

2
� ⇡

2

16
� 3

16
ln2 �⇠

6e2
+ ln

�⇠

6e2

�

+ · · ·
(5.16)

M
B

=
2

1

=
i

2
e

2

Z

d

d

k1

(2⇡)d

Z

d

d

k2

(2⇡)d
(kµ

2 � k

µ

1 )(k
⌫

1 � k

⌫

2)D11(k1)D22(k2)�µ⌫

(k1 + k2)

=
~2�4

e

6

(16⇡2)2



(2 + 6⇠) ln2 e�

µ

� (3 + 7⇠) ln
e�

µ

+
7

4
+

⇡

2

8
+

15

4
⇠ +

3⇡2

8
⇠

�

+ · · · (5.17)

M
C

= 1 = �i~2e4�2

Z

d

d

k1

(2⇡)d

Z

d

d

k2

(2⇡)d
�

µ⌫

(k1)�µ⌫

(k2)D11(k1 + k2)

=
~2�4

e

6

(16⇡2)2



(18 + 6⇠) ln2 e�

µ

� (21 + 7⇠) ln
e�

µ

+
47

4
+

7⇡2

24
+

15

4
⇠ +

3⇡2

8
⇠

�

+ · · ·
(5.18)

M
D

= 2

1

= �2~2e3�
Z

d

d

k1

(2⇡)d

Z

d

d

k2

(2⇡)d
(kµ

1 � k

µ

2 )�µ⌫

(k1 + k2)T⌫2(k2)D11(k1)

=
~2�4

e

6

(16⇡2)2
⇠



�12 ln2 e�

µ

+ 14 ln
e�

µ

� 15

2
� 3⇡2

4

�

+ · · · (5.19)

with the · · · vanishing as � ! 0. Kang computed some of the logarithmic terms in these
amplitudes in [29], and we agree with his results.

Adding the contribution of these graphs to the counterterm contribution in Eq. (5.4)
gives the ~2 contributions to the e↵ective potential:
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where again the · · · vanish as � ! 0.
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with the · · · vanishing as � ! 0. Kang computed some of the logarithmic terms in these
amplitudes in [29], and we agree with his results.

Adding the contribution of these graphs to the counterterm contribution in Eq. (5.4)
gives the ~2 contributions to the e↵ective potential:

V2 =

✓

~
16⇡2

◆2

e

6
�

4



(10� 6⇠) ln2 e�

µ

+

✓

�62

3
+ 4⇠ � 3

2
⇠ ln

�⇠

6e2

◆

ln
e�

µ

+⇠

✓

�1

2
+

1

4
ln

�⇠

6e2

◆

+
71

6

�

+ · · · (5.20)

where again the · · · vanish as � ! 0.
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with the · · · vanishing as � ! 0. Kang computed some of the logarithmic terms in these
amplitudes in [29], and we agree with his results.

Adding the contribution of these graphs to the counterterm contribution in Eq. (5.4)
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with the · · · vanishing as � ! 0. Kang computed some of the logarithmic terms in these
amplitudes in [29], and we agree with his results.

Adding the contribution of these graphs to the counterterm contribution in Eq. (5.4)
gives the ~2 contributions to the e↵ective potential:
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where again the · · · vanish as � ! 0.
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with the · · · vanishing as � ! 0. Kang computed some of the logarithmic terms in these
amplitudes in [29], and we agree with his results.

Adding the contribution of these graphs to the counterterm contribution in Eq. (5.4)
gives the ~2 contributions to the e↵ective potential:
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where again the · · · vanish as � ! 0.
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with the · · · vanishing as � ! 0. Kang computed some of the logarithmic terms in these
amplitudes in [29], and we agree with his results.

Adding the contribution of these graphs to the counterterm contribution in Eq. (5.4)
gives the ~2 contributions to the e↵ective potential:
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where again the · · · vanish as � ! 0.
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with the · · · vanishing as � ! 0. Kang computed some of the logarithmic terms in these
amplitudes in [29], and we agree with his results.

Adding the contribution of these graphs to the counterterm contribution in Eq. (5.4)
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with the · · · vanishing as � ! 0. Kang computed some of the logarithmic terms in these
amplitudes in [29], and we agree with his results.

Adding the contribution of these graphs to the counterterm contribution in Eq. (5.4)
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terms of order  

Then the relevant part of the 2-loop potential is 
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These terms are important, but since � ⇠ e

4, they have e↵ects comparable to terms in the 3-
loop Coleman-Weinberg potential. Thus, an advantage of Landau gauge is that it postpones
the relevance of daisy resummation by one loop. Landau gauge does not however let us
ignore the daisy graphs completely.

Two recent papers also observed that resummation of certain graphs to all orders is
necessary starting at 3 loops in Landau gauge [40,41]. These two papers are concerned with
resolving an infrared divergence problem associated with massless Goldstone bosons starting
at 3 loops. While these two papers discuss diagrams similar to the ones here, the problem
they solve is di↵erent (infrared divergences, not gauge-dependence) and their results are not
directly transferable. However, these two papers, along with the earlier work in [35, 43], do
explain in a more systematic way how daisy and other relevant diagrams can be resummed
through a modification of the e↵ective propagators.

In summary, the full Coleman-Weinberg potential up to order e6 with � ⇠ e

4 is the sum
of Eqs. (4.1), (4.3), (5.20) and (6.10). It is helpful to write the result as
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scales as O(~) when � ⇠ ~e4 and the next-to-leading order (NLO) potential, scaling like
O(~2), is
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with b

�(�) is defined in Eq. (6.11). Note that there are tree and 1-loop contributions to the
LO potential and that the NLO potential get contributions from 1-, 2- and all higher order
loops.
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•  Solve V’(φ=v) =0 for λ(v): 

•  Plug in to V(v): 

 Still gauge-dependent! 

          Problem :                   is gauge-dependent v = h�i

Express Vmin in terms of only other dimensionful scale: µ	
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The final term is the contribution from the daisies. Without this term, our result agrees with
Kang [17] (up to normalization and subtraction-scheme conventions). As before, one should
interpret v as the scale µ where this equation it satisfied. Therefore v is gauge-dependent.

This solution for � contributes to the scalar mass through V

00(v) (see Eq.(7.5) below).
Plugging Eq. (7.2) back into the potential, we find that in fact V (�) is completely insensitive
to the daisy contribution: the correction to � exactly cancels the V

e

6
daisies daisy contribution.

Thus there is no e↵ect of the daisies on the scalar mass. The vector propagator at the order
required (1-loop) is also independent of daisies; it can even be computed in the � = 0 limit.
Thus the daisies do not a↵ect the scalar to vector mass ratio at order e

6, which explains why
Kang’s result is correct.

Now let us consider the value of the e↵ective potential at the radiatively generated min-
imum, V
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This is gauge-dependent. One might have suspected that the daisies would help, but in
fact they do not contribute at all to this expression (since, as mentioned above, they do
not contribute to V (�) when expressed in terms of v, even away from the minimum). This
gauge-dependence is essentially what was observed but not resolved in [35].

What is going on? Shouldn’t the Nielsen identity in Eq. (2.7)
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is gauge-invariant? Since @V
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= 0, which indeed does hold, this

equation should automatically imply that @V

@⇠

= 0, which does not hold. The catch is that
C(v, ⇠) happens to be infinite. Indeed, since we know V we can sidestep the direct calculation
of C(�, ⇠) and simply solve for it using Eq. (7.4). Doing so, we find a function C(�, ⇠) which
has a logarithmic divergence as � ! v. Thus while the Nielsen identity may provide a
constraint on the exact e↵ective potential, it gives no indication of how we are to proceed

25

in Eq. (4.6): � = ~
16⇡

2 e
4(6�36 ln e). Working perturbatively in e, we solve V

0(v) = 0 to next
order to find

� =
~e4
16⇡2

✓
6� 36 ln

ev

µ

◆

+
~e6

(16⇡2)2

⇢
�160� 24⇠ + (376 + 90⇠) ln

ev

µ

� 240 ln2

ev

µ

+9⇠ ln


⇠~µ2

16⇡2

v

2

✓
1� 6 ln

ev

µ

◆�
+⇠

✓
6� 36 ln

ev

µ

◆�
(7.2)

The final term is the contribution from the daisies. Without this term, our result agrees with
Kang [17] (up to normalization and subtraction-scheme conventions). As before, one should
interpret v as the scale µ where this equation it satisfied. Therefore v is gauge-dependent.

This solution for � contributes to the scalar mass through V

00(v) (see Eq.(7.5) below).
Plugging Eq. (7.2) back into the potential, we find that in fact V (�) is completely insensitive
to the daisy contribution: the correction to � exactly cancels the V

e

6
daisies daisy contribution.

Thus there is no e↵ect of the daisies on the scalar mass. The vector propagator at the order
required (1-loop) is also independent of daisies; it can even be computed in the � = 0 limit.
Thus the daisies do not a↵ect the scalar to vector mass ratio at order e

6, which explains why
Kang’s result is correct.

Now let us consider the value of the e↵ective potential at the radiatively generated min-
imum, V

min

. Plugging Eq. (7.2) back into the e↵ective potential and setting � = v gives

V

min

= v

4

e

4~
16⇡2

✓
�3

8

◆

+ v

4

e

6~2
(16⇡2)2

1

12

⇢
62� 9⇠ + (�60 + 18⇠) ln

ev

µ

+
9

2
⇠ ln


e

2

⇠~
16⇡2

✓
1� 6 ln

ev

µ

◆��
(7.3)

This is gauge-dependent. One might have suspected that the daisies would help, but in
fact they do not contribute at all to this expression (since, as mentioned above, they do
not contribute to V (�) when expressed in terms of v, even away from the minimum). This
gauge-dependence is essentially what was observed but not resolved in [35].

What is going on? Shouldn’t the Nielsen identity in Eq. (2.7)

⇠

@V

@⇠

+ C(�, ⇠)
@V

@�

�

�=v

= 0 (7.4)

guarantee that V

min

is gauge-invariant? Since @V

@�

��
�=v

= 0, which indeed does hold, this

equation should automatically imply that @V

@⇠

= 0, which does not hold. The catch is that
C(v, ⇠) happens to be infinite. Indeed, since we know V we can sidestep the direct calculation
of C(�, ⇠) and simply solve for it using Eq. (7.4). Doing so, we find a function C(�, ⇠) which
has a logarithmic divergence as � ! v. Thus while the Nielsen identity may provide a
constraint on the exact e↵ective potential, it gives no indication of how we are to proceed

25

in Eq. (4.6): � = ~
16⇡

2 e
4(6�36 ln e). Working perturbatively in e, we solve V

0(v) = 0 to next
order to find

� =
~e4
16⇡2

✓
6� 36 ln

ev

µ

◆

+
~e6

(16⇡2)2

⇢
�160� 24⇠ + (376 + 90⇠) ln

ev

µ

� 240 ln2

ev

µ

+9⇠ ln


⇠~µ2

16⇡2

v

2

✓
1� 6 ln

ev

µ

◆�
+⇠

✓
6� 36 ln

ev

µ

◆�
(7.2)

The final term is the contribution from the daisies. Without this term, our result agrees with
Kang [17] (up to normalization and subtraction-scheme conventions). As before, one should
interpret v as the scale µ where this equation it satisfied. Therefore v is gauge-dependent.

This solution for � contributes to the scalar mass through V

00(v) (see Eq.(7.5) below).
Plugging Eq. (7.2) back into the potential, we find that in fact V (�) is completely insensitive
to the daisy contribution: the correction to � exactly cancels the V

e

6
daisies daisy contribution.

Thus there is no e↵ect of the daisies on the scalar mass. The vector propagator at the order
required (1-loop) is also independent of daisies; it can even be computed in the � = 0 limit.
Thus the daisies do not a↵ect the scalar to vector mass ratio at order e

6, which explains why
Kang’s result is correct.

Now let us consider the value of the e↵ective potential at the radiatively generated min-
imum, V

min

. Plugging Eq. (7.2) back into the e↵ective potential and setting � = v gives

V

min

= v

4

e

4~
16⇡2

✓
�3

8

◆

+ v

4

e

6~2
(16⇡2)2

1

12

⇢
62� 9⇠ + (�60 + 18⇠) ln

ev

µ

+
9

2
⇠ ln


e

2

⇠~
16⇡2

✓
1� 6 ln

ev

µ

◆��
(7.3)

This is gauge-dependent. One might have suspected that the daisies would help, but in
fact they do not contribute at all to this expression (since, as mentioned above, they do
not contribute to V (�) when expressed in terms of v, even away from the minimum). This
gauge-dependence is essentially what was observed but not resolved in [35].

What is going on? Shouldn’t the Nielsen identity in Eq. (2.7)

⇠

@V

@⇠

+ C(�, ⇠)
@V

@�

�

�=v

= 0 (7.4)

guarantee that V

min

is gauge-invariant? Since @V

@�

��
�=v

= 0, which indeed does hold, this

equation should automatically imply that @V

@⇠

= 0, which does not hold. The catch is that
C(v, ⇠) happens to be infinite. Indeed, since we know V we can sidestep the direct calculation
of C(�, ⇠) and simply solve for it using Eq. (7.4). Doing so, we find a function C(�, ⇠) which
has a logarithmic divergence as � ! v. Thus while the Nielsen identity may provide a
constraint on the exact e↵ective potential, it gives no indication of how we are to proceed

25

in Eq. (4.6): � = ~
16⇡

2 e
4(6�36 ln e). Working perturbatively in e, we solve V

0(v) = 0 to next
order to find

� =
~e4
16⇡2

✓
6� 36 ln

ev

µ

◆

+
~e6

(16⇡2)2

⇢
�160� 24⇠ + (376 + 90⇠) ln

ev

µ

� 240 ln2

ev

µ

+9⇠ ln


⇠~µ2

16⇡2

v

2

✓
1� 6 ln

ev

µ

◆�
+⇠

✓
6� 36 ln

ev

µ

◆�
(7.2)

The final term is the contribution from the daisies. Without this term, our result agrees with
Kang [17] (up to normalization and subtraction-scheme conventions). As before, one should
interpret v as the scale µ where this equation it satisfied. Therefore v is gauge-dependent.

This solution for � contributes to the scalar mass through V

00(v) (see Eq.(7.5) below).
Plugging Eq. (7.2) back into the potential, we find that in fact V (�) is completely insensitive
to the daisy contribution: the correction to � exactly cancels the V

e

6
daisies daisy contribution.

Thus there is no e↵ect of the daisies on the scalar mass. The vector propagator at the order
required (1-loop) is also independent of daisies; it can even be computed in the � = 0 limit.
Thus the daisies do not a↵ect the scalar to vector mass ratio at order e

6, which explains why
Kang’s result is correct.

Now let us consider the value of the e↵ective potential at the radiatively generated min-
imum, V

min

. Plugging Eq. (7.2) back into the e↵ective potential and setting � = v gives

V

min

= v

4

e

4~
16⇡2

✓
�3

8

◆

+ v

4

e

6~2
(16⇡2)2

1

12

⇢
62� 9⇠ + (�60 + 18⇠) ln

ev

µ

+
9

2
⇠ ln


e

2

⇠~
16⇡2

✓
1� 6 ln

ev

µ

◆��
(7.3)

This is gauge-dependent. One might have suspected that the daisies would help, but in
fact they do not contribute at all to this expression (since, as mentioned above, they do
not contribute to V (�) when expressed in terms of v, even away from the minimum). This
gauge-dependence is essentially what was observed but not resolved in [35].
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= 0, which does not hold. The catch is that
C(v, ⇠) happens to be infinite. Indeed, since we know V we can sidestep the direct calculation
of C(�, ⇠) and simply solve for it using Eq. (7.4). Doing so, we find a function C(�, ⇠) which
has a logarithmic divergence as � ! v. Thus while the Nielsen identity may provide a
constraint on the exact e↵ective potential, it gives no indication of how we are to proceed
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The final term is the contribution from the daisies. Without this term, our result agrees with
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This solution for � contributes to the scalar mass through V
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in perturbation theory. Similar divegences in C(�, ⇠) were observed by Nielsen [15] in the
Abelian Higgs model and attributed to the infrared divergence problem in Fermi gauges
discussed in Section 3 (see also [24]).
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which is manifestly ⇠ independent. Daisies do not contribute to this ratio, as they contribute
to neither V

min

nor to m

S

.
That the potential at the minimum to the scalar mass is gauge-invariant is encouraging,

but shouldn’t these quantities separately be gauge invariant? Aitchison and Fraser observed
that the scalar mass that Kang calculated does not in fact satisfy its Nielsen identity [24].
They suspected, echoing Nielsen, that the discrepancy would be resolved by including the
daisies. We have shown that the daisies do not help. The real problem is that one simply
cannot express these quantities in terms of the expectation value v = h�i. This vev is
unphysical and gauge-dependent and infects all dimensionful quantities expressed in terms
of it.

An alternative to expressing V

min

in terms of v is to express it in terms of the renormal-
ization group scale µ. This scale is as physical as the MS couplings: the two are intrinsically
connected. So that we can continue to use perturbation theory, let us define the scale µ
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Since this relation is exact, we can no longer solve for e

6 terms in the relation between � and
e. Instead, we can solve V

0(v) = 0 for v as a function of µ
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. Up to 2-loops we find
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What’s missing?  
More diagrams! 
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where the last two terms are the daisy contribution. Note that v = h�i is not gauge invariant.
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where, again, the last two terms are the daisy contribution. In this case, we see that for
V

min

the daisies precisely cancel the gauge dependence from the other terms as indicated
and the resulting expression is entirely independent of ⇠! Using Eq. (7.7) we can also find a
gauge-invariant expression for the scalar mass in terms of µ

X

, and then for the vector mass
using Eq. (7.1).

To reinforce some of the main points of this paper, we can explicitly work out various
unphysical quantities to see that they are indeed gauge dependent. The first gauge-dependent
quantity is the vev: v = h�i shown in Eq. (7.9). We can also look at value of the field where
the potential is zero ⇤
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, which in the standard model is sometimes given an interpretation
as an instability scale. Setting V (⇤
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which, like v is gauge-dependent. In both cases, we see that the scale is linearly dependent
on ⇠. Comparing to Eq. (7.9), it is intriguing to observe that v and ⇤

I

have the same
⇠-dependent terms, so that v/⇤

I

is gauge-invariant at this order.

8 Renormalization group improvement

At this point we have shown that if the e↵ective potential in scalar QED is expressed in
terms of the MS couplings e and � and the scale µ
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where, again, the last two terms are the daisy contribution. In this case, we see that for
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the daisies precisely cancel the gauge dependence from the other terms as indicated
and the resulting expression is entirely independent of ⇠! Using Eq. (7.7) we can also find a
gauge-invariant expression for the scalar mass in terms of µ

X

, and then for the vector mass
using Eq. (7.1).

To reinforce some of the main points of this paper, we can explicitly work out various
unphysical quantities to see that they are indeed gauge dependent. The first gauge-dependent
quantity is the vev: v = h�i shown in Eq. (7.9). We can also look at value of the field where
the potential is zero ⇤
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, which in the standard model is sometimes given an interpretation
as an instability scale. Setting V (⇤
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which, like v is gauge-dependent. In both cases, we see that the scale is linearly dependent
on ⇠. Comparing to Eq. (7.9), it is intriguing to observe that v and ⇤

I

have the same
⇠-dependent terms, so that v/⇤

I

is gauge-invariant at this order.

8 Renormalization group improvement

At this point we have shown that if the e↵ective potential in scalar QED is expressed in
terms of the MS couplings e and � and the scale µ
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where they satisfy Eq. (7.8), then the
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Higher order graphs can scale like inverse powers of λ:	



critical temperature because, in the limit m ⌧ T , new infrared divergences arrive. Daisy
resummation as a solution to infrared problems associated with massless Goldstone bosons
has recently been proposed in [39,40]. The relevance of daisy resummation to solving gauge-
dependence problems at finite temperature has also been discussed [19,41,42]. It is therefore
not suprising that daisy resummation is relevant to the gauge-dependence problem in the
Coleman-Weinberg model. Nevertheless, the relevant calculation has not yet been done, to
our knowledge, which is why we resum the relevant daisy graphs here.
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grams. Indeed, at any fixed order in perturbation theory, there are always positive powers
of couplings, even in e↵ective potential calculations. However, the e↵ective potential always
involves summing an infinite number of graphs, namely those with an arbitrary number
of background field insertions. It is this infinite sum which gives the ln� dependence in
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Here, we have simply done the integral by dimensional analysis, since it is UV and IR finite.
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Figure 3: Example daisy graphs which contribute inverse powers of �.

quantities at order e6 in this power counting. Nielsen argued that the reason the scalar mass
Kang calculated does not satisfy his identity was due to the absence of these terms [15].
Some time later, Johnston [35] showed how these terms can be summed into a dressed
propagator for the scalar fields, suggesting that these terms could be computed and the
Nielsen identity restored, although no explicit contributions to the potential were provided.
Shortly afterwards Bazeia [36] showed that even at 1-loop, where daisies are irrelevant, the
vacuum energy in the Coleman-Weinberg model has gauge-dependence. In this section, we
compute all of the daisy graphs relevant at e6 (and some of the subleading daisy graphs as
well to demonstrate their relevance in Landau gauge). In the next section we demonstrate
that, after carefully keeping track of the independent variables, the e↵ective potential at its
minimum is indeed gauge-invariant.

Before beginning, it is worth remarking that the daisy resummation we perform here is
related to, but not identical to, daisy resummation in finite-temperature field theory [37–
39]. At finite temperature, the resummation of daisy diagrams is necessary to calculate a
critical temperature because, in the limit m ⌧ T , new infrared divergences arise. Daisy
resummation as a solution to infrared problems associated with massless Goldstone bosons
has recently been proposed in [40,41]. The relevance of daisy resummation to solving gauge-
dependence problems at finite temperature has also been discussed [19, 42]. It is therefore
not surprising that daisy resummation is relevant to the gauge-dependence problem in the
Coleman-Weinberg model. Nevertheless, the relevant calculations have never been done, to
our knowledge, which is why we resum the relevant daisy graphs here.

Normally, one does not get inverse powers of coupling constants from Feynman dia-
grams. Indeed, at any fixed order in perturbation theory, there are always positive powers
of couplings, even in e↵ective potential calculations. However, the e↵ective potential always
involves summing an infinite number of graphs, namely those with an arbitrary number of
background field insertions. It is this infinite sum which gives the ln� dependence in the
e↵ective potential and which can generate inverse powers of couplings. As discussed in Sec-
tion 5, we simplify the infinite sums by using dressed propagators. For example, we see from
Eq. (5.5) that the �1 propagator is D11 = i

k

2��
2 �

2 which has an e↵ective mass m

2 = �

2
�

2.

In the daisy graphs, each photon loop (the petals) gives a factor proportional to e

2
�

2, each
vertex gives a factor of e2, and the loop integral over the scalar propagators can give inverse

21

Figure 3: Example daisy graphs which contribute inverse powers of �.

quantities at order e6 in this power counting. Nielsen argued that the reason the scalar mass
Kang calculated does not satisfy his identity was due to the absence of these terms [15].
Some time later, Johnston [35] showed how these terms can be summed into a dressed
propagator for the scalar fields, suggesting that these terms could be computed and the
Nielsen identity restored, although no explicit contributions to the potential were provided.
Shortly afterwards Bazeia [36] showed that even at 1-loop, where daisies are irrelevant, the
vacuum energy in the Coleman-Weinberg model has gauge-dependence. In this section, we
compute all of the daisy graphs relevant at e6 (and some of the subleading daisy graphs as
well to demonstrate their relevance in Landau gauge). In the next section we demonstrate
that, after carefully keeping track of the independent variables, the e↵ective potential at its
minimum is indeed gauge-invariant.

Before beginning, it is worth remarking that the daisy resummation we perform here is
related to, but not identical to, daisy resummation in finite-temperature field theory [37–
39]. At finite temperature, the resummation of daisy diagrams is necessary to calculate a
critical temperature because, in the limit m ⌧ T , new infrared divergences arise. Daisy
resummation as a solution to infrared problems associated with massless Goldstone bosons
has recently been proposed in [40,41]. The relevance of daisy resummation to solving gauge-
dependence problems at finite temperature has also been discussed [19, 42]. It is therefore
not surprising that daisy resummation is relevant to the gauge-dependence problem in the
Coleman-Weinberg model. Nevertheless, the relevant calculations have never been done, to
our knowledge, which is why we resum the relevant daisy graphs here.

Normally, one does not get inverse powers of coupling constants from Feynman dia-
grams. Indeed, at any fixed order in perturbation theory, there are always positive powers
of couplings, even in e↵ective potential calculations. However, the e↵ective potential always
involves summing an infinite number of graphs, namely those with an arbitrary number of
background field insertions. It is this infinite sum which gives the ln� dependence in the
e↵ective potential and which can generate inverse powers of couplings. As discussed in Sec-
tion 5, we simplify the infinite sums by using dressed propagators. For example, we see from
Eq. (5.5) that the �1 propagator is D11 = i

k

2��
2 �

2 which has an e↵ective mass m

2 = �

2
�

2.

In the daisy graphs, each photon loop (the petals) gives a factor proportional to e

2
�

2, each
vertex gives a factor of e2, and the loop integral over the scalar propagators can give inverse

21

Figure 3: Example daisy graphs which contribute inverse powers of �.

quantities at order e6 in this power counting. Nielsen argued that the reason the scalar mass
Kang calculated does not satisfy his identity was due to the absence of these terms [15].
Some time later, Johnston [35] showed how these terms can be summed into a dressed
propagator for the scalar fields, suggesting that these terms could be computed and the
Nielsen identity restored, although no explicit contributions to the potential were provided.
Shortly afterwards Bazeia [36] showed that even at 1-loop, where daisies are irrelevant, the
vacuum energy in the Coleman-Weinberg model has gauge-dependence. In this section, we
compute all of the daisy graphs relevant at e6 (and some of the subleading daisy graphs as
well to demonstrate their relevance in Landau gauge). In the next section we demonstrate
that, after carefully keeping track of the independent variables, the e↵ective potential at its
minimum is indeed gauge-invariant.

Before beginning, it is worth remarking that the daisy resummation we perform here is
related to, but not identical to, daisy resummation in finite-temperature field theory [37–
39]. At finite temperature, the resummation of daisy diagrams is necessary to calculate a
critical temperature because, in the limit m ⌧ T , new infrared divergences arise. Daisy
resummation as a solution to infrared problems associated with massless Goldstone bosons
has recently been proposed in [40,41]. The relevance of daisy resummation to solving gauge-
dependence problems at finite temperature has also been discussed [19, 42]. It is therefore
not surprising that daisy resummation is relevant to the gauge-dependence problem in the
Coleman-Weinberg model. Nevertheless, the relevant calculations have never been done, to
our knowledge, which is why we resum the relevant daisy graphs here.

Normally, one does not get inverse powers of coupling constants from Feynman dia-
grams. Indeed, at any fixed order in perturbation theory, there are always positive powers
of couplings, even in e↵ective potential calculations. However, the e↵ective potential always
involves summing an infinite number of graphs, namely those with an arbitrary number of
background field insertions. It is this infinite sum which gives the ln� dependence in the
e↵ective potential and which can generate inverse powers of couplings. As discussed in Sec-
tion 5, we simplify the infinite sums by using dressed propagators. For example, we see from
Eq. (5.5) that the �1 propagator is D11 = i

k

2��
2 �

2 which has an e↵ective mass m

2 = �

2
�

2.

In the daisy graphs, each photon loop (the petals) gives a factor proportional to e

2
�

2, each
vertex gives a factor of e2, and the loop integral over the scalar propagators can give inverse

21

+ + 

Since the 1
"

term in A2�2 has no
1
�

piece, the cross term between it and the O(") part of Aloop
�

will not contribute at order e6 (with � ⇠ e

4). Thus, for all the daisies, we can drop the O(")
terms in A

loop
�

and take

A

�

= A

loop
�

+ A

c.t.
�

=
~

16⇡2
e

2
�

2

✓

1� 6 ln
e�

µ

◆

(6.6)

For n > 3, the scalar loop is UV and IR finite. We find

A

n�2 = =

Z

d

4
k

(2⇡)4
D

n

22 =
i~

16⇡2
�

4 e

2
�⇠

12(n� 1)

✓�6i

��

2

◆

n

(6.7)

so that

I

n

=
~

16⇡2

✓

� 1

24
e

2
�⇠�

4

◆

1

n(n� 1)



~e4
(16⇡2)�

✓

6� 36 ln
e�

µ

◆�

n

(6.8)

Each term in this series contributes at order e

6 when � ⇠ e

4. Thus they are all equally
important for checking gauge invariance and we must sum the series. Summing the series is
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We have defined b

�(�) so that according to Eq. (4.6) b�(v) = � at the scale v where the 1-loop
potential has its minimum. Remarkably, while each daisy graph with n > 1 is individually
power-divergent as � ! 0 with e fixed, the sum of all daisies scales only like ln�.

Before moving on, it is worth pointing out that daisy resummation is important even in
Landau gauge, ⇠ = 0. In Landau gauge, there is no kinetic mixing and the scalar propagators
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where the last two terms are the daisy contribution. Note that v = h�i is not gauge invariant.
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where, again, the last two terms are the daisy contribution. In this case, we see that for
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the daisies precisely cancel the gauge dependence from the other terms as indicated
and the resulting expression is entirely independent of ⇠! Using Eq. (7.7) we can also find a
gauge-invariant expression for the scalar mass in terms of µ
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, and then for the vector mass
using Eq. (7.1).
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which, like v is gauge-dependent. In both cases, we see that the scale is linearly dependent
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These terms are important, but since � ⇠ e

4, they have e↵ects comparable to terms in the 3-
loop Coleman-Weinberg potential. Thus, an advantage of Landau gauge is that it postpones
the relevance of daisy resummation by one loop. Landau gauge does not however let us
ignore the daisy graphs completely.

Two recent papers also observed that resummation of certain graphs to all orders is
necessary starting at 3 loops in Landau gauge [40,41]. These two papers are concerned with
resolving an infrared divergence problem associated with massless Goldstone bosons starting
at 3 loops. While these two papers discuss diagrams similar to the ones here, the problem
they solve is di↵erent (infrared divergences, not gauge-dependence) and their results are not
directly transferable. However, these two papers, along with the earlier work in [35, 43], do
explain in a more systematic way how daisy and other relevant diagrams can be resummed
through a modification of the e↵ective propagators.
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with b

�(�) is defined in Eq. (6.11). Note that there are tree and 1-loop contributions to the
LO potential and that the NLO potential get contributions from 1-, 2- and all higher order
loops.
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which is manifestly gauge-invariant! The daisies have exactly canceled the ⇠ dependence of
the NLO 1-loop and 2-loop contributions.
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This instability scale is linearly dependent on the gauge-parameter ⇠, and therefore should
not be used to draw physical conclusions. The ⇠ dependence of other field values can be
computed in a similar way, confirming that they are indeed unphysical.
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where the last two terms are the daisy contribution. Note that v = h�i is not gauge invariant.
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and the resulting expression is entirely independent of ⇠! Using Eq. (7.7) we can also find a
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which, like v is gauge-dependent. In both cases, we see that the scale is linearly dependent
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2

action at tree-level produce 1PI correlation functions,
which can be gauge and scale dependent and satisfy an
RGE like Eq. (2). Gauge-invariant S-matrix elements are
related to correlation functions by amputation and (in
MS) gauge-dependent wave-function renormalization Z-
factors. These factors also compensate the scale depen-
dence, letting the S-matrix satisfy an RGE like Eq. (2)
without the � term.

Fortuitously, the value of the potential at a minimum,
Vmin, (or at any extremum) is both gauge-invariant and
independent of the scale where it is calculated, with-

out extra Z-factors. The former invariance follows from
Eq. (1) and the latter invariance holds simply because
the value of any function at any extremum is invariant
under any rescaling of its argument. Since the absolute
stability bound in the SM is determined by the condi-
tion Vmin < VEW ⇡ 0, with VEW the energy of our vac-
uum (usually renormalized to zero), the bound should be
gauge-independent. Unfortunately, gauge-invariance has
only been proven non-perturbatively. Indeed, we find
that the stability bound is gauge-dependent at each or-
der in perturbation theory if computed by the traditional
approach (see Fig. 1 or [18]). In [13], it was shown how
e↵ective potential calculations can be reorganized so that
Vmin is gauge-invariant order-by-order. In this paper, we
review this “consistent approach” and apply it to the SM.

We write the SM e↵ective potential as V (h), where
in unitary gauge the Higgs doublet is normalized as

H =
1p
2

✓
0

vEW + h

◆
. The traditional perturbation ap-

proach leads to a renormalization-group-improved e↵ec-
tive potential of the form [2]

V (h) =
1

4
h4e4�(h)

h
�
(0)
e↵ (µ = h) + �

(1)
e↵ (µ = h) + · · ·

i
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with �(h) ⌘ R h
mt

�(µ0)dµ
0

µ0 and 1
4�

(j)
e↵ (µ)h

4 the j-loop
fixed-order e↵ective potential.

Since stability is determined by large field values and
the potential grows as h4, the quadratic term �m2h2 in
the classical potential can be neglected to excellent accu-
racy. Then the electroweak minimum is at VEW = 0
and the stability bound is determined as the critical
Higgs pole mass for which the potential has another min-
imum with Vmin = 0. The physical Higgs mass enters
through threshold corrections at the weak scale which
convert observables into MS couplings. Currently, the
�-functions and � are known to 3-loop order in general
R⇠ gauges, the fixed-order potential is known to 2-loop
order in Landau gauge (⇠ = 0), and the threshold cor-
rections are known to 2 loops (an alternate scheme is
discussed in [23]). Using Eq. (3) and the best avail-
able data, Ref. [2] found an absolute stability bound of
mpole

h > (129.1 ± 1.5) GeV. Using equations from [2],
with some minor corrections confirmed by its authors,
and including tau and bottom contributions, we have re-

produced this result. We now update the top mass to
mpole

t = (173.34± 1.12) GeV, with the central value and
±0.76 GeV of the uncertainty from [24], and an addi-
tional 0.82GeV theory uncertainty added in quadrature
due to the ambiguity in converting from a Monte Carlo
mass scheme to a pole mass scheme [25, 26]. Also in-
cluding the 3-loop QCD threshold corrections to � listed
but not used in [2], we update this traditional-approach
bound to mpole

h > (129.67± 1.5) GeV.
The gauge-dependence of the stability bound at 1-loop

is shown in Fig. 1, to be discussed more below. The rea-
son the stability bound appears gauge dependent is due
to an improper use of perturbation theory. The key in-
sight, made long ago by Coleman and Weinberg [22] is
that the usual loop expansion is inappropriate for e↵ec-
tive potentials near quantum-generated minima. Simply
put, the classical potential V0 ⇠ �h4 can only turn over

due to 1-loop corrections of the form V1 ⇠ g4~
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16⇡2 . Since � ⇠ ~, each factor of � in a

diagram changes its e↵ective loop order. Thus perturba-
tion theory in ~ may still be appropriate, but since � ⇠ ~
it is not the usual loop expansion.
An additional complication is that the e↵ective poten-

tial has terms scaling like inverse powers of ~. For ex-
ample, a term ⇠ ~3g10��1 appears at 3-loops; since �
counts as ~, this term scales like ~2 and contributes com-
petitively with the 2-loop terms. Including all relevant
terms according to this modified power counting, it was
shown in [13] that Vmin is indeed gauge-invariant in scalar
QED. The required terms include the 2-loop e↵ective po-
tential in R⇠ gauge as well as an infinite series of “daisy”
loops producing terms in V proportional to g4j+2�1�j .
The consistent method for an order-by-order gauge-

independent calculation of Vmin presented in [13] trans-
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action at tree-level produce 1PI correlation functions,
which can be gauge and scale dependent and satisfy an
RGE like Eq. (2). Gauge-invariant S-matrix elements are
related to correlation functions by amputation and (in
MS) gauge-dependent wave-function renormalization Z-
factors. These factors also compensate the scale depen-
dence, letting the S-matrix satisfy an RGE like Eq. (2)
without the � term.

Fortuitously, the value of the potential at a minimum,
Vmin, (or at any extremum) is both gauge-invariant and
independent of the scale where it is calculated, with-

out extra Z-factors. The former invariance follows from
Eq. (1) and the latter invariance holds simply because
the value of any function at any extremum is invariant
under any rescaling of its argument. Since the absolute
stability bound in the SM is determined by the condi-
tion Vmin < VEW ⇡ 0, with VEW the energy of our vac-
uum (usually renormalized to zero), the bound should be
gauge-independent. Unfortunately, gauge-invariance has
only been proven non-perturbatively. Indeed, we find
that the stability bound is gauge-dependent at each or-
der in perturbation theory if computed by the traditional
approach (see Fig. 1 or [18]). In [13], it was shown how
e↵ective potential calculations can be reorganized so that
Vmin is gauge-invariant order-by-order. In this paper, we
review this “consistent approach” and apply it to the SM.

We write the SM e↵ective potential as V (h), where
in unitary gauge the Higgs doublet is normalized as
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due to the ambiguity in converting from a Monte Carlo
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cluding the 3-loop QCD threshold corrections to � listed
but not used in [2], we update this traditional-approach
bound to mpole

h > (129.67± 1.5) GeV.
The gauge-dependence of the stability bound at 1-loop

is shown in Fig. 1, to be discussed more below. The rea-
son the stability bound appears gauge dependent is due
to an improper use of perturbation theory. The key in-
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that the usual loop expansion is inappropriate for e↵ec-
tive potentials near quantum-generated minima. Simply
put, the classical potential V0 ⇠ �h4 can only turn over
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action at tree-level produce 1PI correlation functions,
which can be gauge and scale dependent and satisfy an
RGE like Eq. (2). Gauge-invariant S-matrix elements are
related to correlation functions by amputation and (in
MS) gauge-dependent wave-function renormalization Z-
factors. These factors also compensate the scale depen-
dence, letting the S-matrix satisfy an RGE like Eq. (2)
without the � term.

Fortuitously, the value of the potential at a minimum,
Vmin, (or at any extremum) is both gauge-invariant and
independent of the scale where it is calculated, with-

out extra Z-factors. The former invariance follows from
Eq. (1) and the latter invariance holds simply because
the value of any function at any extremum is invariant
under any rescaling of its argument. Since the absolute
stability bound in the SM is determined by the condi-
tion Vmin < VEW ⇡ 0, with VEW the energy of our vac-
uum (usually renormalized to zero), the bound should be
gauge-independent. Unfortunately, gauge-invariance has
only been proven non-perturbatively. Indeed, we find
that the stability bound is gauge-dependent at each or-
der in perturbation theory if computed by the traditional
approach (see Fig. 1 or [18]). In [13], it was shown how
e↵ective potential calculations can be reorganized so that
Vmin is gauge-invariant order-by-order. In this paper, we
review this “consistent approach” and apply it to the SM.
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Since stability is determined by large field values and
the potential grows as h4, the quadratic term �m2h2 in
the classical potential can be neglected to excellent accu-
racy. Then the electroweak minimum is at VEW = 0
and the stability bound is determined as the critical
Higgs pole mass for which the potential has another min-
imum with Vmin = 0. The physical Higgs mass enters
through threshold corrections at the weak scale which
convert observables into MS couplings. Currently, the
�-functions and � are known to 3-loop order in general
R⇠ gauges, the fixed-order potential is known to 2-loop
order in Landau gauge (⇠ = 0), and the threshold cor-
rections are known to 2 loops (an alternate scheme is
discussed in [23]). Using Eq. (3) and the best avail-
able data, Ref. [2] found an absolute stability bound of
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h > (129.1 ± 1.5) GeV. Using equations from [2],
with some minor corrections confirmed by its authors,
and including tau and bottom contributions, we have re-

produced this result. We now update the top mass to
mpole

t = (173.34± 1.12) GeV, with the central value and
±0.76 GeV of the uncertainty from [24], and an addi-
tional 0.82GeV theory uncertainty added in quadrature
due to the ambiguity in converting from a Monte Carlo
mass scheme to a pole mass scheme [25, 26]. Also in-
cluding the 3-loop QCD threshold corrections to � listed
but not used in [2], we update this traditional-approach
bound to mpole

h > (129.67± 1.5) GeV.
The gauge-dependence of the stability bound at 1-loop

is shown in Fig. 1, to be discussed more below. The rea-
son the stability bound appears gauge dependent is due
to an improper use of perturbation theory. The key in-
sight, made long ago by Coleman and Weinberg [22] is
that the usual loop expansion is inappropriate for e↵ec-
tive potentials near quantum-generated minima. Simply
put, the classical potential V0 ⇠ �h4 can only turn over
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An additional complication is that the e↵ective poten-

tial has terms scaling like inverse powers of ~. For ex-
ample, a term ⇠ ~3g10��1 appears at 3-loops; since �
counts as ~, this term scales like ~2 and contributes com-
petitively with the 2-loop terms. Including all relevant
terms according to this modified power counting, it was
shown in [13] that Vmin is indeed gauge-invariant in scalar
QED. The required terms include the 2-loop e↵ective po-
tential in R⇠ gauge as well as an infinite series of “daisy”
loops producing terms in V proportional to g4j+2�1�j .
The consistent method for an order-by-order gauge-

independent calculation of Vmin presented in [13] trans-
lates to the SM as follows. First, we truncate the e↵ective
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solve for the scale h = µX where dV (LO)/dh = 0. Ex-
plicitly µX is the MS scale where the condition
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action at tree-level produce 1PI correlation functions,
which can be gauge and scale dependent and satisfy an
RGE like Eq. (2). Gauge-invariant S-matrix elements are
related to correlation functions by amputation and (in
MS) gauge-dependent wave-function renormalization Z-
factors. These factors also compensate the scale depen-
dence, letting the S-matrix satisfy an RGE like Eq. (2)
without the � term.

Fortuitously, the value of the potential at a minimum,
Vmin, (or at any extremum) is both gauge-invariant and
independent of the scale where it is calculated, with-

out extra Z-factors. The former invariance follows from
Eq. (1) and the latter invariance holds simply because
the value of any function at any extremum is invariant
under any rescaling of its argument. Since the absolute
stability bound in the SM is determined by the condi-
tion Vmin < VEW ⇡ 0, with VEW the energy of our vac-
uum (usually renormalized to zero), the bound should be
gauge-independent. Unfortunately, gauge-invariance has
only been proven non-perturbatively. Indeed, we find
that the stability bound is gauge-dependent at each or-
der in perturbation theory if computed by the traditional
approach (see Fig. 1 or [18]). In [13], it was shown how
e↵ective potential calculations can be reorganized so that
Vmin is gauge-invariant order-by-order. In this paper, we
review this “consistent approach” and apply it to the SM.

We write the SM e↵ective potential as V (h), where
in unitary gauge the Higgs doublet is normalized as
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Since stability is determined by large field values and
the potential grows as h4, the quadratic term �m2h2 in
the classical potential can be neglected to excellent accu-
racy. Then the electroweak minimum is at VEW = 0
and the stability bound is determined as the critical
Higgs pole mass for which the potential has another min-
imum with Vmin = 0. The physical Higgs mass enters
through threshold corrections at the weak scale which
convert observables into MS couplings. Currently, the
�-functions and � are known to 3-loop order in general
R⇠ gauges, the fixed-order potential is known to 2-loop
order in Landau gauge (⇠ = 0), and the threshold cor-
rections are known to 2 loops (an alternate scheme is
discussed in [23]). Using Eq. (3) and the best avail-
able data, Ref. [2] found an absolute stability bound of
mpole

h > (129.1 ± 1.5) GeV. Using equations from [2],
with some minor corrections confirmed by its authors,
and including tau and bottom contributions, we have re-

produced this result. We now update the top mass to
mpole

t = (173.34± 1.12) GeV, with the central value and
±0.76 GeV of the uncertainty from [24], and an addi-
tional 0.82GeV theory uncertainty added in quadrature
due to the ambiguity in converting from a Monte Carlo
mass scheme to a pole mass scheme [25, 26]. Also in-
cluding the 3-loop QCD threshold corrections to � listed
but not used in [2], we update this traditional-approach
bound to mpole

h > (129.67± 1.5) GeV.
The gauge-dependence of the stability bound at 1-loop

is shown in Fig. 1, to be discussed more below. The rea-
son the stability bound appears gauge dependent is due
to an improper use of perturbation theory. The key in-
sight, made long ago by Coleman and Weinberg [22] is
that the usual loop expansion is inappropriate for e↵ec-
tive potentials near quantum-generated minima. Simply
put, the classical potential V0 ⇠ �h4 can only turn over
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An additional complication is that the e↵ective poten-

tial has terms scaling like inverse powers of ~. For ex-
ample, a term ⇠ ~3g10��1 appears at 3-loops; since �
counts as ~, this term scales like ~2 and contributes com-
petitively with the 2-loop terms. Including all relevant
terms according to this modified power counting, it was
shown in [13] that Vmin is indeed gauge-invariant in scalar
QED. The required terms include the 2-loop e↵ective po-
tential in R⇠ gauge as well as an infinite series of “daisy”
loops producing terms in V proportional to g4j+2�1�j .
The consistent method for an order-by-order gauge-

independent calculation of Vmin presented in [13] trans-
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action at tree-level produce 1PI correlation functions,
which can be gauge and scale dependent and satisfy an
RGE like Eq. (2). Gauge-invariant S-matrix elements are
related to correlation functions by amputation and (in
MS) gauge-dependent wave-function renormalization Z-
factors. These factors also compensate the scale depen-
dence, letting the S-matrix satisfy an RGE like Eq. (2)
without the � term.

Fortuitously, the value of the potential at a minimum,
Vmin, (or at any extremum) is both gauge-invariant and
independent of the scale where it is calculated, with-

out extra Z-factors. The former invariance follows from
Eq. (1) and the latter invariance holds simply because
the value of any function at any extremum is invariant
under any rescaling of its argument. Since the absolute
stability bound in the SM is determined by the condi-
tion Vmin < VEW ⇡ 0, with VEW the energy of our vac-
uum (usually renormalized to zero), the bound should be
gauge-independent. Unfortunately, gauge-invariance has
only been proven non-perturbatively. Indeed, we find
that the stability bound is gauge-dependent at each or-
der in perturbation theory if computed by the traditional
approach (see Fig. 1 or [18]). In [13], it was shown how
e↵ective potential calculations can be reorganized so that
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Since stability is determined by large field values and
the potential grows as h4, the quadratic term �m2h2 in
the classical potential can be neglected to excellent accu-
racy. Then the electroweak minimum is at VEW = 0
and the stability bound is determined as the critical
Higgs pole mass for which the potential has another min-
imum with Vmin = 0. The physical Higgs mass enters
through threshold corrections at the weak scale which
convert observables into MS couplings. Currently, the
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±0.76 GeV of the uncertainty from [24], and an addi-
tional 0.82GeV theory uncertainty added in quadrature
due to the ambiguity in converting from a Monte Carlo
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cluding the 3-loop QCD threshold corrections to � listed
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bound to mpole

h > (129.67± 1.5) GeV.
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FIG. 1. Gauge dependence of the absolute stability bound
with mpole

t = 173.34 GeV.

is satisfied. For values ofmh andmt close to the observed
SM values, there are two solutions to this equation: the
lower µX is where V (LO) has a maximum, and the higher
µX where the minimum occurs. In the SM these scales
are

µmax
X = 2.46⇥ 1010 GeV (6)

µmin
X = 3.43⇥ 1030 GeV. (7)

These numbers and results which follow use mpole
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Another contribution V (2,NLO)(h) comes from the �0 and
ln� terms in 2-loop potential. In Landau gauge, these

terms are h4/4 times what is written as �
(2)
e↵ in Eq.

(C.4) of the published version of [2]. Finally, there is
the contribution, V (n>2,NLO)(h) from 3-loop and higher
order graphs proportional to inverse powers of �. Includ-
ing all these terms, the potential at each extremum will
be gauge-invariant. Conveniently, the higher-loop-order
graphs contributing at NLO vanish in Landau gauge
(⇠B = ⇠W = 0). Thus the gauge-invariant NLO value
of the potential at the minimum is simply

V NLO
min = V (LO)(µX) + V (2,NLO)(µX) (9)

To derive this, we consistently truncated to O(~2) and
used d

dhV
(LO) = 0 at h = µX . Note that this is the RG-

improved e↵ective potential: the resummation is implicit
in the solution for µX . At NNLO, an infinite number of
loops are relevant, even in Landau gauge [13].
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from the traditional approach in Landau gauge (mpole

h >
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plot we have taken the U(1) and SU(2) R⇠ gauge pa-
rameters equal to ⇠t when µ = mt and included their
RGE evolution [29]. All bounds include 2-loop thresh-
olds and 3-loop running. We find that the bound at
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h > 129.69 GeV which is nearly identical to
the Landau gauge 1-loop bound in the traditional ap-
proach, mpole

h > 129.70 GeV. We do not plot the gauge-
dependence of the 2-loop bound since we have not com-
puted the gauge-dependent 2-loop potential or the daisy
contribution. That the bound seems to asymptote to a
finite value in unitary gauge (⇠ = 1) may be due to
much (but not all) of the gauge-dependence being in the
e4� prefactor in Eq. (3) which drops out of the V = 0
condition.
Fig. 2 shows the gauge dependence of the instability

scale ⇤I , defined by V (⇤I) = 0 [1, 2], and its Landau-
gauge value at 2-loops, including 3-loop resummation in
both cases. Since the instability scale is a field value, it is
not obviously physical. We know of no way to compute
it in a consistent and gauge-invariant manner.
Fig. 3 shows the value of Vmax computed by various

approaches. We find approximately exponential depen-
dence of Vmax (and also Vmin) on ⇠t in the traditional
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is satisfied. For values ofmh andmt close to the observed
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Another contribution V (2,NLO)(h) comes from the �0 and
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terms are h4/4 times what is written as �
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the contribution, V (n>2,NLO)(h) from 3-loop and higher
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ing all these terms, the potential at each extremum will
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graphs contributing at NLO vanish in Landau gauge
(⇠B = ⇠W = 0). Thus the gauge-invariant NLO value
of the potential at the minimum is simply
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used d
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Each term in this series contributes at order e
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We have defined b

�(�) so that according to Eq. (4.6) b�(v) = � at the scale v where the 1-loop
potential has its minimum. Remarkably, while each daisy graph with n > 1 is individually
power-divergent as � ! 0 with e fixed, the sum of all daisies scales only like ln�.

Before moving on, it is worth pointing out that daisy resummation is important even in
Landau gauge, ⇠ = 0. In Landau gauge, there is no kinetic mixing and the scalar propagators
are

D11 =
i

k

2 � �

2
�

2
, D22 =

i

k

2 � �

6
�

2
, (6.12)

These propagators still have �-dependent masses and can produce 1
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Here we have given �
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e↵ in the approximation � = 0, which is well justified around the instability

region. The full expression of �(2)
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Here we have given �

(2)
e↵ in the approximation � = 0, which is well justified around the instability

region. The full expression of �(2)
e↵ can be found in ref. [4]. Moreover, we have defined
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where Li2 is the dilogarithm function, and
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vanishes in Landau gauge at NLO 

•  Assuming everything works like in scalar QED, we have everything we 
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FIG. 3. Gauge dependence of the SM potential at its maxi-
mum with mpole

h = 125.14 GeV and mpole

t = 173.34 GeV.

approach at 1-loop. Decent fits are (12)
�
V 1-loop, trad.
max

�1/4 ⇡ (2.50⇥ 109 GeV)e�0.02⇠t+0.0003⇠2t

⇣
�V 1-loop, trad.

min

⌘1/4
⇡ (3.08⇥ 1029 GeV)e0.001⇠t�0.0001⇠2t

The consistent gauge-invariant values at NLO are

�
V NLO
max

�1/4
= 2.88⇥ 109 GeV (13)

��V NLO
min

�1/4
= 2.40⇥ 1029 GeV

Note that �Vmin corresponds to an energy density well
above the Planck scale. Thus, the potential at the mini-
mum will surely be e↵ected by quantum gravity and pos-
sible new physics not included in our calculation. Previ-
ous analyses have defined stability to be Planck-sensitive
if the instability scale ⇤I > MPl [1, 2]. As we have ob-
served, the instability scale is gauge dependent, so this
is not a consistent criterion. An alternative criterion is
that new operator, such as O6 ⌘ 1

⇤2
NP

h6 be comparable

to Vmin when h = hhi. Although O6 and Vmin are gauge-
invariant, the value of O6 at the field value h where the
minimum occurs is gauge dependent, so this condition
is also unsatisfactory. A consistent and satisfactory cri-
terion was explained in [13]: the new operator must be
added to the classical theory and its e↵ect on Vmin eval-
uated.

Adding O6 to the potential, we find that the the po-
tential is still negative at its minimum in the SM even
for operators with very large coe�cients. For example,
taking ⇤NP = MPl = 1.22 ⇥ 1019 GeV, we find that
µmin
X = 6.0 ⇥ 1017 GeV and Vmin = �(1.1 ⇥ 1017 GeV)4.

Comparing to Eq. (13) we see that the energy of the true
vacuum is very Planck-sensitive.

More generally, a good fit is given by

Vmin = �(0.01⇤NP)
4, ⇤NP & 1012 GeV (14)

When ⇤NP < 3.6⇥1012 GeV, Vmin becomes positive and
for ⇤NP < 3.1 ⇥ 1012 GeV the maximum and minimum
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disappear. Thus the stability of the Standard Model can
be modified by new physics at the scale 1012 GeV.
If we vary the Higgs and top masses in the Standard

Model, we can compute the boundary of absolute stabil-
ity. This bound is shown in Figs. 4 and 5. The dotted
lines show where Vmin becomes positive when in the pres-
ence of O6 for the indicated value of ⇤NP. Unexpectedly,
we find that three independent conditions (1) that Vmin

goes to zero, (2) that Eq. (5) have no solution, and (3)
that Vmin goes positive when ⇤NP = MPl all give nearly
identical boundaries in the mpole

h /mpole
t plane. Know-

ing that quantum gravity is relevant at MPl, we should
therefore be cautious about giving too strong of an in-
terpretation of the perturbative absolute stability bound
in the SM. We also show in this plot the metastability
bound, that the lifetime of our vacuum be larger than
the age of the universe. At lowest order this translates to
�( 1

R )�1 < �14.53 + 0.153 ln[RGeV] for all R [30]. Since
�(µ) is gauge invariant, so is this criterion. Although for
the Standard Model this approximation is probably suf-
ficient, it has not been demonstrated that the bound can
be systematically improved in a guage-invariant way [31].
In this paper, we have only discussed a single physical

feature of the e↵ective action: the value of the e↵ective
potential at its extrema. There is of course much more
content in the e↵ective action, especially when tempera-
ture dependence is included. Unfortunately, many uses
of the e↵ective action involve evaluating it for particu-
lar field configurations, a procedure that has repeatedly
been shown to be gauge-dependent. For example, the
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Absolute stability: for what values of the Higgs mass is Vmin = 0 at fixed top mass? 
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FIG. 1. Gauge dependence of the absolute stability bound
with mpole

t = 173.34 GeV.

is satisfied. For values ofmh andmt close to the observed
SM values, there are two solutions to this equation: the
lower µX is where V (LO) has a maximum, and the higher
µX where the minimum occurs. In the SM these scales
are

µmax
X = 2.46⇥ 1010 GeV (6)

µmin
X = 3.43⇥ 1030 GeV. (7)

These numbers and results which follow use mpole
h =

(125.14± 0.24) GeV, combined from [27, 28].

For the potential at the next-to-leading order (NLO),
one contribution comes from the ~2 terms in the 1-loop
potential with � ⇠ ~ scaling:

V (1,NLO)(h) =
�1

256⇡2


⇠Bg

2
1

✓
ln

�h4(⇠Bg21 + ⇠W g22)

4µ4
� 3

◆

+⇠W g22

✓
ln

�3h12⇠2W g42(⇠Bg
2
1 + ⇠W g22)

64µ12
� 9

◆�
�h4 (8)

Another contribution V (2,NLO)(h) comes from the �0 and
ln� terms in 2-loop potential. In Landau gauge, these

terms are h4/4 times what is written as �
(2)
e↵ in Eq.

(C.4) of the published version of [2]. Finally, there is
the contribution, V (n>2,NLO)(h) from 3-loop and higher
order graphs proportional to inverse powers of �. Includ-
ing all these terms, the potential at each extremum will
be gauge-invariant. Conveniently, the higher-loop-order
graphs contributing at NLO vanish in Landau gauge
(⇠B = ⇠W = 0). Thus the gauge-invariant NLO value
of the potential at the minimum is simply

V NLO
min = V (LO)(µX) + V (2,NLO)(µX) (9)

To derive this, we consistently truncated to O(~2) and
used d

dhV
(LO) = 0 at h = µX . Note that this is the RG-

improved e↵ective potential: the resummation is implicit
in the solution for µX . At NNLO, an infinite number of
loops are relevant, even in Landau gauge [13].

FIG. 2. Gauge dependence of the instability scale ⇤I , defined
by V (⇤I) = 0, at 1-loop in the traditional approach. There
is no known way to make this scale gauge-invariant.

Using Eq. (9) we find that for absolute stability at
NLO, the Higgs pole mass must satisfy

mpole
h

GeV
> (129.40± 0.58) + 2.26 (

mpole
t � 173.34 GeV

1.12 GeV
)

(10)
This bound is around 275 MeV lower than the bound
from the traditional approach in Landau gauge (mpole

h >
129.67 GeV). The ±0.58 is pertubative and ↵s uncer-
tainty [2]. Since the Higgs mass is known better than
the top mass, it perhaps makes more sense to write the
bound as

mpole
t

GeV
< (171.22± 0.28) + 0.12 (

mpole
h � 125.14 GeV

0.24 GeV
)

(11)
Fig. 1 compares the gauge-dependence of the bound

at 1-loop to the LO, NLO and 2-loop bounds. For this
plot we have taken the U(1) and SU(2) R⇠ gauge pa-
rameters equal to ⇠t when µ = mt and included their
RGE evolution [29]. All bounds include 2-loop thresh-
olds and 3-loop running. We find that the bound at
LO is mpole

h > 129.69 GeV which is nearly identical to
the Landau gauge 1-loop bound in the traditional ap-
proach, mpole

h > 129.70 GeV. We do not plot the gauge-
dependence of the 2-loop bound since we have not com-
puted the gauge-dependent 2-loop potential or the daisy
contribution. That the bound seems to asymptote to a
finite value in unitary gauge (⇠ = 1) may be due to
much (but not all) of the gauge-dependence being in the
e4� prefactor in Eq. (3) which drops out of the V = 0
condition.
Fig. 2 shows the gauge dependence of the instability

scale ⇤I , defined by V (⇤I) = 0 [1, 2], and its Landau-
gauge value at 2-loops, including 3-loop resummation in
both cases. Since the instability scale is a field value, it is
not obviously physical. We know of no way to compute
it in a consistent and gauge-invariant manner.
Fig. 3 shows the value of Vmax computed by various

approaches. We find approximately exponential depen-
dence of Vmax (and also Vmin) on ⇠t in the traditional

Holding top mass fixed 

•  Absolute stability bound lowered by 300 MeV 
•  Larger shift that including the 2-loop Veff 
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From Buttazzo et al (arXiv:1307.3536) 
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Figure 3: Left: SM phase diagram in terms of Higgs and top pole masses. The plane is
divided into regions of absolute stability, meta-stability, instability of the SM vacuum, and non-
perturbativity of the Higgs quartic coupling. The top Yukawa coupling becomes non-perturbative
for Mt > 230 GeV. The dotted contour-lines show the instability scale ⇤I in GeV assuming
↵3(MZ) = 0.1184. Right: Zoom in the region of the preferred experimental range of Mh and Mt

(the grey areas denote the allowed region at 1, 2, and 3�). The three boundary lines correspond
to 1-� variations of ↵3(MZ) = 0.1184±0.0007, and the grading of the colours indicates the size
of the theoretical error.

The quantity �e↵ can be extracted from the e↵ective potential at two loops [112] and is explicitly
given in appendix C.

4.3 The SM phase diagram in terms of Higgs and top masses

The two most important parameters that determine the various EW phases of the SM are the
Higgs and top-quark masses. In fig. 3 we update the phase diagram given in ref. [4] with our
improved calculation of the evolution of the Higgs quartic coupling. The regions of stability,
metastability, and instability of the EW vacuum are shown both for a broad range of Mh and
Mt, and after zooming into the region corresponding to the measured values. The uncertainty
from ↵3 and from theoretical errors are indicated by the dashed lines and the colour shading
along the borders. Also shown are contour lines of the instability scale ⇤I .

As previously noticed in ref. [4], the measured values of Mh and Mt appear to be rather
special, in the sense that they place the SM vacuum in a near-critical condition, at the border
between stability and metastability. In the neighbourhood of the measured values of Mh and
Mt, the stability condition is well approximated by

Mh > 129.6GeV + 2.0(Mt � 173.34GeV)� 0.5GeV
↵3(MZ)� 0.1184

0.0007
± 0.3GeV . (64)

The quoted uncertainty comes only from higher order perturbative corrections. Other non-
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Old way: 
    when is ΛI = ΛNP?   

•  gauge dependent, since ΛI is gauge-dependent  

New gauge-invariant way 

O6 =
1

⇤2
NP

|H|2•  Add                             to the SM Lagrangian 

•  See how big  ΛNP must be so that Vmin =0 
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Sensitivity to new physics 
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•  Tunneling rate 

•  Action on bounce solution formally gauge invariant 
•  Resummation/truncation to fixed order breaks gauge-invariance 
•  Is there a similar consistent perturbative calculation scheme? 
•  Is the rate Planck sensitive? 

� ⇠ e��eff(�b)

•  Guidice, Strumia et al (arXiv:1307.3536): minimum below Mpl, so no. 

•  Sher, Brandina et al (arXiv:1408.5302): 
          field at center of bubble greater than Mpl, so yes 

βλ =0 at µ = 1017 GeV < MPl 

�B(r = 0) = 1019GeV ⇠ MPl



Metastability (work in progress) 
February 24, 2015 Matthew Schwartz 

0 
h

VSM 

Standard Model potential 
Liftetime = 10600 years 

Add 

•  Lifetime = 0 sec 
•  Arbitrarily small bubbles form and grow 

0
h

Add  �V = �↵
1

M2
Pl

H6 + �
1

M2
Pl

H8

�V = � 1

M2
Pl

H6

•  Lifetime can be anything! 

•  Planck sensitivity not due to coincidence that βλ =0 at µ ~ MPl 
•  Tunnelling is non-perturbative and always UV sensitive.       

0
h
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•  Tunneling rate 

•  Action on bounce solution formally gauge invariant 
•  Resummation/truncation to fixed order breaks gauge-invariance 
•  Is there a similar consistent perturbative calculation scheme? 
•  Is the rate Planck sensitive? 

� ⇠ e��eff(�b)

2. Temperature dependent potential 

•  Physical quantities also formally gauge invariant 

Critical T: TC 
Transition rates 
Gravity wave spectrum 
… 

3. Inflation 

•  Field values are unphysical 
•  What is the right way to construct short-distance models of inflation? 



Conclusions 
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•  Our universe will probably decay, eventually. 
•  We don’t know how long it will last 

•  Using effective actions consistently is tricky 

•  Field values φ are unphysical 
•  Don’t compare φ to some fixed scale 

•  Consistent use of perturbation theory is 
      important 

Do we know if the universe is stable? 


