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Gravitino Miracle
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WIMP miracle

h�vi = ↵2

m̃2

G. Jungman et al. JPhysics Reports 267 (1996) 195-373 221 

Using the above relations (H = 1.66g$‘2 T 2/mpl and the freezeout condition r = Y~~(G~z~) = H), we 
find 

(n&)0 = (n&f = 1001(m,m~~g~‘2 +JA+) 

N 10-S/[(m,/GeV)((~A~)/10-27 cm3 s-‘)I, (3.3) 

where the subscript f denotes the value at freezeout and the subscript 0 denotes the value today. 
The current entropy density is so N 4000 cmm3, and the critical density today is 
pC II 10-5h2 GeVcmp3, where h is the Hubble constant in units of 100 km s-l Mpc-‘, so the 
present mass density in units of the critical density is given by 

0,h2 = mxn,/p, N (3 x 1O-27 cm3 C1/(oAv)) . (3.4) 

The result is independent of the mass of the WIMP (except for logarithmic corrections), and is 
inversely proportional to its annihilation cross section. 

Fig. 4 shows numerical solutions to the Boltzmann equation. The equilibrium (solid line) and 
actual (dashed lines) abundances per comoving volume are plotted as a function of x = m,/T 
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Fig. 4. Comoving number density of a WIMP in the early Universe. The dashed curves are the actual abundance, and 
the solid curve is the equilibrium abundance. From [31]. 
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WIMP miracle

• mass scale of LSP is tied to the weak scale

applied to SUSY:

•  in Split SUSY, invoked to keep fermions near 
weak scale

• relies on several assumptions!

h

B̃, W̃ , g̃

q̃, l̃

•Goldberg, 1983

• Wells, 2003
•  Arkani-Hamed, Dimopoulos 2004
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key assumptions:
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Fig. 1. Cosmological constraints on the gravitino mass and the 
reheating temperature in the framework of MSSM when the 
gravitino is the LSP. We take all the squark and slepton masses 
to be 1 TeV, mo~ = mNse= 50 GeV and the GUT relations on the 
gauge fermion masses are assumed. The solid line denotes the 
upper bound on the reheating temperature from the closure limit. 
The dotted region is excluded from the arguments of the light 
element photodestruetion if the NSP whose relic density is as large 
as eq. ( 15 ) decays radiatively with a lifetime shorter than 5.3 × 106 
S. 

overclose the universe. Therefore, it is the scattering 
process that is important to estimate the number 
density of  the gravitino. In this case, 

Ns (TNOW) x / / ~ ( ( 3 ) M  
Y3/2(TNow)= Ns (TR) ~ 3x//~ * 

X TR (Stot Vrel } , (14) 

from eq. (10a). Combining eq. (14)wi th  eq. (13), 
we get the upper bound on the reheating tempera- 
ture, which is approximately proportional to the 
gravitino mass. On the other hand, if 2 × 10 - 6 ,~ m3/ 
2< 10 -4 GeV, the decay processes become signifi- 
cant. In this case, P3/2 is larger than Pc unless the re- 
heating temperature is smaller than the squark and 
slepton masses. Therefore, it is necessary to lower the 
reheating temperature below the squark and slepton 
mass scale in order not to overclose the universe. And 
when m3/2~<2X 10 - 6  GeV, the gravitino mass is so 
small that P3/2 cannot exceed Pc even if the gravitino 
is thermalized. 

Next, let us consider the constraint from the light 
element photodestruction. If  a decay of a heavy par- 
ticle produces high energy photons after the primor- 

dial nucleosynthesis, we must require that these pho- 
tons do not change the abundance of the light 
elements. Here we consider the decay of the NSP. 
Since we are assuming that the gravitino is the LSP, 
the NSP can decay only to gravitino + something by 
the supergravity interaction. Therefore, the NSPs 
have much longer lifetime than other superparticles 
and may affect the predictions of the big-bang 
nucleosynthesis. 

If  the NSPs were stable, it would survive until to- 
day. Its relic density in this case has been calculated 
[3-5 ]. For the neutralinos, in a wide range of parti- 
cle parameters, the relic density is larger than 10- 3 to 
the critical one. This relic density can be translated 
into mNsPYNsP>~ 5.0 X 10-11 GeV ~ 1  where mNsP and 
YysP are the mass and yield of the NSP. In the follow- 
ing analysis, we conservatively take 

mNsP YNS P = 5 . 0 X  10 - l l  GeV,  (15) 

and assume that the NSP decay produces high energy 
photons. According to ref. [16], the energy density 
of  eq. ( 15 ) will overproduce 3He + D unless the life- 
time of the NSP is shorter than about 5.3X 106 S. 
Therefore, we impose 

,, sP i1 m2/2 M2 k m y s p /  U ) 

45 .3X106s .  (16) 

Here we have assumed that the NSP is a U( 1 ) r gauge 
fermion (bino) and used eq. (5a) for the decay rate 
of the NSP ~2. The right hand side ofeq. (16) strongly 
depends on the NSP mass and especially when the 
NSP mass is small, a severe upper bound on the grav- 
itino mass is obtained. The bound we obtained is 
m3/2~<3.4 GeV (9.3 GeV, 288.5 GeV, 771.5 GeV) 
for mNsP= 50 GeV ( 100 GeV, 500 GeV, 1 TeV) and 
the dotted region in fig. 1 is excluded. Note that if the 
reheating temperature is sufficiently small compared 
to the NSP mass, the NSP is not produced signifi- 

*~ It is plausible that this bound is also valid when a slepton or a 
chargino is the lightest. 

,2 If the bino is the NSP, it decays to gravitino+photon or to 
gravi t ino+Z °. But when the bino is lighter than the Z °, the 
latter decay channel is forbidden kinematically and the decay 
rate of the bino is sin20w~ 0.234 times smaller than the value 
of eq. (5a). For the case mNsp = 50 GeV, we have considered 
this effect. 

292 

mq̃ = 1 TeV
Moroi, Murayama, Yamaguchi 1993M1 = 50 GeV

constraining the reheat temperature
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thermalized gravitinos

• very light gravitinos thermalize: YUV ⇠ O(1)
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thermalized gravitinos

• very light gravitinos thermalize: YUV ⇠ O(1)

• overclosure bound

m3/2 . 100 eV

• Pagels, Primack 1982
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thermalized gravitinos

• very light gravitinos thermalize: YUV ⇠ O(1)

• overclosure bound

m3/2 . 100 eV

• free streaming length:

m3/2 . 16 eV

• Viel et al., 2005
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thermalized gravitinos

• implies low SUSY breaking scale

m3/2 . 16 eV
p
F . 260 TeV

m̃ =
⇣gsusy

4⇡

⌘2 p
F
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thermalized gravitinos

• implies low SUSY breaking scale

m3/2 . 16 eV
p
F . 260 TeV

•  parametrically,

m3/2 < Teq

m̃ =
⇣gsusy

4⇡

⌘2 p
F

m̃ 
⇣gsusy

4⇡

⌘2 p
Teq MpF  Teq Mp
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generalizations

1. no freeze-out and decay

2. split SUSY
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•  RPV

• light hidden sector

• colored LOSP

no freeze-out and decay
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no freeze-out and decay3

10-6 10-5 10-4 10-3 10-2 10-1 1 101 102 103 104 105
102

103

104

105

m3ê2 @GeVD

mé
@Ge

V
D

Vary LOSP aeff

TR = mé

FO

FI
BBN

overclosed
0.03

10-2

10-3

H
é

W
é

mé < m3ê2
10-610-510-410-310-210-1 1 101 102 103 104 105 106 107
102

103

104

105

106

107

m3ê2 @GeVD

mé
@Ge

V
D

No Freeze-Out and Decay

FI UV

overclosed

mé < m3ê2

Log10
TR
mé

0 1 2 3 4 5 6 7 8

FIG. 2: Left: The bound on m̃ in the single-scale SUSY case, for ↵e↵ = 0.03, 10�2 and 10�3 in blue, green and purple
respectively, assuming TR = m̃. As ↵e↵ decreases freeze-out yields a larger abundance, so the FO boundary and the BBN
constraints (shown shaded in the corresponding colors) both become more stringent. As TR is raised, the bounds become more
stringent as indicated by the blue dashed lines of Fig. 1. Right: The bound on m̃ when the contribution to the gravitino
abundance from freeze-out and decay is negligible. This may be the case in several scenarios, as discussed in the last section.
The dashed blue lines demonstrate the strengthening of the bound as TR is increased. We do not analyze the region with
m̃ < m3/2 as the results are model-dependent.
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p
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2⇡4

q
5
2

1

g
3/2
⇤

nFI
4⇡ '

3.8 ⇥ 10�4 and CFO = 3
p
5 xf

8
p
2 g⇤⇡2 ' 0.13

�xf

23

�
. Here

�3 ' 0.36 is related to the thermal corrections of the
scattering process [11], g⇤ = 228.75, and nFI counts the
number of fermions and complex scalars participating in
the freeze-in with mass m̃; with degenerate MSSM spar-
ticles, nFI = 36+9+12+4 = 61. The equality in Eq. (2)
corresponds to the case that these processes yield the ob-
served DM abundance. If gravitinos do thermalize, the
overabundance constraint becomes [17]

CTh m3/2  a Teq , (3)

with CTh = Y� = 45⇠(3)/⇡4
g⇤s ⇡ 2.4⇥10�3. Here g⇤s '

g⇤ = 228.75. The resulting bound on m̃ as a function
of m3/2 is shown in Fig. 1 for ↵e↵ = 0.03, relevant for a
(perturbative) wino LOSP. We do not include the non-
perturbative Sommerfeld e↵ect [21], which results in an
O(1) shift in ↵e↵ .

When gravitinos are not thermalized, the key point is
the di↵ering dependences of the three terms in Eq. (2) on
m̃ and m3/2. While all three terms have a positive power
of m̃, the UV and FI terms are proportional to 1/m3/2

while the FO term is proportional to m3/2, leading to
contours in Fig. 1 with slopes of opposite signs. Hence
there is an upper bound,

m̃

2  a/2p
CFOCD

↵e↵ MPl Teq , (4)

where CD = CUV (TR/m̃) + CFI . At the bound m3/2 =p
CD/CFO ↵e↵ m̃. For TR � m̃ the bound becomes m̃ 

27TeV [(TR/m̃)/10]�1/4 for ↵e↵ = 0.03 which weakens
to m̃ . 38 TeV for TR = m̃. Decreasing ↵e↵ makes
the FO term larger, as shown in the left panel of Fig. 2
for TR = m̃. The parametrics of Eq. (4) is similar, but
not identical, to that in the so-called “WIMP Miracle”,
Eq. (1).

A second allowed region occurs at very low m3/2 in
Fig. 1, where the gravitinos are thermalized for any
TR � m̃. Here the bound on m̃ arises from theory rather
than cosmology: m̃  (gsusy/4⇡)2

p
F , where gsusy is the

strength of the coupling between obervable and super-
symmetry breaking sectors, and F =

p
3m3/2MPl is the

supersymmetry breaking scale. The bound results when
the messenger scale takes its minimal value of

p
F , and

is shown in Fig. 1 for g

2
susy = 1, 3 and 10. We note

that it may be possible to construct realistic models of
composite quarks and leptons having non-perturbative
couplings, gsusy ⇠ 4⇡ [22].

NON-DEGENERATE SPECTRUM. The com-
pletely degenerate spectrum discussed above is special
because non-degeneracies typically arise from renormal-
ization group e↵ects or the dynamics of the mediation
of supersymmetry breaking. How do non-degeneracies
a↵ect the above bounds?

Non-degeneracies induce independent changes in the
three gravitino production mechanisms. The freeze-in
process is dominated by the heaviest superpartners, m̃+,

m̃ . 1000 TeV
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• same as above with m̃ ! mf

Wednesday, April 24, 13



split

h

B̃, W̃ , g̃

q̃, l̃

TR

Wednesday, April 24, 13



gravitino production in split
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gravitino production in split

scattering
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FIG. 3: Left: Bounds in the (m3/2, m̃nc) plane for colored (non-colored) superpartners with mass m̃c (m̃nc). The importance
of freeze-in as mc/mnc is raised from 1 to 10 is seen by comparing the orange and blue lines. The solid and dashed lines show
the e↵ect of increasing TR by 100. Center: Similar to the left panel, the changes to the bound of Fig. 1 is shown for the case of
split-SUSY, where the scalar superpartner masses, m̃s, are raised above the fermionic superpartner masses, m̃f . Right: The
overclosure bound in the (m̃s, m̃f ) plane is shown for the split-SUSY case, where the gravitino mass has been chosen at each
point to maximize the allowed region. For split-SUSY TR = m̃s. In all panels the green shading is as in Fig. 1.

and is suppressed compared to the degenerate case by
n

+
FI/nFI , where n

+
FI is the number of these heavy super-

partners. The scattering process, dominated by gluino
scattering, is proportional to the square of the gluino
mass, M2

3 . Finally, the freeze-out abundance is propor-
tional to the LOSP mass, m̃�, with h�vi = 4⇡↵2

e↵/m̃
2
�,

so that Eq. (2) becomes

CUV
TRM

2
3

m3/2
+

CFIn
+
FI

nFI

m̃

3
+

m3/2
+CFO

m̃�m3/2

↵

2
e↵

 aMPlTeq.

(5)
While pure FO of Eq. (1) bounds mLSP , with a gravitino
LSP the bound depends on themLOSP ,M3, and the mass
dominating FI.

As a simple example, on the left of Fig. 3 we show the
bound that results by taking all colored states at m̃c =
m̃+ and all non-colored states at m̃nc = m̃�, assuming all
superpartners are reheated. As can be seen, the bound
on m̃nc becomes much more stringent as m̃c is raised,
being reduced to 7 TeV for m̃c/m̃nc = 10. Much of the
allowed regions in Figs. 1, 2-Left and 3-Left are within
the LHC reach.
SPLIT SUSY. In the split-SUSY scenario [7], where the
scalar superpartner mass, m̃s, becomes much larger than
the fermionic superpartner mass, m̃f , a bound on m̃f ,
with a gravitino LSP, was discussed in [23]. The freeze-
in process dominates over the scattering process as long
as TR > m̃s [23, 24]. Using Eq. (5), with m̃s = m̃+

and m̃f = m̃�, yields the bound on m̃f shown in the
center panel of Fig. 3 for various values of m̃s/m̃f . To
compute the bound, the split-SUSY 1-loop RGEs were
used [25, 26]. The bound on m̃s is in the region of 100
TeV, as shown in the right panel of Fig. 3, and hence
arbitrary flavor and CP violation in the squark mass ma-

trix requires TR < m̃s. Finally, we note that if TR is
indeed below m̃s a bound on m̃f may still be obtained,
and is similar to that shown in Fig. 1 up to O(1) cor-
rections stemming from the absence of some diagrams in
the finite-temperature thermal production of the graviti-
nos [9].
The non-degeneracies explored in the left and center

panels of Fig. 3 lead to similar bounds, and forbid large
splittings between the light and heavy states (assuming
that both are reheated). Indeed, as the splittings in-
crease, the BBN bounds rapidly become very constrain-
ing.
RELAXING ASSUMPTION (iv-B). We now con-
sider how the bound on superparticle masses is relaxed
in theories that violate assumption (iv-B).
LOSP freeze-out and decay may not produce a sig-

nificant yield of LSP gravitinos, depleting Y

FO
3/2 . This

occurs, for example, if the LOSP dominantly decays
through R-parity violating (RPV) operators, which can
still be consistent with gravitino DM for su�ciently small
RPV [27, 28]. Alternatively, the LOSP may dominantly
decay to a light hidden sector, which, if thermalized, may
not produce significant gravitinos due to its lighter mass
scale. A third possibility is that the LOSP is colored, in
which case a late annihilation stage, after the QCD phase
transition, can dilute the abundance of R-hadrons [29, 30]
before the LOSP decays to gravitinos. In these cases, a
bound on m̃ results from dropping the FO term and is
shown on the right of Fig. 2. The maximal m̃ occurs at
m3/2 = m̃, when Eq. (2) gives

m̃

2  a

CD
TeqMpl . (103 TeV)2. (6)

The numerical value above was obtained for TR = m̃.

constraint on splitting
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FIG. 3: Left: Bounds in the (m3/2, m̃nc) plane for colored (non-colored) superpartners with mass m̃c (m̃nc). The importance
of freeze-in as mc/mnc is raised from 1 to 10 is seen by comparing the orange and blue lines. The solid and dashed lines show
the e↵ect of increasing TR by 100. Center: Similar to the left panel, the changes to the bound of Fig. 1 is shown for the case of
split-SUSY, where the scalar superpartner masses, m̃s, are raised above the fermionic superpartner masses, m̃f . Right: The
overclosure bound in the (m̃s, m̃f ) plane is shown for the split-SUSY case, where the gravitino mass has been chosen at each
point to maximize the allowed region. For split-SUSY TR = m̃s. In all panels the green shading is as in Fig. 1.

and is suppressed compared to the degenerate case by
n

+
FI/nFI , where n

+
FI is the number of these heavy super-

partners. The scattering process, dominated by gluino
scattering, is proportional to the square of the gluino
mass, M2

3 . Finally, the freeze-out abundance is propor-
tional to the LOSP mass, m̃�, with h�vi = 4⇡↵2

e↵/m̃
2
�,

so that Eq. (2) becomes

CUV
TRM

2
3

m3/2
+

CFIn
+
FI

nFI

m̃

3
+

m3/2
+CFO

m̃�m3/2

↵

2
e↵

 aMPlTeq.

(5)
While pure FO of Eq. (1) bounds mLSP , with a gravitino
LSP the bound depends on themLOSP ,M3, and the mass
dominating FI.

As a simple example, on the left of Fig. 3 we show the
bound that results by taking all colored states at m̃c =
m̃+ and all non-colored states at m̃nc = m̃�, assuming all
superpartners are reheated. As can be seen, the bound
on m̃nc becomes much more stringent as m̃c is raised,
being reduced to 7 TeV for m̃c/m̃nc = 10. Much of the
allowed regions in Figs. 1, 2-Left and 3-Left are within
the LHC reach.
SPLIT SUSY. In the split-SUSY scenario [7], where the
scalar superpartner mass, m̃s, becomes much larger than
the fermionic superpartner mass, m̃f , a bound on m̃f ,
with a gravitino LSP, was discussed in [23]. The freeze-
in process dominates over the scattering process as long
as TR > m̃s [23, 24]. Using Eq. (5), with m̃s = m̃+

and m̃f = m̃�, yields the bound on m̃f shown in the
center panel of Fig. 3 for various values of m̃s/m̃f . To
compute the bound, the split-SUSY 1-loop RGEs were
used [25, 26]. The bound on m̃s is in the region of 100
TeV, as shown in the right panel of Fig. 3, and hence
arbitrary flavor and CP violation in the squark mass ma-

trix requires TR < m̃s. Finally, we note that if TR is
indeed below m̃s a bound on m̃f may still be obtained,
and is similar to that shown in Fig. 1 up to O(1) cor-
rections stemming from the absence of some diagrams in
the finite-temperature thermal production of the graviti-
nos [9].
The non-degeneracies explored in the left and center

panels of Fig. 3 lead to similar bounds, and forbid large
splittings between the light and heavy states (assuming
that both are reheated). Indeed, as the splittings in-
crease, the BBN bounds rapidly become very constrain-
ing.
RELAXING ASSUMPTION (iv-B). We now con-
sider how the bound on superparticle masses is relaxed
in theories that violate assumption (iv-B).
LOSP freeze-out and decay may not produce a sig-

nificant yield of LSP gravitinos, depleting Y

FO
3/2 . This

occurs, for example, if the LOSP dominantly decays
through R-parity violating (RPV) operators, which can
still be consistent with gravitino DM for su�ciently small
RPV [27, 28]. Alternatively, the LOSP may dominantly
decay to a light hidden sector, which, if thermalized, may
not produce significant gravitinos due to its lighter mass
scale. A third possibility is that the LOSP is colored, in
which case a late annihilation stage, after the QCD phase
transition, can dilute the abundance of R-hadrons [29, 30]
before the LOSP decays to gravitinos. In these cases, a
bound on m̃ results from dropping the FO term and is
shown on the right of Fig. 2. The maximal m̃ occurs at
m3/2 = m̃, when Eq. (2) gives

m̃

2  a

CD
TeqMpl . (103 TeV)2. (6)

The numerical value above was obtained for TR = m̃.
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Ñ1

G̃

Cliff Cheung, Lawrence Hall, David Pinner, JTR 1211.4873

neutralino DM 
-v-

experiment

Wednesday, April 24, 13



direct detection

Wednesday, April 24, 13



direct detection

spin-independent spin-dependent

�̄�N̄N �̄�µ�5� N̄�µ�
5N

Wednesday, April 24, 13



direct detection

spin-independent spin-dependent

�̄�N̄N �̄�µ�5� N̄�µ�
5N

�SI ⇡ 6⇥ 10�45 cm2
⇣ch��

0.1

⌘2
�SD ⇡ 3⇥ 10�39 cm2

⇣cZ��

0.1

⌘2

Wednesday, April 24, 13



direct detection

spin-independent spin-dependent

�̄�N̄N �̄�µ�5� N̄�µ�
5N

�SI ⇡ 6⇥ 10�45 cm2
⇣ch��

0.1

⌘2
�SD ⇡ 3⇥ 10�39 cm2

⇣cZ��

0.1

⌘2

Wednesday, April 24, 13



0 500 1000 1500 2000

10-43

10-44

10-45

10-46

10-47

0.01

0.1

mc @GeVD

s
p,
n
@cm

2 D
SI

chcc
XENON100

ch��

spin-independent

Wednesday, April 24, 13



0 500 1000 1500 2000

10-43

10-44

10-45

10-46

10-47

0.01

0.1

mc @GeVD

s
p,
n
@cm

2 D
SI

chcc
XENON100

LUX ch��

spin-independent

Wednesday, April 24, 13



0 500 1000 1500 2000

10-43

10-44

10-45

10-46

10-47

0.01

0.1

mc @GeVD

s
p,
n
@cm

2 D
SI

chcc
XENON100

LUX
SuperCDMS

XENON1T

ch��

spin-independent

Wednesday, April 24, 13



spin-dependent

0 500 1000 1500 2000

10-43

10-44

10-45

10-46

10-47

0.01

0.1

mc @GeVD

s
p,
n
@cm

2 D

SI

chcc

XENON100

LUX
SuperCDMS

XENON1T

0 500 1000 1500 200010-42

10-41

10-40

10-39

10-38

0.01

0.1

mc @GeVD

s
p,
n
@cm

2 D
SD

cZ
cc

XENON100

XENON1T

IceCube tt

IceCubeW+W-

Wednesday, April 24, 13



indirect

thermal

FERMI-LAT 1108.3546

Alex Drlica-Wagner   |   4th Fermi Symposium

4-Year Pass 7 Analysis

10

• Joint likelihood analysis of:
– Extended time period:

                4 years 
– Improved instrument response:

         P7REPCLEAN_V9
– Expanded photon energy range: 

          100 MeV - 500 GeV
– Constrain higher WIMP masses:

            5 GeV - 10 TeV
– Same 10 dwarf galaxies

• Model astrophysical backgrounds 
based on 2 years of Pass 7 data
– 2FGL catalog sources 

(normalization free within 5˚)
– 2-year diffuse background 

models (normalization free)

• Include statistical uncertainties in 
the solid-angle-integrated J-factor

Extended to 10 TeV

10 GeV cross-over

updated in Alex Drlica-Wagner’s talk, 
Fermi Symposium, 11/2012 
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collider

LEP: µ,M2 & 100 GeV
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simplified model of neutralino DM 

h
SM + B̃, W̃ , H̃

B̃, W̃ , H̃
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simplified model of neutralino DM 

• assume scalar superpartners can be 
decoupled when computing:  ��N , ⌦

h
SM + B̃, W̃ , H̃

B̃, W̃ , H̃

Wednesday, April 24, 13



simplified model of neutralino DM 

• assume scalar superpartners can be 
decoupled when computing:  ��N , ⌦

• assume CP 
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simplified model of neutralino DM 

• assume scalar superpartners can be 
decoupled when computing:  ��N , ⌦

• parameters: 

• assume CP 

M1, M2, µ, tan�

h
SM + B̃, W̃ , H̃

B̃, W̃ , H̃
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thermal DM with 
pure eigenstates

• bino

• higgsino

• wino

overcloses

mH̃ ⇡ 1 TeV

mW̃ ⇡ 2.7 TeV
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well-tempered neutralino

N. Arkani-Hamed,  A. Delgado, G. Giudice 0601041.
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H̃

N. Arkani-Hamed,  A. Delgado, G. Giudice 0601041.
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hidden dark matter
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hidden dark matter

1. purity

decouple higgsinos 
or gauginos

ch�� ! 0

� ! B̃, W̃ , H̃
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hidden dark matter

1. purity

2. blindspots

decouple higgsinos 
or gauginos

tuned cancellation

ch�� ! 0

ch�� = 0

� ! B̃, W̃ , H̃
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blindspots

m� condition signs

M
1

M
1

+ µ sin 2� = 0 sign(M
1

/µ) = �1
M

2

M
2

+ µ sin 2� = 0 sign(M
2

/µ) = �1
�µ tan � = 1 sign(M

1,2/µ) = �1⇤

M
2

M
1

= M
2

sign(M
1,2/µ) = �1

Table 1: Table of SI blind spots, which occur when the DM coupling to the Higgs vanishes
at tree-level. The first and second columns indicate the DM mass and blind spot condition,
respectively. All blind spots require relative signs among parameters, as emphasized in the
third column. ⇤For the third row, the blind spot requires that µ and M

1

(M
2

) have opposite
signs when M

2

(M
1

) is heavy.

Throughout our analysis, we assume that M
1

, M
2

, and µ are real parameters, but carry
arbitrary signs. However, only two of the three apparent signs are physical, as is clear from the
field redefinition

b̃ ! ib̃ (10)

w̃ ! iw̃ (11)

h̃u,d ! �ih̃u,d, (12)

which is equivalent to simultaneously sending the all the mass parameters M
1

, M
2

, and µ to
minus themselves. In many of our results, we will eliminate the unphysical, overall sign by fixing
the sign of a single theory parameter to be positive.

Let us denote the mass eigenvalues of M� by m�i(v), where i = 1, 2, 3, 4 and m�1 ⌘ m� is
the DM mass. Here we have emphasized the explicit v dependence in the masses. The coupling
of any of neutralino to the Higgs boson can then be obtained by replacing v ! v+h, as dictated
by low-energy Higgs theorems [46, 47]:

Lh�� =
1

2
m�i(v + h)�i�i (13)

=
1

2
m�i(v)�i�i +

1

2

@m�i(v)

@v
h�i�i +O(h2), (14)

which implies that @m�i(v)/@v = ch�i�i [48, 49].
Consider the characteristic equation satisfied by one of the eigenvalues m�i(v),

det(M� � 1m�i(v)) = 0. (15)

Di↵erentiating the left-hand side with respect to v and setting @m�i(v)/@v = ch�i�i = 0, one
then obtains a new equation which defines when the neutralino of mass m�i(v) has a vanishing

12

ch�� =
@m�

@v
= 0
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bino-higgsino

•  decouple wino
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bino-higgsino

•  decouple wino

•  parameters

M1, µ, tan�
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bino-higgsino

•  decouple wino

•  parameters

M1, µ, tan�

•  allow for non-thermal cosmology

⌦FO 6= ⌦obs
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target

R. Budnik, Columbia University
3

IDM 2012

The Future of Direct Dark Matter Searches
(next ~5 years)

Spin-independent sensitivity 
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FIG. 2. Ionization yield versus recoil energy in all detectors
included in this analysis for events passing all signal crite-
ria except (top) and including (bottom) the phonon timing
criterion. The curved black lines indicate the signal region
between 7 and 100 keV recoil energies, while the gray band
shows the range of charge thresholds. Electron recoils in the
detector bulk have yield near unity. The data are colored to
indicate recoil energy ranges (dark to light) of 7–20, 20–30,
and 30–100 keV to aid the interpretation of Fig. 3.

of each candidate event must lie below 100 keV and above
a detector-dependent threshold ranging from 7 to 30 keV,
also chosen blindly based on calibration data. In order
to take advantage of the fact that the timing parameters
are better measured at high energies, the phonon timing
data-selection cut was optimized in three energy bins: 7–
20 keV, 20–30 keV, and 30–100 keV [20]. Fig. 1 shows
the estimated overall exposure to WIMP recoils on the
left y-scale, while the right-scale shows the “WIMP e�-
ciency,” namely the estimated fraction of WIMP recoils
at a given energy that would be accepted by these signal
criteria. The abrupt changes in e�ciency are due to the
di↵erent detector thresholds and changes to the timing
cuts in the three energy bins. Signal acceptance was mea-
sured using nuclear recoils from 252Cf calibration. Signal
acceptance is ⇠40% at most recoil energies, somewhat
higher than that of the Ge analysis [11]. After apply-
ing all selection criteria, the exposure of this analysis is
equivalent to 23.4 kg-days over a recoil energy range of
7–100 keV for a WIMP of mass 10 GeV/c2.

Neutrons from cosmogenic or radioactive processes
can produce nuclear recoils that are indistinguishable
from those from an incident WIMP. Simulations of the
rates and energy distributions of these processes using
GEANT4 [21] lead us to expect < 0.13 false candidate
events (90% confidence level) in the Si detectors from
neutrons in this exposure.

A greater source of background is the misidentifica-
tion of surface electron recoils, which may su↵er from re-
duced ionization yield and thus contribute events to the
WIMP-candidate region; these events are termed “leak-
age events”. Prior to looking at the WIMP-candidate
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FIG. 3. Normalized ionization yield (standard deviations
from the nuclear recoil band centroid) versus normalized
phonon timing parameter (normalized such that the median
of the surface event calibration sample is at -1 and the cut
position is at 0) for events in all detectors from the WIMP-
search data set passing all other selection criteria. The black
box indicates the WIMP candidate selection region. The data
are colored to indicate recoil energy ranges (dark to light) of
7–20, 20–30, and 30–100 keV. The thin red curves on the bot-
tom and right axes are the histograms of surface events from
133Ba calibration data, while the thicker green curves are the
histograms of nuclear recoils from 252Cf calibration data.

region (unblinding), the expected leakage was estimated
using the rate of single scatter events with yields con-
sistent with nuclear recoils from a previously unblinded
dataset [22] and the rejection performance of the timing
cut measured on low-yield multiple-scatter events from
133Ba calibration data. Two detectors used in this anal-
ysis were located at the end of detector stacks, so scat-
ters on their outer faces could not be tagged as mul-
tiple scatters. The multiple-scatter rates on the outer
faces of these two detectors were estimated using their
single-scatter rates from a previously unblinded dataset
presented in [22] and the multiples-singles ratio on the
interior detectors. The final pre-unblinding estimate for
misidentified surface event leakage into the signal band
in the eight Si detectors was 0.47+0.28

�0.17(stat.) events. This
initial leakage estimate informed the decision to unblind.

After all WIMP-selection criteria were defined, the sig-
nal regions of the Si detectors were unblinded. Three
WIMP-candidate events were observed, with recoil ener-
gies of 8.2, 9.5, and 12.3 keV. Two events were observed
in Detector 3 of Tower 4, and the third was observed in
Detector 3 of Tower 5. The events were well separated
in time and were in the middle of their respective tower
stacks. Fig. 2 illustrates the distribution of events in and
near the signal region of the WIMP-search data set be-
fore (top) and after (bottom) application of the phonon
timing criterion. Fig. 3 shows an alternate view of these
events, expressed in “normalized” versions of yield and
timing that are transformed so that the WIMP accep-

CDMS II silicon

4

tance regions of all detectors coincide.

After unblinding, extensive checks of the three candi-
date events revealed no data quality or analysis issues
that would invalidate them as WIMP candidates. The
signal-to-noise on the ionization channel for the three
events (ordered in increasing recoil energy) was measured
to be 6.7�, 4.9�, and 5.1�, while the charge threshold
had been set at 4.5� from the noise. A study on pos-
sible leakage into the signal band due to 206Pb recoils
from 210Po decays found the expected leakage to be neg-
ligible with an upper limit of < 0.08 events at the 90%
confidence level. The energy distribution of the 206Pb
background was constructed using events in which a co-
incident ↵ was detected in a detector adjacent to one
of the 8 Si detectors used in this analysis. Further-
more, as in the Ge analysis, we developed a Bayesian
estimate of the rate of misidentified surface events based
upon the performance of the phonon timing cut mea-
sured using events near the WIMP-search signal region
[22]. Classical confidence intervals provided similar esti-
mates [23]. Multiple-scatter events below the electron-
recoil ionization-yield region from both 133Ba calibration
andWIMP-search data were used as inputs to this model.
The final model predicts an updated surface-event leak-
age estimate of 0.41+0.20

�0.08(stat.)
+0.28
�0.24(syst.) misidentified

surface events in the eight Si detectors.

This result constrains the available parameter space
of WIMP dark matter models. We compute upper lim-
its on the WIMP-nucleon scattering cross section using
Yellin’s optimum interval method [24]. We assume a
WIMP mass density of 0.3 GeV/c2/cm3, a most probable
WIMP velocity with respect to the galaxy of 220 km/s,
a mean circular velocity of Earth with respect to the
galactic center of 232 km/s, a galactic escape velocity of
544 km/s [25], and the Helm form factor [26]. Fig. 4
shows the derived upper limits on the spin-independent
WIMP-nucleon scattering cross section at the 90% con-
fidence level (C.L.) from this analysis and a selection of
other recent results. The present data set an upper limit
of 2.4⇥ 10�41 cm2 for a WIMP of mass 10 GeV/c2. We
are completing the calibration of the nuclear recoil energy
scale using the Si-neutron elastic scattering resonant fea-
ture in the 252Cf exposures. This study indicates that our
reconstructed energy may be 10% lower than the true re-
coil energy, which would weaken the upper limit slightly.
Below 20 GeV/c2 the change is well approximated by
shifting the limits parallel to the mass axis by ⇠ 7%. In
addition, neutron calibration multiple scattering e↵ects
improve the response to WIMPs by shifting the upper
limit down parallel to the cross-section axis by ⇠ 5%.

A model of our known backgrounds, including both
energy and expected rate distributions, was constructed
for each detector and experimental run for each of the
three backgrounds considered: surface electron recoils,
neutron backgrounds, and 206Pb recoils. Simulations of
our background model yield a 5.4% probability of a sta-
tistical fluctuation producing three or more events in our
signal region.

FIG. 4. Experimental upper limits (90% confidence level) for
the WIMP-nucleon spin-independent cross section as a func-
tion of WIMP mass. We show the limit obtained from the
exposure analyzed in this work alone (black dots), and com-
bined with the CDMS II Si data set reported in [22] (blue solid
line). Also shown are limits from the CDMS II Ge standard
[11] and low-threshold [27] analysis (dark and light dashed
red), XENON10 S2-only [28] (light dash-dotted green), and
XENON100 [29] (dark dash-dotted green). The filled regions
identify possible signal regions associated with data from Co-
GeNT [30] (magenta, 90% C.L., as interpreted by Kelso et
al. including the e↵ect of a residual surface event contam-
ination described in [31]), DAMA/LIBRA [16, 32] (yellow,
99.7% C.L.), and CRESST [18] (brown, 95.45% C.L.) experi-
ments. 68% and 90% C.L. contours for a possible signal from
these data are shown in blue and cyan, respectively. The as-
terisk shows the maximum likelihood point at (8.6 GeV/c2,
1.9⇥ 10�41 cm2).

This model of our known backgrounds was used to in-
vestigate the data in the context of a WIMP+background
hypothesis. We performed a profile likelihood analysis in
which the background rates were treated as nuisance pa-
rameters and the WIMP mass and cross section were
the parameters of interest. The highest likelihood is
found for a WIMP mass of 8.6 GeV/c2 and a WIMP-
nucleon cross section of 1.9⇥10�41 cm2. The goodness-
of-fit test of this WIMP+background hypothesis results
in a p-value of 68%, while the background-only hypoth-
esis fits the data with a p-value of 4.5%. A profile like-
lihood ratio test including the event energies finds that
the data favor the WIMP+background hypothesis over
our background-only hypothesis with a p-value of 0.19%.
Though this result favors a WIMP interpretation over
the known-background-only hypothesis, we do not be-
lieve this result rises to the level of a discovery.

Fig. 4 shows the resulting best-fit region from this
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the gravitino is not the LSP; this is the conventional WIMP LSP freeze-out region, with a limit of 2.3 TeV for a wino LSP.
The green region is excluded by the e↵ects of late decays of LOSPs to gravitinos during big bang nucleosynthesis (BBN) [19];
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too warm [21]. The gray shading (and corresponding gray dashed and dotted lines) shows the regions with g2susy > 10 (3, 1),
which are excluded as described in the text.

ter, however, we take a di↵erent approach and derive the

cosmological bound on the superpartner mass scale for a

gravitino LSP. We find this bound to be strong, so that
under the quite mild assumptions of (i), (ii), (iii) and
(iv-A) or (iv-B), supersymmetry, if it exists, must be in
the (multi-) TeV domain. We also derive bounds for the
split spectrum case and scenarios where the LOSP does
not predominantly decay to the gravitino.

SINGLE SCALE SUSY. In this section we take all su-
perpartners of the observable sector to be characterized
by a single mass scale, m̃, and leave the case of a non-
degenerate spectrum to the next sections. Our aim is to
derive a general bound on the scale m̃ from overproduc-
tion of gravitinos. We ignore other possible components
to DM since they would only strengthen the bound. A
key superpartner is the LOSP, since it undergoes freeze-
out. We allow a very wide variation in the (m3/2, m̃, TR)
space.

The upper bound on m̃ follows from the three as-
sumptions (i), (ii) and (iii). Assumption (ii) implies
that the observable sector produces gravitinos from three
sources: gaugino scattering at TR [9–11], Y UV

3/2 , gravitino
“freeze-in” from decays of visible sector superpartners

at T ⇠ m̃ [12, 13], Y FI
3/2 , and LOSP freeze-out and de-

cay [14], Y

FO
3/2 . For su�ciently small m3/2, the grav-

itinos are in thermal equilibrium when T = m̃; in this
case Y

UV
3/2 + Y

FI
3/2 are replaced by a thermal abundance,

and Y

FO
3/2 may be neglected. Below, in accordance with

assumption (iv-B), we assume the LOSP branching ra-
tio to the gravitino is O(1). In the final section we
discuss how our bound is weakened when this assump-
tion is relaxed. Gravitinos may also be produced from
other sectors or they may arise from an initial condi-
tion [15, 16]. However, these additional sources of grav-
itinos only strengthen our bound, and to be conservative
we ignore them.
If gravitinos do not thermalize, the condition that they

not yield too large a DM abundance is

CUV
TRm̃

2

m3/2
+ CFI

m̃

3

m3/2
+ CFO

m̃m3/2

↵

2
e↵

 aMPlTeq ,

(2)
where a = 0.27 and ↵e↵ is now the coupling relevant for
LOSP annihilation. The three terms labelled UV, FI and
FO correspond to scattering at TR, freeze-in and freeze-
out and decay and occur with rate constants CUV =
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FIG. 2: Left: The bound on m̃ in the single-scale SUSY case, for ↵e↵ = 0.03, 10�2 and 10�3 in blue, green and purple
respectively, assuming TR = m̃. As ↵e↵ decreases freeze-out yields a larger abundance, so the FO boundary and the BBN
constraints (shown shaded in the corresponding colors) both become more stringent. As TR is raised, the bounds become more
stringent as indicated by the blue dashed lines of Fig. 1. Right: The bound on m̃ when the contribution to the gravitino
abundance from freeze-out and decay is negligible. This may be the case in several scenarios, as discussed in the last section.
The dashed blue lines demonstrate the strengthening of the bound as TR is increased. We do not analyze the region with
m̃ < m3/2 as the results are model-dependent.
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�
. Here

�3 ' 0.36 is related to the thermal corrections of the
scattering process [11], g⇤ = 228.75, and nFI counts the
number of fermions and complex scalars participating in
the freeze-in with mass m̃; with degenerate MSSM spar-
ticles, nFI = 36+9+12+4 = 61. The equality in Eq. (2)
corresponds to the case that these processes yield the ob-
served DM abundance. If gravitinos do thermalize, the
overabundance constraint becomes [17]

CTh m3/2  a Teq , (3)

with CTh = Y� = 45⇠(3)/⇡4
g⇤s ⇡ 2.4⇥10�3. Here g⇤s '

g⇤ = 228.75. The resulting bound on m̃ as a function
of m3/2 is shown in Fig. 1 for ↵e↵ = 0.03, relevant for a
(perturbative) wino LOSP. We do not include the non-
perturbative Sommerfeld e↵ect [18], which results in an
O(1) shift in ↵e↵ .

When gravitinos are not thermalized, the key point is
the di↵ering dependences of the three terms in Eq. (2) on
m̃ and m3/2. While all three terms have a positive power
of m̃, the UV and FI terms are proportional to 1/m3/2

while the FO term is proportional to m3/2, leading to
contours in Fig. 1 with slopes of opposite signs. Hence
there is an upper bound,

m̃

2  a/2p
CFOCD

↵e↵ MPl Teq , (4)

where CD = CS(TR/m̃) + CFI . At the bound m3/2 =p
CD/CFO ↵e↵ m̃. For TR � m̃ the bound becomes m̃ 

27TeV [(TR/m̃)/10]�1/4 for ↵e↵ = 0.03 which weakens
to m̃ . 38 TeV for TR = m̃. Decreasing ↵e↵ makes
the FO term larger, as shown in the left panel of Fig. 2
for TR = m̃. The parametrics of Eq. (4) is similar, but
not identical, to that in the so-called “WIMP Miracle”,
Eq. (1).

A second allowed region occurs at very low m3/2 in
Fig. 1, where the gravitinos are thermalized for any
TR � m̃. Here the bound on m̃ arises from theory rather
than cosmology: m̃  (gsusy/4⇡)2

p
F , where gsusy is the

strength of the coupling between obervable and super-
symmetry breaking sectors, and F =

p
3m3/2MPl is the

supersymmetry breaking scale. The bound results when
the messenger scale takes its minimal value of

p
F , and

is shown in Fig. 1 for g

2
susy = 1, 3 and 10. We note

that it may be possible to construct realistic models of
composite quarks and leptons having non-perturbative
couplings, gsusy ⇠ 4⇡ [22].

NON-DEGENERATE SPECTRUM. The com-
pletely degenerate spectrum discussed above is special
because non-degeneracies typically arise from renormal-
ization group e↵ects or the dynamics of the mediation
of supersymmetry breaking. How do non-degeneracies
a↵ect the above bounds?

Non-degeneracies induce independent changes in the
three gravitino production mechanisms. The freeze-in
process is dominated by the heaviest superpartners, m̃+,

CUV = �3
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FIG. 2: Left: The bound on m̃ in the single-scale SUSY case, for ↵e↵ = 0.03, 10�2 and 10�3 in blue, green and purple
respectively, assuming TR = m̃. As ↵e↵ decreases freeze-out yields a larger abundance, so the FO boundary and the BBN
constraints (shown shaded in the corresponding colors) both become more stringent. As TR is raised, the bounds become more
stringent as indicated by the blue dashed lines of Fig. 1. Right: The bound on m̃ when the contribution to the gravitino
abundance from freeze-out and decay is negligible. This may be the case in several scenarios, as discussed in the last section.
The dashed blue lines demonstrate the strengthening of the bound as TR is increased. We do not analyze the region with
m̃ < m3/2 as the results are model-dependent.
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�
. Here

�3 ' 0.36 is related to the thermal corrections of the
scattering process [11], g⇤ = 228.75, and nFI counts the
number of fermions and complex scalars participating in
the freeze-in with mass m̃; with degenerate MSSM spar-
ticles, nFI = 36+9+12+4 = 61. The equality in Eq. (2)
corresponds to the case that these processes yield the ob-
served DM abundance. If gravitinos do thermalize, the
overabundance constraint becomes [17]

CTh m3/2  a Teq , (3)

with CTh = Y� = 45⇠(3)/⇡4
g⇤s ⇡ 2.4⇥10�3. Here g⇤s '

g⇤ = 228.75. The resulting bound on m̃ as a function
of m3/2 is shown in Fig. 1 for ↵e↵ = 0.03, relevant for a
(perturbative) wino LOSP. We do not include the non-
perturbative Sommerfeld e↵ect [18], which results in an
O(1) shift in ↵e↵ .

When gravitinos are not thermalized, the key point is
the di↵ering dependences of the three terms in Eq. (2) on
m̃ and m3/2. While all three terms have a positive power
of m̃, the UV and FI terms are proportional to 1/m3/2

while the FO term is proportional to m3/2, leading to
contours in Fig. 1 with slopes of opposite signs. Hence
there is an upper bound,

m̃

2  a/2p
CFOCD

↵e↵ MPl Teq , (4)

where CD = CS(TR/m̃) + CFI . At the bound m3/2 =p
CD/CFO ↵e↵ m̃. For TR � m̃ the bound becomes m̃ 

27TeV [(TR/m̃)/10]�1/4 for ↵e↵ = 0.03 which weakens
to m̃ . 38 TeV for TR = m̃. Decreasing ↵e↵ makes
the FO term larger, as shown in the left panel of Fig. 2
for TR = m̃. The parametrics of Eq. (4) is similar, but
not identical, to that in the so-called “WIMP Miracle”,
Eq. (1).

A second allowed region occurs at very low m3/2 in
Fig. 1, where the gravitinos are thermalized for any
TR � m̃. Here the bound on m̃ arises from theory rather
than cosmology: m̃  (gsusy/4⇡)2

p
F , where gsusy is the

strength of the coupling between obervable and super-
symmetry breaking sectors, and F =

p
3m3/2MPl is the

supersymmetry breaking scale. The bound results when
the messenger scale takes its minimal value of

p
F , and

is shown in Fig. 1 for g

2
susy = 1, 3 and 10. We note

that it may be possible to construct realistic models of
composite quarks and leptons having non-perturbative
couplings, gsusy ⇠ 4⇡ [22].

NON-DEGENERATE SPECTRUM. The com-
pletely degenerate spectrum discussed above is special
because non-degeneracies typically arise from renormal-
ization group e↵ects or the dynamics of the mediation
of supersymmetry breaking. How do non-degeneracies
a↵ect the above bounds?

Non-degeneracies induce independent changes in the
three gravitino production mechanisms. The freeze-in
process is dominated by the heaviest superpartners, m̃+,
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FIG. 2: Left: The bound on m̃ in the single-scale SUSY case, for ↵e↵ = 0.03, 10�2 and 10�3 in blue, green and purple
respectively, assuming TR = m̃. As ↵e↵ decreases freeze-out yields a larger abundance, so the FO boundary and the BBN
constraints (shown shaded in the corresponding colors) both become more stringent. As TR is raised, the bounds become more
stringent as indicated by the blue dashed lines of Fig. 1. Right: The bound on m̃ when the contribution to the gravitino
abundance from freeze-out and decay is negligible. This may be the case in several scenarios, as discussed in the last section.
The dashed blue lines demonstrate the strengthening of the bound as TR is increased. We do not analyze the region with
m̃ < m3/2 as the results are model-dependent.
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�
. Here

�3 ' 0.36 is related to the thermal corrections of the
scattering process [11], g⇤ = 228.75, and nFI counts the
number of fermions and complex scalars participating in
the freeze-in with mass m̃; with degenerate MSSM spar-
ticles, nFI = 36+9+12+4 = 61. The equality in Eq. (2)
corresponds to the case that these processes yield the ob-
served DM abundance. If gravitinos do thermalize, the
overabundance constraint becomes [17]

CTh m3/2  a Teq , (3)

with CTh = Y� = 45⇠(3)/⇡4
g⇤s ⇡ 2.4⇥10�3. Here g⇤s '

g⇤ = 228.75. The resulting bound on m̃ as a function
of m3/2 is shown in Fig. 1 for ↵e↵ = 0.03, relevant for a
(perturbative) wino LOSP. We do not include the non-
perturbative Sommerfeld e↵ect [18], which results in an
O(1) shift in ↵e↵ .

When gravitinos are not thermalized, the key point is
the di↵ering dependences of the three terms in Eq. (2) on
m̃ and m3/2. While all three terms have a positive power
of m̃, the UV and FI terms are proportional to 1/m3/2

while the FO term is proportional to m3/2, leading to
contours in Fig. 1 with slopes of opposite signs. Hence
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not identical, to that in the so-called “WIMP Miracle”,
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A second allowed region occurs at very low m3/2 in
Fig. 1, where the gravitinos are thermalized for any
TR � m̃. Here the bound on m̃ arises from theory rather
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strength of the coupling between obervable and super-
symmetry breaking sectors, and F =

p
3m3/2MPl is the

supersymmetry breaking scale. The bound results when
the messenger scale takes its minimal value of

p
F , and

is shown in Fig. 1 for g

2
susy = 1, 3 and 10. We note
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composite quarks and leptons having non-perturbative
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pletely degenerate spectrum discussed above is special
because non-degeneracies typically arise from renormal-
ization group e↵ects or the dynamics of the mediation
of supersymmetry breaking. How do non-degeneracies
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process is dominated by the heaviest superpartners, m̃+,
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FIG. 8: Comparison and average of lattice QCD calculations of fs as described in the text. The
quoted uncertainties are taken as the statistical and systematic uncertainties added in quadrature
from a given reference. nf = 2 + 1 indicates a dynamical strange quarks as well as up and down.
SU(3) is used to indicate results which rely heavily on SU(3) baryon �PT. Some results are
excluded for various reasons but displayed to demonstrate their consistency: [21] was updated in
[22], the nf = 2 results were not averaged with the nf = 2 + 1 [14, 16], the results in [17] were
preliminary and not extrapolated to the physical pion mass, the results in [18] are preliminary and
only exists in a conference proceedings.

interesting to first compare our results with these;

mshN |s̄s|Ni[MeV] =

8
>>><

>>>:

59 ± 6 ± 8 Ref. [21]
54 ± 5 ± 6 Ref. [22]
43 ± 8 ± 6 Ref. [20]
49 ± 10 ± 15 present work

. (25)

In the literature, there is currently no determination of fs which considers all the available
results from lattice QCD, and so we take the opportunity to provide one here.4 We use an
approach similar to the FLAG working group of FLAVIANET which has provided lattice
determinations of various quantities important to low-energy hadronic physics [107]. In
particular, the FLAG working group has developed a scheme to judge the confidence to
place in various determinations, based upon standards such as the lightest pion mass used,
whether or not a continuum limit has been performed, and whether the infinite volume limit
has been performed. For each criterion, a green star (?) is awarded to results which meet
the strictest constraints, and orange circle (•) is given to results with room for improvement
and a red square (⌅) to those with room for significant improvement. This provides a useful

4 There is a recent review on the topic in Ref. [28], but a lattice average is not provided.
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To start, let us denote the log quantities, pi which label parameters at the weak scale:

exp pi ⌘ {M
1

,M
2

, µ,m2

Hu
,m2

Hd
, Bµ}. (22)

Then it is natural to define a log gradient defined as a directional directive with respect to log
parameters,

~r ⌘ ri ⌘ @

@pi
. (23)

We can now define a vector in this space equal to the gradient of the electroweak symmetry
breaking vacuum expectation value,

~V ⌘ ~r log v2. (24)

Here ~V is equal to the direction of steepest descent away from a particular value of v—thus, it
is the combination of ultraviolet parameters which most strongly a↵ects electroweak symmetry
breaking. In order to remove dependence on the possible fine-tuning of the electroweak symmetry
breaking sector, we are interested in dependencies on parameters orthogonal to ~V . Explicitly,
any v dependent observable can be written as

~rO =
@O

@ log v2
~V + . . . , (25)
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typically between 2 - 10%. If XENON1T does not see a signal, tuning of the SI cross-section
will be . 1%. The interpretation of this as being unnatural is unclear however, as most of the
region of 1 < tan � < 2 with µ < 0 has large ��. We describe our methodology for computing
tuning in App. B.

the correct relic abundance at low tan �, since both a large mixing angle and a small Higgs
coupling require |µ| ' |M

1

|. Furthermore, many theories, both natural and unnatural, require
small tan � in order to explain the 125 GeV Higgs mass, as in �SUSY and Split Supersymmetry.
Thus the region of parameter space which evades XENON1T is exactly the same region in which

22
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Table 1: Table of SI blind spots, which occur when the DM coupling to the Higgs vanishes
at tree-level. The first and second columns indicate the DM mass and blind spot condition,
respectively. All blind spots require relative signs among parameters, as emphasized in the
third column. ⇤For the third row, the blind spot requires that µ and M
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of any of neutralino to the Higgs boson can then be obtained by replacing v ! v+h, as dictated
by low-energy Higgs theorems [45, 46]:
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which implies that @m�i(v)/@v = ch�i�i [47, 48].
Consider the characteristic equation satisfied by one of the eigenvalues m�i(v),

det(M� � 1m�i(v)) = 0. (15)

Di↵erentiating the left-hand side with respect to v and setting @m�i(v)/@v = ch�i�i = 0, one
then obtains a new equation which defines when the neutralino of mass m�i(v) has a vanishing
coupling to the Higgs boson1:
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The above equation implies that for regions in which ch�i�i = 0, m�i(v) is entirely independent
of v. At such cancellation points, m�i(v) = m�i(0), so the neutralino mass is equal to the mass
of a pure gaugino or Higgsino state and m�i(v) = M

1

,M
2

,�µ. As long as Eq. (16) holds for the
LSP mass, m�1(v), then the DM will have a vanishing coupling to the Higgs boson, yielding a
SI scattering blind spot. It is a nontrivial condition that Eq. (16) holds for the LSP, rather than
a heavier neutralino, because for some choices of parameters the DM retains a coupling to the
Higgs but one of the heavier neutralinos does not. We have identified these physically irrelevant
points and eliminated them from consideration. The remaining points are the SI scattering

1
We have checked that Eq. 16 can also be derived using analytical expressions for bilinears of the neutralino

diagonalization matrix from Ref. [49].
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Figure 6: Limits and projected reaches for multi-component bino/Higgsino DM with ⌦� = ⌦(th)

� .

Dotted brown lines are contours of ⌦(th)

� /⌦
obs

for tan � = 2. The light gray regions are excluded

by overabundance of neutralino DM, while the edge of this region has ⌦(th)

� = ⌦
obs

. In the
remainder of the plane � is just one component of multi-component DM. The present limit
from XENON100 is shown shaded, while the projected reaches of LUX and XENON1T, both
SI and SD, are shown as dashed lines.

low tan � because it corresponds to the SI blind spot for Higgsino-like DM in Eq. (17),

ch�� / �1 + sin 2� = 0. (20)

Some of these allowed regions will be probed by experiments sensitive to the SD scattering cross-
section. Intriguingly, the case of non-thermal Higgsino DM at low tan � resides simultaneously
in a blind spot for SI and SD scattering! Furthermore, this region allows low values of µ,
and therefore relatively natural theories of electroweak symmetry breaking. In addition, large
unnatural regions with µ > 1 - 2 TeV will remain viable, but require late entropy production,
especially for low M

1

.

5.2 Multi-Component Dark Matter with ⌦� = ⌦(th)

�  ⌦
obs

Here we repeat the analysis of the previous section under the assumption that the present day
relic abundance of neutralino DM is given by ⌦� = ⌦(th)

� , with the balance of cosmological
DM arising from some other source. Fig. (6) depicts both the current limits and the projected
reach for such multi-component neutralino DM, for tan � = 2. Region shaded light gray have
⌦(th)

� /⌦
obs

> 1 and are thus excluded, while regions with ⌦(th)

� /⌦
obs

< 1 have a depleted abun-
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Figure 20: Estimated importance of loop corrections for bino/Higgsino DM, relative to the
XENON1T reach. Non-thermal and thermal DM are shown in the upper and lower panels,
respectively, with the XENON1T reach as in Fig. (5) (for tan � = 2) and Fig. (7). The green
contours show the bino fraction of DM, sin2 ✓

˜b = Z2

11

, and loop corrections are known to be
small when DM is a pure bino or Higgsino, sin2 ✓

˜b ⇡ 0, 1. Blue contours show the ratio of our
estimated loop cross-section to the sum of the tree-level and XENON1T reach cross-sections.
A large value of this ratio would indicate where the XENON1T reach estimate is sensitive to
loop corrections, however we see that this ratio is small throughout most of parameter space,
indicating that our results are robust to loop corrections.
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by sin2 ✓
˜b = Z2

11

, where Zij is the rotation matrix going from interaction to mass eigenstate. If
sin2 ✓

˜b ⇡ 0, 1, then the DM is close to a pure state and the cross-section is small, as discussed
above. This quantity is shown by green curves for non-thermal and thermal cosmologies in the
upper and lower panels of Fig. (20), respectively, and we see that much of the parameter space is
characterized by a nearly pure state. As the mixing angle is increased, any possible enhancement
to the cross-section is suppressed at least by a factor of mixing angle squared. Therefore, we
conservatively estimate the maximum size of the cross-section to be,

�
loop

= |Z
11

|2(1� |Z
11

|2)⇥ (2⇥ 10�47 cm2). (27)

Here, the number in parentheses reflects the size of the cross-section from the largest individual
loop diagram contributing to the Higgsino cross-section from Ref. [43] (which happens to be a
box of W bosons contributing to the tensor operator). We stress that this is simply an estimate
of the maximum size; the full calculation is beyond our scope.

When are our results sensitive to the loop corrections? Consider the XENON1T reach,
shown for bino/Higgsino in Fig. (20). For the loop correction to be relevant, two conditions
must be satisfied, (1) the loop contribution must be large relative to the tree-level scattering,
and (2) the loop contribution must be large enough to probe at XENON1T. In order to estimate
when both of these conditions are met, the blue contours in Fig. (20) show the ratio of �

loop

to the maximum of the tree-level cross-section and the XENON1T limit. The loop correction
is important when this quantity is large. However, this quantity is less than 0.01 in the entire
parameter space, except for small regions near the blind spot. Even here, it is only at low µ that
this ratio reaches 0.05, and its maximum value is near 0.2. Hence, unless our estimate Eq. (27)
is too small by over an order of magnitude, the loop corrections can be ignored for determining
the reach of 1T detectors for bino/Higgsino DM.

We have not included an estimate of the importance of loop corrections for mixed DM with
a large wino component. In this case there are competing e↵ects; the bino/wino DM typically
has a smaller mixing angle than the bino/Higgsino case, further suppressing any enhancement
to the loop contribution coming from mixing, but the largest individual loop diagram for pure
wino scattering is an order of magnitude larger than for the pure Higgsino case.
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Figure 9: Impact of squarks on thermal bino/Higgsino DM, with µ < 0 and tan � = 20. At each

point M
1

has been chosen so that ⌦(th)

� = ⌦
obs

, except in the gray region where freeze-out always
yields overclosure. The upper left region, where freeze-out is dominated by squark-neutralino
coannihilation, is excluded by XENON100. However, in the lower right region the XENON100
limit becomes less powerful as the s-channel squark exchange amplitude has the opposite sign
to the t-channel Higgs exchange diagram. The purple region is excluded by an LHC search for
jets and missing transverse energy, with the gluino mass fixed at 2 TeV. This ATLAS search
becomes less powerful as the gluino mass is increased, and the excluded region becomes bounded
by the purple dashed line if the gluino is decoupled. The currently allowed region, shown in
white, mostly has a SI scattering cross-section that is not far below the current bound, so that
LUX will have a large discovery potential. In the absence of a signal at LUX (XENON1T) the
only surviving region will be the narrow band between the dashed green (red) lines.

6 Bino/Wino(/Higgsino) Dark Matter

We now consider the e↵ects of including the wino in the spectrum. Compared to the previous
section, reintroducing the wino adds an extra parameter, so that now we have a four dimensional
parameter space of (M

1

,M
2

, µ, tan �). In general, the LSP is now a combination of bino, Higgsino
and wino, but much of our attention will focus on the case of a dominant bino/wino mixture.
Even when the dark matter has a very small Higgsino component, the value of the µ parameter is
crucial for direct detection: in the limit of decoupled µ, bino/wino dark matter has vanishingly
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purity

• tree-level Higgs coupling vanishes for pure 
higgsino or Wino

• loop contribution smaller than expected
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Figure 1: One-loop diagrams which induce effective interactions of EW-IMP DM with
light quarks. There are also W -(Z-) boson crossing diagrams, which are not shown here.
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Figure 2: One-loop diagrams which correspond to the one-loop quantum correction to the
EW-IMP-Z (γ) interaction vertex. These contributions turn out to vanish.

bosons (W±
µ , Z0

µ) as

∆Lint. =
[g2
4

√

n2 − (2Y + 1)2 χ̃0γµψ̃− W+
µ +

g2
4

√

n2 − (2Y − 1)2 χ̃0γµψ̃+ W−
µ + h.c.

]

+
ig2(−Y )

cosθW
χ̃0γµη̃0 Z0

µ,

(14)

where θW is the weak mixing angle. The Majorana field η̃0 is introduced for the cases of
Y "= 0. (See Eq. (3).) In either case (Y = 0 or Y "= 0), the EW-IMP does not have any
interaction by itself. Thus, it is loop diagrams that yield the leading contribution to the
EW-IMP-nucleon elastic scattering cross section.

First, we consider the one-loop processes. The relevant diagrams are shown in Figs. 1
and 2. The diagrams in Fig. 1 give rise to the coefficients in Eq. (5) as

6

χ̃0 χ̃0

g

Q/q
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gg
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W±

(Z0)(Q/q)

Figure 3: Relevant two-loop diagrams which contribute to effective scalar coupling of
EW-IMP DM with gluon.There are also W -(Z-) boson crossing diagrams, which are not
shown here.

Here f (i)
G |SDq and f (i)

G |LDq denote the short-distance and long-distance contributions of
quark q in the loop in diagram (i) (i = a, b, c) of Fig. 3, respectively. We also take
into account large QCD corrections in the long-distance contributions [23] by using cQ =
1+11αs(mQ)/4π (Q = c, b, t). We take cc = 1.32, cb = 1.19, and ct = 1 for αs(mZ) = 0.118
in our calculation. Note that the long-distance contribution is gauge invariant. This is
because its contribution to the operator fGGa

µνG
aµν is evaluated from scalar-type effec-

tive operator fqmq q̄q [13, 14]. (See also later discussion where the explicit calculations
are given.) Consequently, the gauge invariance of the short-distance contribution is guar-
anteed since summation of the both contribution is obviously gauge invariant. Then, the
effective coupling of EW-IMP with gluon is obtained as

fG = f (a)
G + f (b)

G + f (c)
G . (21)

Let us see each diagram closely. It is obvious that diagram (a) gives the long-distance
contribution. Thus, we sum up for heavy quarks in the loop, and get

f (a)
G = −

αs

12π
×

α2
2

4m2
h

∑

Q=c,b,t

cQ

[

n2 − (4Y 2 + 1)

8mW
gH(w) +

Y 2

4mZcos4θW
gH(z)

]

. (22)

Here the first and second terms in the bracket come from W - and Z-boson exchanges,
respectively. As we described above, this long-distance contribution is given by effective
scalar-type coupling (of the Higgs contribution) as − αs

12πfQ.
For the calculation of diagrams (b) and (c), on the other hand, we follow the steps

supplied in Ref. [14]. In the work, the systematic calculation for the W -boson exchange
diagrams at two-loop level in the Wino DM scenario is given. The procedure is applicable
to compute the two-loop diagrams in our case. For the W -boson exchange diagrams, the
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