$\mathcal{N} = 2$ Superconformal Index and Ruijsenaars-Schneider models

Shlomo S. Razamat

A. Gadde, L. Rastelli, SR, and W. Yan 1110.3740, 1104.3850, ... D. Gaiotto, L. Rastelli, and SR to appear

February 14, 2012 - Rutgers

Objectives

- The objective : To find an explicit form for the superconformal index for a large class of $\mathcal{N} = 2$ SCFTs which one can obtain by compactifying the (2,0) theory on a Riemann surface. Most of these theories are non-Lagrangian and thus direct computations are not possible.
- The strategy : "bottom-up", "experimental math" approach; fully exploit the intuition about the hidden 6*d* origin of the 4*d* theories to generalize directly computable results for Lagrangian theories to non-Lagrangian ones.
- By-product : An AGT-like relation between the superconformal index of the 4*d* theories to 2*d* gauge theories and to integrable systems.

Outline

- The $\mathcal{N} = 2$ generalized quiver theories
- The superconformal index
- The logic of the argument I
- The Hall-Littlewood index as an example
- The logic of the argument II
- RS models and the index
- Summary

$\mathcal{N}=2$ quiver gauge theories

- N = 2 SCFTs obtained by compactifying the (2,0) theory on a punctured Riemann surface. (Gaiotto 0904.2715)
- The moduli of the Riemann surface map to gauge couplings of the corresponding 4d theory.
- The punctures are associated with flavor symmetries.
- Basic building blocks: theories corresponding to spheres with three punctures (no moduli=no tunable couplings)
 - Free hypermultiplets of SU(k) theories correspond to spheres with two "maximal" punctures and one U(1) puncture.
 - All the three-punctured spheres which are not free hypers do not have Lagrangian description.
 - An example of interacting theory corresponding to three-punctured spheres is the SU(3) theory with three maximal punctures is an SCFT with E₆ flavor symmetry.
- "Gluing" three-punctured spheres at the punctures corresponds to gauging an SU(k) flavor symmetry factor.
- Different "pair-of-pants" decompositions correspond to different S-duality frames.

イロト イポト イヨト イヨト

$\mathcal{N}=2$ quiver gauge theories

- N = 2 SCFTs obtained by compactifying the (2,0) theory on a punctured Riemann surface. (Gaiotto 0904.2715)
- The moduli of the Riemann surface map to gauge couplings of the corresponding 4d theory.
- The punctures are associated with flavor symmetries.
- Basic building blocks: theories corresponding to spheres with three punctures (no moduli=no tunable couplings)
 - Free hypermultiplets of SU(k) theories correspond to spheres with two "maximal" punctures and one U(1) puncture.
 - All the three-punctured spheres which are not free hypers do not have Lagrangian description.
 - An example of interacting theory corresponding to three-punctured spheres is the SU(3) theory with three maximal punctures is an SCFT with E_6 flavor symmetry.
- "Gluing" three-punctured spheres at the punctures corresponds to gauging an SU(k) flavor symmetry factor.
- Different "pair-of-pants" decompositions correspond to different S-duality frames.

イロト 不得 トイヨト イヨト 二日

$\mathcal{N}=2$ quiver gauge theories

- N = 2 SCFTs obtained by compactifying the (2,0) theory on a punctured Riemann surface. (Gaiotto 0904.2715)
- The moduli of the Riemann surface map to gauge couplings of the corresponding 4d theory.
- The punctures are associated with flavor symmetries.
- Basic building blocks: theories corresponding to spheres with three punctures (no moduli=no tunable couplings)
 - Free hypermultiplets of SU(k) theories correspond to spheres with two "maximal" punctures and one U(1) puncture.
 - All the three-punctured spheres which are not free hypers do not have Lagrangian description.
 - An example of interacting theory corresponding to three-punctured spheres is the SU(3) theory with three maximal punctures is an SCFT with E₆ flavor symmetry.
- "Gluing" three-punctured spheres at the punctures corresponds to gauging an SU(k) flavor symmetry factor.
- Different "pair-of-pants" decompositions correspond to different S-duality frames.

The superconformal index

- The superconformal index (Kinney-Maldacena-Minwalla-Raju 2006) encodes the information about the protected spectrum of a SCFT that can be obtained from representation theory alone.
- It is evaluated by a trace formula of the schematic form

$$\mathcal{I}(\mu_i) = \mathsf{Tr}(-1)^F \, e^{-\sum_i \mu_i T_i} \, e^{-\beta \, \delta} \,, \qquad \delta = 2 \left\{ \mathcal{Q}, \mathcal{Q}^\dagger \right\} \, (\geq 0) \,,$$

where Q is the supercharge "with respect to which" the index is calculated and $\{T_i\}$ a complete set of generators that commute with Q and with each other.

- The trace is over the states of the theory on S^3 (in the radial quantization). States with $\delta \neq 0$ cancel pairwise, so the index counts states with $\delta = 0$ and it is independent of β .
- For a theory with a Lagrangian description one can compute the index in the free limit of the theory using simple matrix integral techniques.

・ロン ・四 ・ ・ ヨン ・ ヨン

$\mathcal{N}=2 \text{ index}$

- $\mathcal{N} = 2$ SCFTs have 8 supercharges (and eight superconformal counterparts): $\mathcal{Q}_{I\alpha}$, $\tilde{\mathcal{Q}}_{I\dot{\alpha}}$.
- Here I = 1, 2 are $SU(2)_R$ indices and $\alpha = \pm$, $\dot{\alpha} = \pm$ Lorentz indices.
- For concreteness we choose to compute the index with respect to Q₁. all other choices are equivalent.
- ullet The elements of the superconformal algbra which commute with $ilde{Q}_{1\dot{-}}$ are

$$\begin{split} \delta_{-} &\equiv 2 \left\{ Q_{1-}, (Q_{1-})^{\dagger} \right\} = E - 2j_{1} - 2R - r, \\ \delta_{+} &\equiv 2 \left\{ Q_{1+}, (Q_{1+})^{\dagger} \right\} = E + 2j_{1} - 2R - r, \\ \bar{\delta'}_{+} &\equiv 2 \{ \tilde{Q}_{2+}, (\tilde{Q}_{2+})^{\dagger} \} = E + 2j_{2} + 2R + r, \\ \bar{\delta}_{-} &\equiv 2 \{ \tilde{Q}_{1-}, (\tilde{Q}_{1-})^{\dagger} \} = E - 2j_{2} - 2R + r. \end{split}$$

- *E* is the conformal dimension, (j_1, j_2) the Cartan generators of the $SU(2)_1 \otimes SU(2)_2$ isometry group, and (R, r), the Cartan generators of the $SU(2)_R \otimes U(1)_r$ R-symmetry group.
- The index we will compute is

$$\mathcal{I}(p,q,t,\dots) = \operatorname{Tr}(-1)^F p^{\frac{1}{2}\delta_+} q^{\frac{1}{2}\delta_-} t^{R+r} e^{-\beta \,\overline{\delta}_-} \dots$$

イロト イヨト イヨト

TQFT structure

- The superconformal index does not depend on the tunable parameters/coupling of the theory.
- For Gaiotto theories this means that the index does not depend on the moduli of the underlying Riemann surface.
- Thus, it is expected that the index will be given by a 2d TQFT computation.
- The structure constants of this TQFT are the indices of the three-punctured spheres,

$\mathcal{I}(\mathsf{x}_1,\mathsf{x}_2,\mathsf{x}_3)$

where x_i are fugacities of the Cartan subgroup of the flavor symmetry.

• A basic property of a TQFT is that the different pair-of-pants decompositions of the riemann surface give the same result - the algebra defined by the structure constants is associative:

$$\oint \prod_{i=1}^{k-1} \frac{d\mathsf{x}^i}{2\pi i \mathsf{x}_i} \, \Delta(\mathsf{x}) \, \mathcal{I}(\mathsf{x}_1, \mathsf{x}_2, \mathsf{x}) \, \mathcal{I}_V(\mathsf{x}) \, \mathcal{I}(\mathsf{x}^{-1}, \mathsf{x}_3, \mathsf{x}_4) \, .$$

The associativity implies that this index is invariant under permutations of x_i .

イロト イポト イヨト イヨト

TQFT structure

- The superconformal index does not depend on the tunable parameters/coupling of the theory.
- For Gaiotto theories this means that the index does not depend on the moduli of the underlying Riemann surface.
- Thus, it is expected that the index will be given by a 2d TQFT computation.
- The structure constants of this TQFT are the indices of the three-punctured spheres,

$\mathcal{I}(x_1, x_2, x_3)$

where \mathbf{x}_i are fugacities of the Cartan subgroup of the flavor symmetry.

 A basic property of a TQFT is that the different pair-of-pants decompositions of the riemann surface give the same result - the algebra defined by the structure constants is associative:

$$\oint \prod_{i=1}^{k-1} \frac{dx^i}{2\pi i x_i} \, \Delta(\mathbf{x}) \, \mathcal{I}(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}) \, \mathcal{I}_V(\mathbf{x}) \, \mathcal{I}(\mathbf{x}^{-1}, \mathbf{x}_3, \mathbf{x}_4) \, .$$

The associativity implies that this index is invariant under permutations of x_i .

・ロン ・四 ・ ・ ヨン ・ ヨン

Our strategy I - Look for a nice "basis"

- We want to obtain the superconformal index for all the $\mathcal{N} = 2$ generalized quivers.
- Our strategy in solving the problem is to rewrite the index of the Lagrangian theories in such a way that the Riemann surface underlying the theory will be clearly visible in the expressions. Thus, allowing for generalizations to arbitrary rank and Riemann surface.
- Choose a basis for symmetric functions (in case of SU(n) gauge group) f^λ(a₁,..., a_n) orthonormal with respect to a measure Â(a₁,..., a_n).
- Define structure constants

$$\mathcal{I}(\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3) = \mathcal{K}(\mathbf{a}_1) \mathcal{K}(\mathbf{a}_2) \mathcal{K}(\mathbf{a}_3) \sum_{\mu, \nu, \lambda} C_{\mu\nu\lambda} f^{\mu}(\mathbf{a}_1) f^{\nu}(\mathbf{a}_2) f^{\lambda}(\mathbf{a}_3).$$

such that

$${\mathcal I}_V(\mathsf{a}) \, \left({\mathcal K}(\mathsf{a})
ight)^2 \, \Delta(\mathsf{a}) = \hat{\Delta}(\mathsf{a}) \, ,$$

with Δ being the Haar measure and $\mathcal{I}_V(\mathbf{a})$ is the index of the vector multiplet.

Gluing two spheres is then just multiplying the structure constants

$$\begin{split} &\oint \prod_{i=1}^{k-1} \frac{da^i}{2\pi i a_i} \,\Delta(\mathbf{a}) \,\mathcal{I}_V(\mathbf{a}) \mathcal{I}(\mathbf{a}, \mathbf{a}_1, \mathbf{a}_2) \mathcal{I}(\mathbf{a}^{-1}, \mathbf{a}_3, \mathbf{a}_4) = \\ &\prod_{i=1}^{4} \mathcal{K}(\mathbf{a}_i) \,\sum_{\mu, \nu, \lambda, \rho} \,\mathcal{C}_{\mu\nu\alpha} \,\delta^{\alpha\beta} \,\mathcal{C}_{\beta\lambda\rho} \,f_\mu(\mathbf{a}_1) \,f_\nu(\mathbf{a}_2) \,f_\lambda(\mathbf{a}_3) \,f_\rho(\mathbf{a}_4) \,. \end{split}$$

- S-duality implies that the structure constants are associative: $C_{\alpha\beta}{}^{\gamma}C_{\gamma\delta\rho} = C_{\alpha\delta}{}^{\gamma}C_{\gamma\beta\rho}$.
- igle "Diagonalize" the bais such that the only non-zero structure constants will be $\mathcal{C}_{lpha lpha lpha}$.
- We will see that this diagonal basis representation of the index of Lagrangian three-punctured spheres is naturally generalizable to arbitrary rank and punctures.

Our strategy I - Look for a nice "basis"

- We want to obtain the superconformal index for all the $\mathcal{N} = 2$ generalized quivers.
- Our strategy in solving the problem is to rewrite the index of the Lagrangian theories in such a way that the Riemann surface underlying the theory will be clearly visible in the expressions. Thus, allowing for generalizations to arbitrary rank and Riemann surface.
- Choose a basis for symmetric functions (in case of SU(n) gauge group) f^λ(a₁,..., a_n) orthonormal with respect to a measure Â(a₁,..., a_n).
- Define structure constants

$$\mathcal{I}(\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3) = \mathcal{K}(\mathbf{a}_1) \mathcal{K}(\mathbf{a}_2) \mathcal{K}(\mathbf{a}_3) \sum_{\mu, \nu, \lambda} C_{\mu\nu\lambda} f^{\mu}(\mathbf{a}_1) f^{\nu}(\mathbf{a}_2) f^{\lambda}(\mathbf{a}_3),$$

such that

$$\mathcal{I}_{V}(\mathsf{a}) \ \left(\mathcal{K}(\mathsf{a})\right)^{2} \ \Delta(\mathsf{a}) = \hat{\Delta}(\mathsf{a}) \,,$$

with Δ being the Haar measure and $\mathcal{I}_V(\mathbf{a})$ is the index of the vector multiplet.

Gluing two spheres is then just multiplying the structure constants

$$\begin{split} \oint \prod_{i=1}^{k-1} \frac{da^i}{2\pi i a_i} \,\Delta(\mathbf{a}) \,\mathcal{I}_V(\mathbf{a}) \mathcal{I}(\mathbf{a}, \mathbf{a}_1, \mathbf{a}_2) \mathcal{I}(\mathbf{a}^{-1}, \mathbf{a}_3, \mathbf{a}_4) = \\ &\prod_{i=1}^4 \mathcal{K}(\mathbf{a}_i) \,\sum_{\mu,\nu,\lambda,\rho} C_{\mu\nu\alpha} \,\delta^{\alpha\beta} \,C_{\beta\lambda\rho} \,f_\mu(\mathbf{a}_1) \,f_\nu(\mathbf{a}_2) \,f_\lambda(\mathbf{a}_3) \,f_\rho(\mathbf{a}_4) \,. \end{split}$$

• S-duality implies that the structure constants are associative: $C_{\alpha\beta}{}^{\gamma}C_{\gamma\delta\rho} = C_{\alpha\delta}{}^{\gamma}C_{\gamma\beta\rho}$.

- lacksquare "Diagonalize" the bais such that the only non-zero structure constants will be $\mathcal{C}_{lpha lpha lpha}$.
- We will see that this diagonal basis representation of the index of Lagrangian three-punctured spheres is naturally generalizable to arbitrary rank and punctures.

Our strategy I - Look for a nice "basis"

- We want to obtain the superconformal index for all the $\mathcal{N} = 2$ generalized quivers.
- Our strategy in solving the problem is to rewrite the index of the Lagrangian theories in such a way that the Riemann surface underlying the theory will be clearly visible in the expressions. Thus, allowing for generalizations to arbitrary rank and Riemann surface.
- Choose a basis for symmetric functions (in case of SU(n) gauge group) f^λ(a₁,..., a_n) orthonormal with respect to a measure Â(a₁,..., a_n).
- Define structure constants

$$\mathcal{I}(\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3) = \mathcal{K}(\mathbf{a}_1) \mathcal{K}(\mathbf{a}_2) \mathcal{K}(\mathbf{a}_3) \sum_{\mu, \nu, \lambda} C_{\mu\nu\lambda} f^{\mu}(\mathbf{a}_1) f^{\nu}(\mathbf{a}_2) f^{\lambda}(\mathbf{a}_3),$$

such that

$$\mathcal{I}_{V}(\mathsf{a}) \, \left(\mathcal{K}(\mathsf{a})\right)^{2} \, \Delta(\mathsf{a}) = \hat{\Delta}(\mathsf{a}) \, ,$$

with Δ being the Haar measure and $\mathcal{I}_V(\mathbf{a})$ is the index of the vector multiplet.

Gluing two spheres is then just multiplying the structure constants

$$\begin{split} \oint \prod_{i=1}^{k-1} \frac{da^i}{2\pi i a_i} \,\Delta(\mathbf{a}) \,\mathcal{I}_V(\mathbf{a}) \mathcal{I}(\mathbf{a}, \mathbf{a}_1, \mathbf{a}_2) \mathcal{I}(\mathbf{a}^{-1}, \mathbf{a}_3, \mathbf{a}_4) = \\ &\prod_{i=1}^4 \mathcal{K}(\mathbf{a}_i) \,\sum_{\mu,\nu,\lambda,\rho} C_{\mu\nu\alpha} \,\delta^{\alpha\beta} \,C_{\beta\lambda\rho} \,f_\mu(\mathbf{a}_1) \,f_\nu(\mathbf{a}_2) \,f_\lambda(\mathbf{a}_3) \,f_\rho(\mathbf{a}_4) \,. \end{split}$$

- S-duality implies that the structure constants are associative: $C_{\alpha\beta}^{\gamma}C_{\gamma\delta\rho} = C_{\alpha\delta}^{\gamma}C_{\gamma\beta\rho}$.
- "Diagonalize" the bais such that the only non-zero structure constants will be $C_{\alpha\alpha\alpha}$.
- We will see that this diagonal basis representation of the index of Lagrangian three-punctured spheres is naturally generalizable to arbitrary rank and punctures.

Hall-Littlewood index

• We take the limit $p, q \rightarrow 0$ of the full index

$$\mathcal{I} = \mathsf{Tr}(-1)^F \, \mathbf{p}^{\frac{1}{2}\delta_{1+}} \, \mathbf{q}^{\frac{1}{2}\delta_{1-}} \, t^{R+r} \, e^{-\frac{1}{2}\beta \, \bar{\delta}_{-}} \, .$$

Alternatively can state that it is given by

$$\mathcal{I} = \mathsf{Tr}(-1)^F t^{E-R},$$

evaluated on states satisfying $j_1 = 0$ and E - 2R - r = 0.

- The states contributing to this index are annihilated by three supercharges, two chiral and one anti-chiral.
- For Lagrangian theories the only "letters" contributing to this index are a scalar q (t^{¹/₂}) from the hypermultiplet and a gaugino λ
 ₁₊ (−t) from the vector multiplet.

HL index - SU(2) quivers

- The quiver theories with $\mathcal{N}=2$ supersymmetry are the simplest: all the relevant theories have Lagrangian description.
- The basic building block corresponding to a sphere with three punctures is a free hypermultiplet.
- The HL index of the free hyper-multiplet is given by

$$\mathcal{I}(a_1, a_2, a_3) = rac{1}{\prod_{\pm 1} (1 - t^{rac{1}{2}} a_1^{\pm 1} a_2^{\pm 1} a_3^{\pm 1})} \,.$$

The index of the free hyper-multiplet can be written as

$$\begin{split} \mathcal{I}(a_1, a_2, a_3) &= \frac{1 + t^2}{1 - t^2} \prod_{i=1}^3 \frac{1}{(1 - ta_i^2) (1 - t/a_i^2)} \sum_{\lambda=0}^\infty \frac{1}{P_{\lambda}^{HL}(t^{\frac{1}{2}}, t^{-\frac{1}{2}} \mid t)} \prod_{i=1}^3 P_{\lambda}^{HL}(a_i, a_i^{-1} \mid t) \\ &= \mathcal{N}(t) \quad \prod_{i=1}^3 \mathcal{K}(a_i) \qquad \qquad \sum_{\lambda=0}^\infty \mathcal{C}_{\lambda\lambda\lambda} \qquad \prod_{i=1}^3 f^{\lambda}(a_i) \,. \end{split}$$

where

$$P_{\lambda}^{HL}(a, a^{-1}|t) = \mathcal{N}_{\lambda}(\mathfrak{t}) \left(\chi_{\lambda}(a) - t \, \chi_{\lambda-2}(a) \right)$$

are SU(2) Hall-Littlewood polynomials.

HL index - SU(2) quivers

- The quiver theories with $\mathcal{N} = 2$ supersymmetry are the simplest: all the relevant theories have Lagrangian description.
- The basic building block corresponding to a sphere with three punctures is a free hypermultiplet.
- The HL index of the free hyper-multiplet is given by

$$\mathcal{I}(a_1, a_2, a_3) = rac{1}{\prod_{\pm 1} (1 - t^{rac{1}{2}} a_1^{\pm 1} a_2^{\pm 1} a_3^{\pm 1})} \,.$$

• The index of the free hyper-multiplet can be written as

$$\begin{split} \mathcal{I}(a_{1},a_{2},a_{3}) &= \frac{1+\mathfrak{t}^{2}}{1-\mathfrak{t}^{2}} \prod_{i=1}^{3} \frac{1}{\left(1-ta_{i}^{2}\right)\left(1-t/a_{i}^{2}\right)} \sum_{\lambda=0}^{\infty} \frac{1}{\mathcal{P}_{\lambda}^{HL}(t^{\frac{1}{2}},t^{-\frac{1}{2}}|t)} \prod_{i=1}^{3} \mathcal{P}_{\lambda}^{HL}(a_{i},a_{i}^{-1}|t) \\ &= \mathcal{N}(t) \quad \prod_{i=1}^{3} \mathcal{K}(a_{i}) \qquad \qquad \sum_{\lambda=0}^{\infty} \mathcal{C}_{\lambda\lambda\lambda} \qquad \prod_{i=1}^{3} f^{\lambda}(a_{i}). \end{split}$$

where

$$P_{\lambda}^{HL}(a, a^{-1}|t) = \mathcal{N}_{\lambda}(\mathfrak{t}) \left(\chi_{\lambda}(a) - t \, \chi_{\lambda-2}(a) \right)$$

are SU(2) Hall-Littlewood polynomials.

Shlomo S. Razamat (IAS)

HL index - SU(2) quivers (cont.)

The Hall-Littlewood polynomials are orthonormal under the following measure

$$\Delta_{HL}(z) = \frac{1}{2} \frac{(1-z^2)(1-z^{-2})}{(1-t\,z^2)(1-t\,z^{-2})} \qquad (=\Delta(a)\,\mathcal{K}(a)\,)\,.$$

The index of the vector multiplet is

$$\mathcal{I}_V(z) = (1-t)(1-tz^2)(1-tz^{-2}) \quad (=(1-t)\mathcal{K}^{-1}(a)).$$

• Using the orthogonality of the HL polynomials we can immediately write the index of any SU(2) quiver

$$\mathcal{I}_{\mathfrak{g},s}(a_i) = (1-t)^{\mathfrak{g}-1} (1+t)^{2\mathfrak{g}-2+s} \prod_{i=1}^s \mathcal{K}(a_i) \sum_{\lambda=0}^\infty \frac{\prod_{i=1}^s P_\lambda^{HL}(a_i,a_i^{-1}|\mathfrak{t})}{\left[P_\lambda^{HL}(\mathfrak{t}^{\frac{1}{2}},\mathfrak{t}^{-\frac{1}{2}}|\mathfrak{t})\right]^{2\mathfrak{g}-2+s}} \,.$$

HL index - higher rank generalization

- The expression for the *SU*(2) index is tightly tied to the underlying Riemann surface and to the rank of the group. We thus can conjecture a simple generalizion to higher ranks.
- The HL polynomials can be defined for U(k) groups

$$\mathcal{P}_{\lambda}^{\mathcal{HL}}(x_1,\ldots,x_k|\ t) = \mathcal{N}_{\lambda}(t) \sum_{\sigma\in S_k} \sigma\left(x_1^{\lambda_1}\ldots x_k^{\lambda_k}\prod_{i< j}rac{x_i-t\,x_j}{x_i-x_j}
ight)\,.$$

and thus for higher rank building blocks, the T_k theories, the HL index is given by

$$\mathcal{I}(\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3) = \mathcal{N}_k(t) \prod_{l=1}^3 \mathcal{K}(\mathbf{a}_l) \sum_{\lambda} \frac{1}{P_{\lambda}^{HL}(t^{\frac{k-1}{2}}, \dots, t^{\frac{1-k}{2}})} \prod_{l=1}^3 P_{\lambda}^{HL}(\mathbf{a}_l)$$

The conjecture for the index with arbitrary punctures

$$\mathcal{I}_{\Lambda_1,\Lambda_2,\Lambda_3}(\mathbf{a}_1,\mathbf{a}_2,\mathbf{a}_3) = \mathcal{N}_k(t) \prod_{l=1}^3 \mathcal{K}_{\Lambda_l}(\mathbf{a}_l) \sum_{\lambda} \frac{1}{P_{\lambda}^{HL}(t^{\frac{k-1}{2}},\ldots,t^{\frac{1-k}{2}})} \prod_{l=1}^3 P_{\lambda}^{HL}(\mathbf{a}_l(\Lambda_l)) \ .$$

HL index - higher rank generalization

- The expression for the *SU*(2) index is tightly tied to the underlying Riemann surface and to the rank of the group. We thus can conjecture a simple generalizion to higher ranks.
- The HL polynomials can be defined for U(k) groups

$$\mathcal{P}_{\lambda}^{\mathcal{HL}}(x_1,\ldots,x_k|\ t) = \mathcal{N}_{\lambda}(t) \sum_{\sigma\in S_k} \sigma\left(x_1^{\lambda_1}\ldots x_k^{\lambda_k}\prod_{i< j}rac{x_i-t\,x_j}{x_i-x_j}
ight)\,.$$

and thus for higher rank building blocks, the T_k theories, the HL index is given by

$$\mathcal{I}(\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3) = \mathcal{N}_k(t) \prod_{l=1}^3 \mathcal{K}(\mathbf{a}_l) \sum_{\lambda} \frac{1}{P_{\lambda}^{HL}(t^{\frac{k-1}{2}}, \dots, t^{\frac{1-k}{2}})} \prod_{l=1}^3 P_{\lambda}^{HL}(\mathbf{a}_l)$$

The conjecture for the index with arbitrary punctures

$$\mathcal{I}_{\Lambda_1,\Lambda_2,\Lambda_3}(\mathbf{a}_1,\mathbf{a}_2,\mathbf{a}_3) = \mathcal{N}_k(t) \prod_{l=1}^3 \mathcal{K}_{\Lambda_l}(\mathbf{a}_l) \sum_{\lambda} \frac{1}{P_{\lambda}^{HL}(t^{\frac{k-1}{2}},\ldots,t^{\frac{1-k}{2}})} \prod_{l=1}^3 P_{\lambda}^{HL}(\mathbf{a}_l(\Lambda_l)) \right|.$$

HL index - SU(3) quivers

• The index of the *T*₃ theory is given by

$$\mathcal{I}(\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3) = \frac{(1+t)(1+t+t)}{(1-t)^2} \prod_{i=1}^3 \mathcal{K}(\mathbf{a}_i) \sum_{\lambda_1, \lambda_2} \frac{1}{P_{\lambda_1, \lambda_2}^{HL}(t, t^{-1}, 1\mid t)} \prod_{i=1}^3 P_{\lambda_1, \lambda_2}^{HL}(\mathbf{a}_i\mid t) \,.$$

- This expression agrees with the one obtained from Argyres-Seiberg duality (Gadde-Rastelli-SR-Yan 1003.4244) and thus in particular is consistent with this duality.
- For T_3 theory the flavor symmetry is known to enhance: $SU(3)^3 \rightarrow E_6$.
- The above expression can be shown (order by order in t) to be equal to

$$\mathcal{I}(\mathbf{a_1}, \mathbf{a_2}, \mathbf{a_3}) = \sum_{k=0}^{\infty} [0, k, 0, 0, 0, 0]_z t^k,$$

where z is an E_6 fugacity and $[0, k, 0, 0, 0, 0]_z$ are the characters of the irreducible representation of E_6 with Dynkin labels [0, k, 0, 0, 0, 0].

 The E₆ covariant expression was conjectured in Benvenuti-Hanany-Mekareeya 1005.3026 (see also Gaiotto-Neitzke-Tachikawa 0810.4541)

3

・ロン ・四 ・ ・ ヨン ・ ヨン

HL index - SU(3) quivers

• The index of the T₃ theory is given by

$$\mathcal{I}(\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3) = \frac{(1+t)(1+t+t)}{(1-t)^2} \prod_{i=1}^3 \mathcal{K}(\mathbf{a}_i) \sum_{\lambda_1, \lambda_2} \frac{1}{P_{\lambda_1, \lambda_2}^{HL}(t, t^{-1}, 1\mid t)} \prod_{i=1}^3 P_{\lambda_1, \lambda_2}^{HL}(\mathbf{a}_i\mid t) \,.$$

- This expression agrees with the one obtained from Argyres-Seiberg duality (Gadde-Rastelli-SR-Yan 1003.4244) and thus in particular is consistent with this duality.
- For T_3 theory the flavor symmetry is known to enhance: $SU(3)^3 \rightarrow E_6$.
- The above expression can be shown (order by order in t) to be equal to

$$\mathcal{I}(\mathbf{a_1}, \mathbf{a_2}, \mathbf{a_3}) = \sum_{k=0}^{\infty} [0, k, 0, 0, 0, 0]_z t^k,$$

where z is an E_6 fugacity and $[0, k, 0, 0, 0, 0]_z$ are the characters of the irreducible representation of E_6 with Dynkin labels [0, k, 0, 0, 0, 0].

• The *E*₆ covariant expression was conjectured in Benvenuti-Hanany-Mekareeya 1005.3026 (see also Gaiotto-Neitzke-Tachikawa 0810.4541)

• We can "guess" the HL index for any $\mathcal{N} = 2$ generalized quiver for arbitrary rank and types of punctures.

This guess can be subjected to numerous checks.

- An immediate generalization is to index with more superconformal fugacities turned on. It so happens that with p = 0 and q, t generic all one has to do is to to exchange HL polynomials with Macdonald polynomials.
- In another simle specialization of parameters, t = q, the relevant functions are Schur polynomials and the index is directly related to 2d qYM.
- Where do these special polynomials come from?
- Macdonald polynomials are simultaneous eigenfunctions of a set commuting "Hamiltonians" defining an integrable quantum mechanics: the trigonometric Ruijsenaars-Schneider (RS) model.
- This model is a one parameter generalization of the Calogero-Moser-Sutherland systems (the limit p = 0 and $q, t = q^g \rightarrow 1$ which gives Jack polynomials).
- In particular it admits an elliptic version with three parameters directly analogous to our p, q, and t.
- In what follows we will see hoiw these "Hamiltonians" emerge from the index.

- We can "guess" the HL index for any $\mathcal{N} = 2$ generalized quiver for arbitrary rank and types of punctures.
- This guess can be subjected to numerous checks.
- An immediate generalization is to index with more superconformal fugacities turned on. It so happens that with p = 0 and q, t generic all one has to do is to to exchange HL polynomials with Macdonald polynomials.
- In another simle specialization of parameters, t = q, the relevant functions are Schur polynomials and the index is directly related to 2d qYM.
- Where do these special polynomials come from?
- Macdonald polynomials are simultaneous eigenfunctions of a set commuting "Hamiltonians" defining an integrable quantum mechanics: the trigonometric Ruijsenaars-Schneider (RS) model.
- This model is a one parameter generalization of the Calogero-Moser-Sutherland systems (the limit p = 0 and $q, t = q^g \rightarrow 1$ which gives Jack polynomials).
- In particular it admits an elliptic version with three parameters directly analogous to our p, q, and t.
- In what follows we will see hoiw these "Hamiltonians" emerge from the index.

- We can "guess" the HL index for any $\mathcal{N} = 2$ generalized quiver for arbitrary rank and types of punctures.
- This guess can be subjected to numerous checks.
- An immediate generalization is to index with more superconformal fugacities turned on. It so happens that with p = 0 and q, t generic all one has to do is to to exchange HL polynomials with Macdonald polynomials.
- In another simle specialization of parameters, t = q, the relevant functions are Schur polynomials and the index is directly related to 2d qYM.
- Where do these special polynomials come from?
- Macdonald polynomials are simultaneous eigenfunctions of a set commuting "Hamiltonians" defining an integrable quantum mechanics: the trigonometric Ruijsenaars-Schneider (RS) model.
- This model is a one parameter generalization of the Calogero-Moser-Sutherland systems (the limit p = 0 and $q, t = q^g \rightarrow 1$ which gives Jack polynomials).
- In particular it admits an elliptic version with three parameters directly analogous to our p, q, and t.
- In what follows we will see hoiw these "Hamiltonians" emerge from the index.

- We can "guess" the HL index for any $\mathcal{N}=2$ generalized quiver for arbitrary rank and types of punctures.
- This guess can be subjected to numerous checks.
- An immediate generalization is to index with more superconformal fugacities turned on. It so happens that with p = 0 and q, t generic all one has to do is to to exchange HL polynomials with Macdonald polynomials.
- In another simle specialization of parameters, t = q, the relevant functions are Schur polynomials and the index is directly related to 2d qYM.
- Where do these special polynomials come from?
- Macdonald polynomials are simultaneous eigenfunctions of a set commuting "Hamiltonians" defining an integrable quantum mechanics: the trigonometric Ruijsenaars-Schneider (RS) model.
- This model is a one parameter generalization of the Calogero-Moser-Sutherland systems (the limit p = 0 and $q, t = q^g \rightarrow 1$ which gives Jack polynomials).
- In particular it admits an elliptic version with three parameters directly analogous to our p, q, and t.
- In what follows we will see hoiw these "Hamiltonians" emerge from the index.

- A TE N - A TE N

Image: A matrix

Strategy II - More explicit derivation of the expressions

- The index has many poles in flavor fugacities.
- The index of the free hyper is

$$\mathcal{I}_{hyp.}(b,c;a) = \prod_{i,j=1}^{N} \prod_{m,n\geq 0} \frac{1 - p^{n+1}q^{m+1}t^{-\frac{1}{2}}(ab_ic_j)^{-1}}{1 - p^n q^m t^{\frac{1}{2}}ab_ic_j} \frac{1 - p^{n+1}q^{m+1}t^{-\frac{1}{2}}ab_ic_j}{1 - p^n q^m t^{\frac{1}{2}}(ab_ic_j)^{-1}}.$$

- A natural question is what are the residues?
- Consider a general quiver associated to Riemann surface C with index I^C and couple a free hyper-multiplet to it.
- It is possible to compute the residue of the full theory I at a pole of the U(1) fugacity without explicitly knowing the index of the theory associated to the Riemann surface C, I^C.
- The residue can be presented as a difference operator acting on the SU(N) flavor fugacity living "on the tube" I^C.
- This operator is one of the RS "Hamiltonians" !
- Using S-duality we can argue that the index is diagonal in the basis of eigen-functions of these operators.

(日) (同) (日) (日)

Strategy II - More explicit derivation of the expressions

- The index has many poles in flavor fugacities.
- The index of the free hyper is

$$\mathcal{I}_{hyp.}(b,c;a) = \prod_{i,j=1}^{N} \prod_{m,n\geq 0} \frac{1 - p^{n+1}q^{m+1}t^{-\frac{1}{2}}(ab_{j}c_{j})^{-1}}{1 - p^{n}q^{m}t^{\frac{1}{2}}ab_{j}c_{j}} \frac{1 - p^{n+1}q^{m+1}t^{-\frac{1}{2}}ab_{j}c_{j}}{1 - p^{n}q^{m}t^{\frac{1}{2}}(ab_{j}c_{j})^{-1}}.$$

- A natural question is what are the residues?
- Consider a general quiver associated to Riemann surface C with index I^C and couple a free hyper-multiplet to it.
- It is possible to compute the residue of the full theory I at a pole of the U(1) fugacity without explicitly knowing the index of the theory associated to the Riemann surface C, I^C.
- The residue can be presented as a difference operator acting on the SU(N) flavor fugacity living "on the tube" I^C.
- This operator is one of the RS "Hamiltonians" !!
- Using S-duality we can argue that the index is diagonal in the basis of eigen-functions of these operators.

The appearance of the RS "hamiltonians"

After some work one can show that the index of the theory with a free hyper coupled to it has poles at

$$\mathbf{a} = t^{\frac{1}{2}} q^{\frac{1}{N}r} p^{\frac{1}{N}r'}, \qquad r, r' \in \mathbb{N}.$$

- The contour integrals involved in gluing the sphere to the Riemann surface C are "pinched" at these values of a and that is why the poles appear.
- The residue at a = t² is given simply by I_C, i.e. by the index on the Riemann surface. That is computing this resideue simply amounts to removing the U(1) puncture.
- The residue at $a = t^{\frac{1}{2}} q^{\frac{1}{N}}$ is given simply by

$$\mathfrak{S}_{(1,0)}(a) \mathcal{I}_{\mathcal{C}}(a,\cdots),$$

with

$$\mathfrak{S}_{(1,0)} \mathcal{I}_{\mathcal{C}} = \frac{\theta(t;p)}{\theta(q^{-1};p)} \sum_{i=1}^{N} \prod_{j \neq i} \frac{\theta(\frac{t}{q} b_i/b_j;p)}{\theta(b_j/b_i;p)} \mathcal{I}_{\mathcal{C}}(b_i \to q^{\frac{1-N}{N}} b_i, \ b_{j \neq i} \to q^{\frac{1}{N}} b_j) \,.$$

- This operator, up to trivial manipulations, IS the basic elliptic RS difference operator.
- Higher RS operators are obtained from other residues. In particular the N − 1 independent Hamiltonians are encoded inside S_(r,0).

3

イロト イポト イヨト イヨト

The appearance of the RS "hamiltonians"

After some work one can show that the index of the theory with a free hyper coupled to it has poles at

$$a = t^{\frac{1}{2}} q^{\frac{1}{N}r} p^{\frac{1}{N}r'}, \qquad r, r' \in \mathbb{N}.$$

- The contour integrals involved in gluing the sphere to the Riemann surface C are "pinched" at these values of a and that is why the poles appear.
- The residue at a = t^{1/2}/2 is given simply by I_C, i.e. by the index on the Riemann surface. That is computing this resideue simply amounts to removing the U(1) puncture.

The residue at a = t² q^N is given simply by

$$\mathfrak{S}_{(1,0)}(a) \mathcal{I}_{\mathcal{C}}(a,\cdots),$$

with

$$\mathfrak{S}_{(1,0)} \mathcal{I}_{\mathcal{C}} = \frac{\theta(t;p)}{\theta(q^{-1};p)} \sum_{i=1}^{N} \prod_{j\neq i} \frac{\theta(\frac{t}{q} b_i/b_j;p)}{\theta(b_j/b_i;p)} \mathcal{I}_{\mathcal{C}}(b_i \to q^{\frac{1-N}{N}} b_i, \ b_{j\neq i} \to q^{\frac{1}{N}} b_j) \,.$$

This operator, up to trivial manipulations, IS the basic elliptic RS difference operator.

● Higher RS operators are obtained from other residues. In particular the N − 1 independent Hamiltonians are encoded inside S_(r,0).

<ロ> (日) (日) (日) (日) (日)

The appearance of the RS "hamiltonians"

• After some work one can show that the index of the theory with a free hyper coupled to it has poles at

$$a = t^{\frac{1}{2}} q^{\frac{1}{N}r} p^{\frac{1}{N}r'}, \qquad r, r' \in \mathbb{N}.$$

- The contour integrals involved in gluing the sphere to the Riemann surface C are "pinched" at these values of a and that is why the poles appear.
- The residue at a = t^{1/2}/2 is given simply by I_C, i.e. by the index on the Riemann surface. That is computing this resideue simply amounts to removing the U(1) puncture.
- The residue at $a = t^{\frac{1}{2}} q^{\frac{1}{N}}$ is given simply by

$$\mathfrak{S}_{(1,0)}(a) \mathcal{I}_{\mathcal{C}}(a, \cdots),$$

with

$$\mathfrak{S}_{(1,0)} \, \mathcal{I}_{\mathcal{C}} = \frac{\theta(t;p)}{\theta(q^{-1};p)} \, \sum_{i=1}^{N} \prod_{j \neq i} \frac{\theta(\frac{t}{q} b_i/b_j;p)}{\theta(b_j/b_i;p)} \, \mathcal{I}_{\mathcal{C}}(b_i \to q^{\frac{1-N}{N}} b_i, \, b_{j \neq i} \to q^{\frac{1}{N}} b_j) \, .$$

- This operator, up to trivial manipulations, IS the basic elliptic RS difference operator.
- Higher RS operators are obtained from other residues. In particular the N 1 independent Hamiltonians are encoded inside G_(r,0).

Comments on the RS hamiltonians

Thus, the residues of the index are obtained by acting with difference operators on it.

 Although the operators act on a given flavor fugacity, any choice of the flavor fugacity will give the same result due to S-duality,

$$\mathfrak{S}_{(1,0)}(a) \mathcal{I}_{\mathcal{C}}(a, b, \cdots) = \mathfrak{S}_{(1,0)}(b) \mathcal{I}_{\mathcal{C}}(a, b, \cdots).$$

 All these operators are commuting: physically the reason is again S-duality. (We can choose the operators to act on different U(1) punctures)

$$\left[\mathfrak{S}_{(r,r')},\mathfrak{S}_{(s,s')}\right]=0$$
.

- The operators are self-adjoint under a natural measure constructed from the Haar measure and the index of the vector multiplet.
- In the special limit p = 0 the eigenfunctions are given by the Macdonald polynomials.
- The eigenfunctions in the elliptic case are not explicitly known but can be either implicitly defined or constructed by a perturbation theory in the superconformal fugacities.

Comments on the RS hamiltonians

Thus, the residues of the index are obtained by acting with difference operators on it.

 Although the operators act on a given flavor fugacity, any choice of the flavor fugacity will give the same result due to S-duality,

$$\mathfrak{S}_{(1,0)}(a) \mathcal{I}_{\mathcal{C}}(a, b, \cdots) = \mathfrak{S}_{(1,0)}(b) \mathcal{I}_{\mathcal{C}}(a, b, \cdots).$$

 All these operators are commuting: physically the reason is again S-duality. (We can choose the operators to act on different U(1) punctures)

$$\left[\mathfrak{S}_{(r,r')},\mathfrak{S}_{(s,s')}\right]=0.$$

- The operators are self-adjoint under a natural measure constructed from the Haar measure and the index of the vector multiplet.
- In the special limit p = 0 the eigenfunctions are given by the Macdonald polynomials.

The eigenfunctions in the elliptic case are not explicitly known but can be either implicitly defined or constructed by a perturbation theory in the superconformal fugacities.

Comments on the RS hamiltonians

Thus, the residues of the index are obtained by acting with difference operators on it.

 Although the operators act on a given flavor fugacity, any choice of the flavor fugacity will give the same result due to S-duality,

$$\mathfrak{S}_{(1,0)}(a) \mathcal{I}_{\mathcal{C}}(a, b, \cdots) = \mathfrak{S}_{(1,0)}(b) \mathcal{I}_{\mathcal{C}}(a, b, \cdots).$$

 All these operators are commuting: physically the reason is again S-duality. (We can choose the operators to act on different U(1) punctures)

$$\left[\mathfrak{S}_{(r,r')},\mathfrak{S}_{(s,s')}\right]=0.$$

- The operators are self-adjoint under a natural measure constructed from the Haar measure and the index of the vector multiplet.
- In the special limit p = 0 the eigenfunctions are given by the Macdonald polynomials.
- The eigenfunctions in the elliptic case are not explicitly known but can be either implicitly defined or constructed by a perturbation theory in the superconformal fugacities.

A construction of the general index

S-duality is very constraining!! We can exploite it to write the index of the generic quivers.

lacksquare Defining the eigenfunctions of the RS difference operators by ψ^{λ} and also defining the eigenvalues as

$$\mathfrak{S}_{(1,0)} \cdot \psi^{\lambda} = E_{\lambda} \psi^{\lambda} ,$$

we obtain

$$\begin{split} \mathfrak{S}_{(1,0)} \ \mathcal{I}_{0,3} &= \sum_{\alpha,\beta,\gamma} C_{\alpha\beta\gamma} \, E_{\alpha} \, \psi^{\alpha}(a) \psi^{\beta}(b) \psi^{\gamma}(c) = \sum_{\alpha,\beta,\gamma} C_{\alpha\beta\gamma} \, E_{\beta} \, \psi^{\alpha}(a) \psi^{\beta}(b) \psi^{\gamma}(c) \\ &= \sum_{\alpha,\beta,\gamma} C_{\alpha\beta\gamma} \, E_{\gamma} \, \psi^{\alpha}(a) \psi^{\beta}(b) \psi^{\gamma}(c) \, . \end{split}$$

lacksquare This implies that the index is diagonal in the basis of ψ^{lpha}

$${\mathcal I}_{0,3} = \sum_{\alpha} C_{\alpha} \; \psi^{lpha}({\mathfrak a}) \psi^{lpha}(b) \psi^{lpha}(c) \, .$$

(With some more work the structure constants C_{lpha} can be also fixed from S-duality)

A construction of the general index

- S-duality is very constraining!! We can exploite it to write the index of the generic quivers.
- Defining the eigenfunctions of the RS difference operators by ψ^λ and also defining the eigenvalues as

$$\mathfrak{S}_{(1,0)} \cdot \psi^{\lambda} = E_{\lambda} \psi^{\lambda}$$
,

we obtain

$$\begin{split} \mathfrak{S}_{(1,0)} \,\, \mathcal{I}_{0,3} &= \sum_{\alpha,\beta,\gamma} \, C_{\alpha\beta\gamma} \, \mathsf{E}_{\alpha} \, \psi^{\alpha}(\mathsf{a}) \psi^{\beta}(\mathsf{b}) \psi^{\gamma}(\mathsf{c}) = \sum_{\alpha,\beta,\gamma} \, C_{\alpha\beta\gamma} \, \mathsf{E}_{\beta} \, \psi^{\alpha}(\mathsf{a}) \psi^{\beta}(\mathsf{b}) \psi^{\gamma}(\mathsf{c}) \\ &= \sum_{\alpha,\beta,\gamma} \, C_{\alpha\beta\gamma} \, \mathsf{E}_{\gamma} \, \psi^{\alpha}(\mathsf{a}) \psi^{\beta}(\mathsf{b}) \psi^{\gamma}(\mathsf{c}) \,. \end{split}$$

• This implies that the index is diagonal in the basis of ψ^{lpha}

$$\mathcal{I}_{0,3} = \sum_{\alpha} C_{\alpha} \psi^{\alpha}(a) \psi^{\alpha}(b) \psi^{\alpha}(c) \,.$$

(With some more work the structure constants C_{lpha} can be also fixed from S-duality)

(日) (同) (日) (日)

- We have obtained explicit expression for the (two parameter) superconformal index of all Gaiotto's theories.
- The expressions for the index are manifestly S-duality invariant and have a uniform form for all types of punctures.
- The basic trick of the argument I was to write the index in a convenient discrete basis.
- This basis is related to a very generic family of symmetric functions: Macdonald polynomials and their elliptic generalizations.
- These functions are eigenfunctions of RS difference operators. We have seen how these operators are encoded in the index through residue computations.

- Although looking on residues seems ad hoc they actually have physical meaning!!
- One can argue that the residues of the index of the type we discussed today give the index of a theory in presence of surface defects.
- The expressions we get for the index are suggestive of a 2d YM interpretation analogous to the AGT conjecture.
- 2d gauge theories are related to Calogero-Moser-Sutherland type of models (Gorsky-Nekrasov,...) and it will be interesting to understand these relations further.
- Another interesting question for further research is whether there is a direct physical derivation of our results. E.g. whether starting from the (2,0) 6d theory and compactifying on $S^3 \times S^1$ one can obtain the 2d gauge theory and/or the integrable quantum mechanical systems

Thank You!!

- Although looking on residues seems ad hoc they actually have physical meaning!!
- One can argue that the residues of the index of the type we discussed today give the index of a theory in presence of surface defects.
- The expressions we get for the index are suggestive of a 2d YM interpretation analogous to the AGT conjecture.
- 2d gauge theories are related to Calogero-Moser-Sutherland type of models (Gorsky-Nekrasov,...) and it will be interesting to understand these relations further.
- Another interesting question for further research is whether there is a direct physical derivation of our results. E.g. whether starting from the (2,0) 6d theory and compactifying on $S^3 \times S^1$ one can obtain the 2d gauge theory and/or the integrable quantum mechanical systems

Thank You!!

- Although looking on residues seems ad hoc they actually have physical meaning!!
- One can argue that the residues of the index of the type we discussed today give the index of a theory in presence of surface defects.
- The expressions we get for the index are suggestive of a 2d YM interpretation analogous to the AGT conjecture.
- 2d gauge theories are related to Calogero-Moser-Sutherland type of models (Gorsky-Nekrasov,...) and it will be interesting to understand these relations further.
- Another interesting question for further research is whether there is a direct physical derivation of our results. E.g. whether starting from the (2,0) 6d theory and compactifying on $S^3 \times S^1$ one can obtain the 2d gauge theory and/or the integrable quantum mechanical systems

...

Thank You!!

イロト イポト イヨト イヨト

- Although looking on residues seems ad hoc they actually have physical meaning!!
- One can argue that the residues of the index of the type we discussed today give the index of a theory in presence of surface defects.
- The expressions we get for the index are suggestive of a 2d YM interpretation analogous to the AGT conjecture.
- 2d gauge theories are related to Calogero-Moser-Sutherland type of models (Gorsky-Nekrasov,...) and it will be interesting to understand these relations further.
- Another interesting question for further research is whether there is a direct physical derivation of our results. E.g. whether starting from the (2,0) 6d theory and compactifying on $S^3 \times S^1$ one can obtain the 2d gauge theory and/or the integrable quantum mechanical systems

• • • •

Thank You!!