
N = 2 Superconformal Index and
Ruijsenaars-Schneider models

Shlomo S. Razamat

A. Gadde, L. Rastelli, SR, and W. Yan 1110.3740, 1104.3850, ...

D. Gaiotto, L. Rastelli, and SR to appear

February 14, 2012 - Rutgers

. . . . . .



. . . . . .

Objectives

The objective : To find an explicit form for the superconformal index for a large class of
N = 2 SCFTs which one can obtain by compactifying the (2, 0) theory on a Riemann
surface. Most of these theories are non-Lagrangian and thus direct computations are not
possible.

The strategy : “bottom-up”, “experimental math” approach; fully exploit the intuition
about the hidden 6d origin of the 4d theories to generalize directly computable results for
Lagrangian theories to non-Lagrangian ones.

By-product : An AGT-like relation between the superconformal index of the 4d theories to
2d gauge theories and to integrable systems.
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N = 2 quiver gauge theories

N = 2 SCFTs obtained by compactifying the (2, 0) theory on a punctured Riemann
surface. (Gaiotto 0904.2715)

The moduli of the Riemann surface map to gauge couplings of the corresponding 4d
theory.

The punctures are associated with flavor symmetries.

Basic building blocks: theories corresponding to spheres with three punctures (no

moduli=no tunable couplings)
I Free hypermultiplets of SU(k) theories correspond to spheres with two “maximal”

punctures and one U(1) puncture.
I All the three-punctured spheres which are not free hypers do not have Lagrangian

description.
I An example of interacting theory corresponding to three-punctured spheres is the

SU(3) theory with three maximal punctures is an SCFT with E6 flavor symmetry.

“Gluing” three-punctured spheres at the punctures corresponds to gauging an SU(k)
flavor symmetry factor.

Different “pair-of-pants” decompositions correspond to different S-duality frames.
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The superconformal index

The superconformal index (Kinney-Maldacena-Minwalla-Raju 2006) encodes the information about
the protected spectrum of a SCFT that can be obtained from representation theory alone.

It is evaluated by a trace formula of the schematic form

I(µi ) = Tr(−1)F e−
∑

i µiTi e−β δ , δ = 2
{
Q,Q†

}
(≥ 0) ,

where Q is the supercharge “with respect to which” the index is calculated and {Ti} a
complete set of generators that commute with Q and with each other.

The trace is over the states of the theory on S3 (in the radial quantization). States with
δ ̸= 0 cancel pairwise, so the index counts states with δ = 0 and it is independent of β.

For a theory with a Lagrangian description one can compute the index in the free limit of
the theory using simple matrix integral techniques.
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N = 2 index

N = 2 SCFTs have 8 supercharges (and eight superconformal counterparts): QIα, Q̃I α̇ .

Here I = 1, 2 are SU(2)R indices and α = ±, α̇ = ± Lorentz indices.

For concreteness we choose to compute the index with respect to Q̃1−̇ - all other choices
are equivalent.

The elements of the superconformal algbra which commute with Q̃1−̇ are

δ− ≡ 2
{
Q1−, (Q1−)†

}
= E − 2j1 − 2R − r ,

δ+ ≡ 2
{
Q1+, (Q1+)

†
}

= E + 2j1 − 2R − r ,

δ̄′+ ≡ 2{Q̃2+̇, (Q̃2+̇)
†} = E + 2j2 + 2R + r ,

δ̄− ≡ 2{Q̃1−̇, (Q̃1−̇)†} = E − 2j2 − 2R + r .

E is the conformal dimension, (j1, j2) the Cartan generators of the SU(2)1 ⊗ SU(2)2
isometry group, and (R , r), the Cartan generators of the SU(2)R ⊗ U(1)r R-symmetry
group.

The index we will compute is

I(p, q, t, . . . ) = Tr(−1)F p
1
2
δ+ q

1
2
δ− tR+r e−β δ̄− . . . .
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TQFT structure

The superconformal index does not depend on the tunable parameters/coupling of the
theory.

For Gaiotto theories this means that the index does not depend on the moduli of the
underlying Riemann surface.

Thus, it is expected that the index will be given by a 2d TQFT computation.

The structure constants of this TQFT are the indices of the three-punctured spheres,

I(x1, x2, x3)

where xi are fugacities of the Cartan subgroup of the flavor symmetry.

A basic property of a TQFT is that the different pair-of-pants decompositions of the
riemann surface give the same result - the algebra defined by the structure constants is
associative:

∮ k−1∏
i=1

dx i

2πixi
∆(x) I(x1, x2, x) IV (x) I(x−1, x3, x4) .

The associativity implies that this index is invariant under permutations of xi .
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Our strategy I - Look for a nice “basis”
We want to obtain the superconformal index for all the N = 2 generalized quivers.

Our strategy in solving the problem is to rewrite the index of the Lagrangian theories in such a way that the Riemann
surface underlying the theory will be clearly visible in the expressions. Thus, allowing for generalizations to arbitrary rank
and Riemann surface.

Choose a basis for symmetric functions (in case of SU(n) gauge group) f λ(a1, . . . , an) orthonormal with respect to a

measure ∆̂(a1, . . . , an).

Define structure constants

I(a1, a2, a3) = K(a1)K(a2)K(a3)
∑

µ,ν,λ

Cµνλ f µ(a1) f
ν (a2) f

λ(a3),

such that
IV (a) (K(a))2 ∆(a) = ∆̂(a) ,

with ∆ being the Haar measure and IV (a) is the index of the vector multiplet.

Gluing two spheres is then just multiplying the structure constants

∮ k−1∏
i=1

dai

2πiai
∆(a)IV (a)I(a, a1, a2)I(a−1

, a3, a4) =

4∏
i=1

K(ai )
∑

µ,ν,λ,ρ

Cµνα δ
αβ Cβλρ fµ(a1) fν (a2) fλ(a3) fρ(a4) .

S-duality implies that the structure constants are associative: Cαβ
γCγδρ = Cαδ

γCγβρ.

“Diagonalize” the bais such that the only non-zero structure constants will be Cααα.

We will see that this diagonal basis representation of the index of Lagrangian three-punctured spheres is naturally
generalizable to arbitrary rank and punctures.
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. . . . . .

Hall-Littlewood index

We take the limit p, q → 0 of the full index

I = Tr(−1)F p
1
2
δ1+ q

1
2
δ1− tR+r e−

1
2
β δ̄− .

Alternatively can state that it is given by

I = Tr(−1)F tE−R ,

evaluated on states satisfying j1 = 0 and E − 2R − r = 0.

The states contributing to this index are annihilated by three supercharges, two chiral and
one anti-chiral.

For Lagrangian theories the only “letters” contributing to this index are a scalar q (t
1
2 )

from the hypermultiplet and a gaugino λ̄1+̇ (−t) from the vector multiplet.
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. . . . . .

HL index - SU(2) quivers
The quiver theories with N = 2 supersymmetry are the simplest: all the relevant theories
have Lagrangian description.

The basic building block corresponding to a sphere with three punctures is a free
hypermultiplet.

The HL index of the free hyper-multiplet is given by

I(a1, a2, a3) =
1∏

±1(1− t
1
2 a±1

1 a±1
2 a±1

3 )
.

The index of the free hyper-multiplet can be written as

I(a1, a2, a3) =
1 + t2

1− t2

3∏
i=1

1(
1− ta2i

) (
1− t/a2i

) ∞∑
λ=0

1

PHL
λ (t

1
2 , t−

1
2 | t)

3∏
i=1

PHL
λ (ai , a

−1
i | t)

= N (t)
3∏

i=1

K(ai )
∞∑
λ=0

Cλλλ

3∏
i=1

f λ(ai ) .

where
PHL
λ (a, a−1|t) = Nλ(t) (χλ(a)− t χλ−2(a))

are SU(2) Hall-Littlewood polynomials.
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. . . . . .

HL index - SU(2) quivers (cont.)

The Hall-Littlewood polynomials are orthonormal under the following measure

∆HL(z) =
1

2

(1− z2) (1− z−2)

(1− t z2) (1− t z−2)
( = ∆(a)K(a) ) .

The index of the vector multiplet is

IV (z) = (1− t) (1− t z2) (1− t z−2) ( = (1− t)K−1(a) ) .

Using the orthogonality of the HL polynomials we can immediately write the index of any
SU(2) quiver

Ig,s(ai ) = (1− t)g−1 (1 + t)2g−2+s
s∏

i=1

K(ai )
∞∑
λ=0

∏s
i=1 P

HL
λ (ai , a

−1
i | t)[

PHL
λ (t

1
2 , t−

1
2 | t)

]2g−2+s
.
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. . . . . .

HL index - higher rank generalization

The expression for the SU(2) index is tightly tied to the underlying Riemann surface and
to the rank of the group. We thus can conjecture a simple generalizion to higher ranks.

The HL polynomials can be defined for U(k) groups

PHL
λ (x1, . . . , xk | t) = Nλ(t)

∑
σ∈Sk

σ

xλ1
1 . . . x

λk
k

∏
i<j

xi − t xj

xi − xj

 .

and thus for higher rank building blocks, the Tk theories, the HL index is given by

I(a1, a2, a3) = Nk(t)
3∏

I=1

K(aI )
∑
λ

1

PHL
λ (t

k−1
2 , . . . , t

1−k
2 )

3∏
I=1

PHL
λ (aI ) .

The conjecture for the index with arbitrary punctures

IΛ1,Λ2,Λ3
(a1, a2, a3) = Nk(t)

3∏
I=1

KΛI
(aI )

∑
λ

1

PHL
λ (t

k−1
2 , . . . , t

1−k
2 )

3∏
I=1

PHL
λ (aI (ΛI )) .
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. . . . . .

HL index - SU(3) quivers

The index of the T3 theory is given by

I(a1, a2, a3) =
(1 + t)(1 + t + t)

(1− t)2

3∏
i=1

K(ai )
∑
λ1,λ2

1

PHL
λ1,λ2

(t , t−1, 1| t)

3∏
i=1

PHL
λ1,λ2

(ai| t) .

This expression agrees with the one obtained from Argyres-Seiberg duality
(Gadde-Rastelli-SR-Yan 1003.4244) and thus in particular is consistent with this duality.

For T3 theory the flavor symmetry is known to enhance: SU(3)3 → E6.

The above expression can be shown (order by order in t) to be equal to

I(a1, a2, a3) =
∞∑
k=0

[0, k, 0, 0, 0, 0]z t
k ,

where z is an E6 fugacity and [0, k, 0, 0, 0, 0]z are the characters of the irreducible
representation of E6 with Dynkin labels [0, k, 0, 0, 0, 0].

The E6 covariant expression was conjectured in Benvenuti-Hanany-Mekareeya 1005.3026 (see also
Gaiotto-Neitzke-Tachikawa 0810.4541)
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. . . . . .

Summary and Comments

We can “guess” the HL index for any N = 2 generalized quiver for arbitrary rank and types of punctures.

This guess can be subjected to numerous checks.

An immediate generalization is to index with more superconformal fugacities turned on. It so happens that with p = 0
and q, t generic all one has to do is to to exchange HL polynomials with Macdonald polynomials.

In another simle specialization of parameters, t = q, the relevant functions are Schur polynomials and the index is
directly related to 2d qYM.

Where do these special polynomials come from?

Macdonald polynomials are simultaneous eigenfunctions of a set commuting “Hamiltonians” defining an integrable
quantum mechanics: the trigonometric Ruijsenaars-Schneider (RS) model .

This model is a one parameter generalization of the Calogero-Moser-Sutherland systems (the limit p = 0 and
q, t = qg → 1 which gives Jack polynomials).

In particular it admits an elliptic version with three parameters direcly analogous to our p, q, and t.

In what follows we will see hoiw these “Hamiltonians” emerge from the index.
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Macdonald polynomials are simultaneous eigenfunctions of a set commuting “Hamiltonians” defining an integrable
quantum mechanics: the trigonometric Ruijsenaars-Schneider (RS) model .

This model is a one parameter generalization of the Calogero-Moser-Sutherland systems (the limit p = 0 and
q, t = qg → 1 which gives Jack polynomials).

In particular it admits an elliptic version with three parameters direcly analogous to our p, q, and t.

In what follows we will see hoiw these “Hamiltonians” emerge from the index.
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. . . . . .

Strategy II - More explicit derivation of the expressions

The index has many poles in flavor fugacities.

The index of the free hyper is

Ihyp.(b, c; a) =
N∏

i,j=1

∏
m,n≥0

1 − pn+1qm+1t
− 1

2 (abi cj )
−1

1 − pnqmt
1
2 abi cj

1 − pn+1qm+1t
− 1

2 abi cj

1 − pnqmt
1
2 (abi cj )

−1

.

A natural question is what are the residues?

Consider a general quiver associated to Riemann surface C with

index IC and couple a free hyper-multiplet to it.

It is possible to compute the residue of the full theory I at a pole of
the U(1) fugacity without explicitly knowing the index of the theory

associated to the Riemann surface C, IC .

The residue can be presented as a difference operator acting on the

SU(N) flavor fugacity living “on the tube” IC .

This operator is one of the RS “Hamiltonians” !!

Using S-duality we can argue that the index is diagonal in the basis
of eigen-functions of these operators.
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. . . . . .

The appearance of the RS “hamiltonians”

After some work one can show that the index of the theory with a free hyper coupled to it has poles at

a = t
1
2 q

1
N

r
p

1
N

r′
, r, r′ ∈ N .

The contour integrals involved in gluing the sphere to the Riemann surface C are “pinched” at these values of a and
that is why the poles appear.

The residue at a = t
1
2 is given simply by IC , i.e. by the index on the Riemann surface. That is computing this resideue

simply amounts to removing the U(1) puncture.

The residue at a = t
1
2 q

1
N is given simply by

S(1,0)(a)IC(a, · · · ) ,

with

S(1,0) IC =
θ(t; p)

θ(q−1; p)

N∑
i=1

∏
j ̸=i

θ( t
q
bi/bj ; p)

θ(bj/bi ; p)
IC(bi → q

1−N
N bi , bj ̸=i → q

1
N bj ) .

This operator, up to trivial manipulations, IS the basic elliptic RS difference operator.

Higher RS operators are obtained from other residues. In particular the N − 1 independent Hamiltonians are encoded
inside S(r,0).
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. . . . . .

Comments on the RS hamiltonians

Thus, the residues of the index are obtained by acting with difference operators on it.

Although the operators act on a given flavor fugacity, any choice of the flavor fugacity will give the same result due to
S-duality,

S(1,0)(a)IC(a, b, · · · ) = S(1,0)(b)IC(a, b, · · · ) .

All these operators are commuting: physically the reason is again S-duality. (We can choose the operators to act on
different U(1) punctures)

[
S(r,r′),S(s,s′)

]
= 0 .

The operators are self-adjoint under a natural measure constructed from the Haar measure and the index of the vector
multiplet.

In the special limit p = 0 the eigenfunctions are given by the Macdonald polynomials.

The eigenfunctions in the elliptic case are not explicitly known but can be either implicitly defined or constructed by a
perturbation theory in the superconformal fugacities.
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. . . . . .

A construction of the general index

S-duality is very constraining!! We can exploite it to write the index of the generic quivers.

Defining the eigenfunctions of the RS difference operators by ψλ and also defining the eigenvalues as

S(1,0) · ψλ = Eλ ψ
λ
,

we obtain

S(1,0) I0,3 =
∑

α,β,γ

Cαβγ Eα ψ
α(a)ψβ (b)ψγ (c) =

∑
α,β,γ

Cαβγ Eβ ψ
α(a)ψβ (b)ψγ (c)

=
∑

α,β,γ

Cαβγ Eγ ψ
α(a)ψβ (b)ψγ (c) .

This implies that the index is diagonal in the basis of ψα

I0,3 =
∑
α

Cα ψ
α(a)ψα(b)ψα(c) .

(With some more work the structure constants Cα can be also fixed from S-duality)
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. . . . . .

Summary and Comments

We have obtained explicit expression for the (two parameter) superconformal index of all
Gaiotto’s theories.

The expressions for the index are manifestly S-duality invariant and have a uniform form
for all types of punctures.

The basic trick of the argument I was to write the index in a convenient discrete basis.

This basis is related to a very generic family of symmetric functions: Macdonald
polynomials and their elliptic generalizations.

These functions are eigenfunctions of RS difference operators. We have seen how these
operators are encoded in the index through residue computations.
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. . . . . .

Summary and Comments cont.

Although looking on residues seems ad hoc they actually have physical meaning!!

One can argue that the residues of the index of the type we discussed today give the index
of a theory in presence of surface defects.

The expressions we get for the index are suggestive of a 2d YM interpretation analogous
to the AGT conjecture.

2d gauge theories are related to Calogero-Moser-Sutherland type of models
(Gorsky-Nekrasov,...) and it will be interesting to understand these relations further.

Another interesting question for further research is whether there is a direct physical
derivation of our results. E.g. whether starting from the (2, 0) 6d theory and
compactifying on S3 × S1 one can obtain the 2d gauge theory and/or the integrable
quantum mechanical systems

· · ·

Thank You!!
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