Rutgers University, November 25th 2003

Dario Martelli Imperial College

Supersymmetric Geometries of M-Theory

[DM, J. Sparks] hep-th/0306225

Motivations

- ► M-Theory compactifications with fluxes
- It is interesting to study models with $\mathcal{N}=1$ in d=3 (e.g. in relation to the cosmological constant problem)
- String/M-Theory compactifications to four dimensions
- Holography
- AdS solutions dual to SCFT
- RG flow solutions
- Relation to interesting holographic flows in String Theory (e.g. Polchinski-Strassler, Klebanov-Strassler)
- ▶ Geometric conditions corresponding to M5brane wrapping various cycles (especially 'exotic' ones, e.g. associative)
- The same conditions are satisfied by particular brane intersections
- ► Emphasize the role of *G*-structures and especially of generalized calibrations in the context of supersymmetric geometries with fluxes

Killing spinor equations, special holonomy, and G-structures

Supersymmetric solutions of supergravity admit 'Killing spinors'

Killing spinor equations

$$\delta\psi_M = \nabla_M \epsilon + \Omega_M \epsilon = 0$$

(+ possible algebraic equations for ϵ : $O\epsilon = 0$)

independent solutions \iff unbroken supersymmetry

When all the fields are set to zero, except the metric, solutions to $\nabla_M \epsilon = 0$ are Ricci-flat, special holonomy manifolds:

$$\begin{array}{ll} \dim(M) = 2n & SU(n) \text{ (Calabi-Yau)} \\ \dim(M) = 4n & Sp(n) \text{ (hyper-K\"ahler)} \\ \dim(M) = 7 & G_2 \\ \dim(M) = 8 & Spin(7) \end{array}$$

- Including the form-fields (i.e. Fluxes) $\rightarrow \Omega_M \neq 0$
- \rightarrow the holonomy of the Levi–Civita (or spin-) connection is not a good principle for determining the number of solutions
- ► G-structures are the most appropriate mathematical framework to study geometries with fluxes [Gauntlett, DM, Pakis, Waldram]

A G-structure on a manifold M is a (global) reduction of the frame bundle to a sub-bundle with fibre G

Key facts:

- ullet equivalent to a set of (globally defined) G-invariant tensors, or spinors, on M
- ullet tensors are decomposed into irreducible representations of G
- departure from special holonomy is measured by the Intrinsic Torsion

$$T \in \Lambda^1 \otimes g^{\perp} = \bigoplus_{i=1}^n \mathcal{W}_i , \qquad g \oplus g^{\perp} = so(n)$$

Each class is a characterized by calculable quantities, denoted ${\it W}_i$

- Why is this useful in supergravity?

Solutions to the Killing spinor equations define a particular G-structure, and its type ("class of intrinsic torsion") can be determined analyzing bosonic equations obeyed by the G-invariant forms

Flux = Intrinsic Torsion

Example: G_2 -structures in d=7 [Fernandez, Gray]

- ullet These are defined by the associative three-form ϕ
- Under $SO(7) \rightarrow G_2$, $21 \rightarrow 7+14$
- Classes of intrinsic torsion

$$T \in \Lambda^1 \otimes g_2^{\perp} = \mathcal{W}_1 \oplus \mathcal{W}_2 \oplus \mathcal{W}_3 \oplus \mathcal{W}_4$$

 $7 \times 7 \to 1 + 14 + 27 + 7$

$$ext{d}\phi\in \Lambda^4\cong \mathcal{W}_1\oplus \mathcal{W}_3\oplus \mathcal{W}_4\ 35 o 1+27+7\ ext{d}*\phi\in \Lambda^5\cong \mathcal{W}_2\oplus \mathcal{W}_4\ 21 o 14+7$$

E.g. M has G_2 -holonomy iff $d\phi = 0 = d * \phi$

M-Theory on eight-manifolds with fluxes [DM,Sparks]

- Aim: characterize the most general supersymmetric M-Theory "compactifications" to three-dimensions
- 11-dim supergravity

Bosonic fields: g_{MN}, G_{MNPQ}

Killing spinor equation:

$$\delta\psi_{M} = \hat{\nabla}_{M}\eta - \frac{1}{288} \left(G_{NPQR} \hat{\boldsymbol{\Gamma}}^{NPQR}{}_{M} - 8G_{MNPQ} \hat{\boldsymbol{\Gamma}}^{NPQ} \right) \eta$$

Bianchi identity: dG = 0

G eq. of motion: $d * G + \frac{1}{2}G \wedge G = X_8 \rightarrow \chi(M_8) \sim \int G \wedge G$

• We are interested in compactifications to d=3 which preserve (at least) $\mathcal{N}=1$ supersymmetry.

warped metric
$$d\hat{s}_{11}^2=\mathrm{e}^{2\Delta(x)}(ds_3^2+g_{mn}dx^mdx^n)$$

$$\mathbb{R}^{1,2} \text{ or } AdS_3 \text{ no ansalz}$$
 flux G_{mnpq} arbitrary,
$$G_{\mu\nu\rho m}=\epsilon_{\mu\nu\rho}f_m$$
 spinor $\eta=\psi\otimes\xi$

Note: we have made no particular assumptions, apart from requiring the 3-dim external space to be Minkowski₃ or AdS₃

Reminder of known results [K. Becker], [Acharya,de la Ossa,Gukov]

- Assumption: ξ is a Spin(8) Majorana–Weyl spinor of definite chirality
- \Rightarrow It defines a Spin(7)-structure on M_8 . Equivalently defined by the Spin(7)-invariant Cayley four-form

$$\Psi_{mnpq} = \xi^{\mathsf{T}} \gamma_{mnpq} \xi$$

General solution

$$d\hat{s}_{11}^{2} = H^{-2/3}ds^{2}(\mathbb{R}^{1,2}) + H^{1/3}d\tilde{s}^{2}(Spin(7))$$

$$G = \text{vol}_{3} \wedge d(H^{-1}) + G_{27}$$

$$\tilde{*} \tilde{\Box} H + \frac{1}{2}G_{27} \wedge G_{27} = X_{8}$$

 G_{27} is in the 27 representation of the $SO(8) \rightarrow Spin(7)$ decomposition of four-forms: $70 \rightarrow 35 + 27 + 7 + 1$

- These are clearly M2-brane-type of solutions
- AdS₃ compactifications are ruled out
- Additional Killing spinors of the same chirality reduce further the holonomy of $d\tilde{s}^2$. E.g. $\mathcal{N}=2\to SU(4)$ [K. Becker, M. Becker], $\mathcal{N}=3\to Sp(2)$, etc.

Motivations for the existence of more general solutions

More general Minkowski₃ vacua from wrapped M5-branes

associative 3-cycles inside $G_2 \times S^1 \to \mathcal{N} = 1$

3-cycles inside $CY_3 \times T^2 \rightarrow \mathcal{N} = 2$

(Warped) AdS₃ vacua

M5-branes wrapped on 4-cycles or M2-branes wrapped on $S^1\to \text{effective strings}.$ In the 'near-horizon' limit should give AdS_3 vacua

Consider simply the Freund–Rubin solutions: $AdS_4 \times M_7$ with M_7 having weak G_2 holonomy, and write the metric as

$$d\hat{s}_{11}^2 = \cosh^2(2mr) ds^2(AdS_3) + dr^2 + d\tilde{s}_7^2$$

M5/M2 bound states

M5-brane world volume action comprises a self-dual three-form H, inducing an M2-brane charge via a WZ coupling \longrightarrow supersymmetric solutions corresponding to ('dyonic' or 'dielectric') M5/M2

 There were known supersymmetric solutions with Gflux, which were not of the type just reviewed

- Require the existence of a G_2 -structure defined on M_8 , or equivalently, of a non-chiral Spin(8) Killing spinor
- We take $\eta = \mathrm{e}^{-\Delta/2}\psi \otimes (\xi_+ \oplus \xi_-)$ $\Gamma_9 \xi_\pm = \pm \xi_\pm$
- ▶ This is a completely generic spinor
- Note that we have $\mathcal{N}=1$ in d=3: $\nabla_{\mu}\psi+m\gamma_{\mu}\psi=0$

The G_2 -structure is defined by the following forms:

$$K_{m} = \frac{1}{||\xi_{+}|| \cdot ||\xi_{-}||} \xi_{+}^{\mathsf{T}} \gamma_{m} \xi_{-}$$

$$\phi_{mnp} = \frac{1}{||\xi_{+}|| \cdot ||\xi_{-}||} \xi_{+}^{\mathsf{T}} \gamma_{mnp} \xi_{-}$$

or equivalently by two Cayley forms with opposite dualities

$$\Psi_{mnpr}^{\pm} = \frac{1}{||\xi_{\pm}||^2} \xi_{\pm}^{\mathsf{T}} \gamma_{mnpr} \xi_{\pm}$$

• The spinors ξ_{\pm} cannot be normalized to unity! Rather, supersymmetry implies

$$\frac{1}{2}(||\xi_{+}||^{2} + ||\xi_{-}||^{2}) = 1$$

$$\Rightarrow \frac{1}{2}(||\xi_{+}||^{2} - ||\xi_{-}||^{2}) \equiv \sin \zeta$$

The geometry on the eight-manifold

 We obtain a set of conditions on the forms, equivalent to the supersymmetry conditions

The metric has the canonical form:

$$d\hat{s}_{8}^{2} = e^{2\Delta}(g_{ij}^{7}(x,y)dx^{i}dx^{j} + e^{-6\Delta}\sec^{2}\zeta dy^{2})$$

- ullet At any fixed y, the G_2 -structure has intrinsic torsion in $W_3 \oplus W_4$ (27+7)
- The fluxes are completely fixed:

$$f = e^{-3\Delta} d(e^{3\Delta} \sin \zeta) + 4mK \cos \zeta$$

$$f = e^{-3\Delta} d(e^{3\Delta} \sin \zeta) + 4mK \cos \zeta$$

$$F \sin \zeta - *F = e^{-6\Delta} d(e^{6\Delta} \phi \cos \zeta) - 4m(i_K * \phi - \phi \wedge K \sin \zeta)$$

The G equation of motion:

$$d(e^{6\Delta} * f) + \frac{1}{2}e^{6\Delta}F \wedge F = X_8$$

The total G-flux is defined as $G = e^{3\Delta}(F + \text{vol}_3 \wedge f)$

- Note that $m \neq 0 \rightarrow AdS_3$ solutions are not ruled out
- $\sin \zeta = \pm 1 \rightarrow \text{recover M2-brane} \perp Spin(7) \text{ manifold (one)}$ spinor vanishes in this limit! And m = 0)

In the following I will illustrate some examples, for which the general equations simplify

Example 1: F is self-dual

- Imposing $F=\ast F$ (and m=0) the general equations simplify considerably
- $e^{-3\Delta} = 1 \sin \zeta$
- \bullet d(e^{6 Δ} Ψ^-) = 0 \Rightarrow M_8 is to conformal to $Spin(7)_-$ holonomy
- · The fluxes are

$$f = 3d\Delta$$

$$G_{\text{internal}} = -d(e^{6\Delta}\cos\zeta\phi)$$

- ullet The Bianchi identity and G equation of motion are satisfied automatically \checkmark
- E.g. The "deformed M2-brane solutions" obtained in [Cvetic,Lü,Pope] are of this type (the case of $M_8 \propto \mathbb{R}^8$ has been checked explicitly in [K.Becker,M.Becker,Sriharsha])

$$G_{
m internal} = \mathrm{d}x^{1234} \wedge \mathrm{d}x^{5678}$$
 $\mathrm{e}^{-3\Delta} = c - \mu \, \delta_{ij} \, x^i x^j$

Example 2: Vanishing internal flux F (purely electric solutions)

- Imposing F=0 the equations simplify again. Here we have:
- $e^{-\Delta} = \cos \zeta$
- $$\begin{split} \bullet \; \mathrm{d}(\mathrm{e}^{3\Delta}\phi) &= 4m\mathrm{e}^{4\Delta}i_K * \phi \quad \Rightarrow (\mathrm{def:} \; \tilde{\phi} = \mathrm{e}^{-3\Delta}\phi) \\ d\widehat{s}_{11}^2 &= \; \sec^2\zeta \left(ds_3^2(\mathrm{AdS}_3) + \frac{1}{4m^2}d\zeta^2\right) + d\widetilde{s}_7^2 \end{split}$$
- ▶ This is just $AdS_4 \times M_7$. With M_7 having weak G_2 -holonomy

Wrapped or intersected M5-branes (and associated non-linear PDE's)

• In [Fayyazuddin,Smith] the supersymmetry conditions describing M5-branes wrapped on holomorphic cycles (or M5-branes intersections) were used to obtain non-linear PDS's. E.g.

M5 0 1 2 3 4 5 6 7 8 9 #
$$\partial \bar{\partial} \sqrt{g_4} + \Box_{\mathbb{R}^3} J = \text{sources}$$

This is the Bianchi identity (dG =sources) for the geometry – a type of SU(2)-structure in d=7.

 In our approach these equations are reproduced as special cases, and generalizations to other cycles are straightforward. E.g.

Example 3a:

M5 wrapped on associative 3-cycles $-\mathcal{N}=1$ in d=3

M5 0 1 2 3 4 5 6 7 8 9 #
$$d_7 \left[e^{-6\Delta} *_7 d_7 (e^{6\Delta} \phi) \right] + \Box_{\mathbb{R}} (e^{6\Delta} *_7 \phi) = \text{sources}$$

Example 3b:

M5 wrapped on SLAG 3-cycles -N = 2 in d = 3

Example 4: A 'dyonic' solution (physical significance of $\sin \zeta$)

M5/M2 bound state solution (in flat space)
 [Izquierdo, Lambert, Papadopoulos, Townsend]

From the general conditions, inserting a simple ansatz, we obtain:

$$d\hat{s}_{11}^2 = H^{-\frac{2}{3}}(\sin^2\alpha + H\cos^2\alpha)^{\frac{1}{3}} \left[ds^2(\mathbb{R}^{1,2}) + \frac{H}{\sin^2\alpha + H\cos^2\alpha} d\mathbf{u} \cdot d\mathbf{u} + Hd\mathbf{x} \cdot d\mathbf{x} \right]$$

 $\tan^2 \zeta = \frac{1}{H} \tan^2 \alpha$ α is a constant

Flux:
$$G = \frac{1}{2}\cos\alpha *_5 dH + \frac{1}{2}\sin\alpha dH^{-1} \wedge \text{vol}(\mathbb{R}^{1,2}) + \sin 2\alpha (...)$$

G equation of motion $\Rightarrow \square_{\mathbb{R}^5} H = 0$

- This solution interpolates between the flat M5-brane and M2-brane
- It is an instance of a class of 'dyonic' or 'dielectric' solutions, with interpolating supersymmetry
- ▶ $\sin \zeta$ measures the ratio of M5 to M2 brane charges. E.g. $\sin \zeta = 0 \rightarrow$ the M2-brane charge vanishes

The role of Generalized Calibrations

The set of supersymmetry conditions, constraining the type of G-structure, can be nicely reinterpreted in terms of generalized calibrations

 Special holonomy manifolds are characterized by (one or more) covariantly constant form(s) ≡. These forms can be used to characterize special sub-manifolds, which are called 'calibrated'

A 'calibration' is a form ≡, such that:

- $d\Xi = 0$
- $\iota_V^* \equiv \leq \operatorname{vol}_V$ for any tangent plane \vee

A cycle Σ is calibrated by Ξ if the inequality is saturated for any plane tangent to Σ

▶ Important: a cycle ∑ is

calibrated ⇔ volume minimizing ⇔ supersymmetric

E.g. in a G_2 -holonomy manifold there are the associative (ϕ) and the co-associative $(*\phi)$ calibrations

 In the presence of fluxes the notion of calibration should be extended → 'generalized calibrations' The definition is changed replacing the requirement $d\Xi = 0$ with

- $d\Xi$ = appropriate fluxes

'Appropriate' means that the condition can be used to show that a probe brane has minimal energy when it wraps a calibrated cycle Σ :

$$E[\Sigma, flux] = Mass[vol_{\Sigma}] + WZ[flux]$$

- The notion of calibration can also be extended in a different way, by switching on world-volume fields on a probe brane
- On an M5-brane there is a self-dual three-form H. Taking this into account, [Bärwald,Lambert,West] derived a bound for the M5-brane energy $E[\Sigma, H]$

$$\nu + \chi \wedge H \leq \operatorname{vol}_V E$$

u, χ are usual bi-linears constructed from parallel spinors

• Using $d\nu = d\chi = 0 = dH \Rightarrow A$ calibrated pair (H, Σ) , that saturates the bound, gives minimal M5-brane energy in its equivalence class, and is supersymmetric

Using the Hamiltonian formulation of the M5-brane, we derived a generalized BPS bound in the presence of background G-flux:

$$\nu + \chi \wedge H + C_0 \text{vol}_V \leq \text{vol}_V E$$

- C_0 vol $_5=i_kC_6-\frac{1}{2}i_kC\wedge (C-2H)$ is a new term
- k is a time-like vector field $ightarrow k = rac{\partial}{\partial t}$
- the energy E depends on the background G-flux
- $dH = \iota^*G$
- ▶ A pair (Σ, H) is calibrated, i.e. it has minimal M5-brane energy and is supersymmetric iff, the forms k, χ, ν satisfy

$$dk = \frac{2}{3}\chi \rfloor G - \frac{1}{3}\nu \rfloor * G$$

$$d\chi = i_k G$$

$$d\nu = i_k * G - \chi \wedge G$$

- These are the necessary and sufficient conditions for the existence of (at least) one Killing spinor in M-Theory [Gauntlett, Pakis]
- These conditions are equivalent to our set of conditions. E.g. $\chi \sim \sin \zeta dx^1 \wedge dx^2$
- \Rightarrow sin ζ Measures the amount of M2-brane charge induced on the M5-brane by the WZ coupling with H

M-Theory on six-manifolds [Gauntlett, DM, Sparks, Waldram] (to appear)

Motivations:

- Study the most general (warped) supersymmetric AdS $_5$ solutions in M-Theory \rightarrow dual to 4-dim SCFT
- (Characterize 5-dim Minkowski flux compactifications of M-Theory)

warped metric
$$d\hat{s}_{11}^2=\mathrm{e}^{2\Delta(x)}(ds_5^2+g_{mn}dx^mdx^n)$$
 flux G_{mnpq} arbitrary R^{14} or AdS_5 generic M_6 spinor $\eta=\psi\otimes\xi$

- if ξ is a 6d chiral spinor
- \Rightarrow G=0, $\Delta=$ constant, M_6 is a Calabi–Yau three-fold (This follows also from the superpotential $W=\int J \wedge G$ [Behrndt,Gukov])
- Taking ξ non-chiral, once again we can have non-trivial flux
- ξ complex, non-chiral spinor $\Leftrightarrow SU(2)$ -structure on M_6 , characterized by

$$J, \Omega_{(2,0)}, K^1, K^2$$

The geometry on M_6

The metric has the canonical form:

$$d\hat{s}_{6}^{2} = g_{ij}^{4}(x,y)dx^{i}dx^{j} + \sec^{2}\zeta dy^{2} + e^{6\Delta}\cos^{2}\zeta (d\psi + \rho)^{2}$$

- $K^{2\#}=\sec\zeta\frac{\partial}{\partial\psi}$ is a Killing vector \to U(1) R-symmetry
- ullet At any fixed y, M_4 is Kähler
- $\Omega = e^{i3m\psi}\Omega_0 \Rightarrow \Omega \in \mathcal{L}^k \otimes \Lambda^{2,0}$ (\mathcal{L} is U(1) bundle)
- The flux is completely fixed:

$$*_6F = e^{-6\Delta}d(e^{6\Delta}\cos\zeta K^2) - 4m(J - K^1 \wedge K^2\sin\zeta)$$

- ▶ The (2,0) form, and the spinors, are charged under the U(1) isometry
- ullet Analogous to the conifold (see [Klebanov,Witten]). The conifold is a cone over the $T^{1,1}$ space:

$$U(1) \rightarrow T^{1,1}$$

$$\downarrow S^2 \times S^2$$

U(1) is an isometry \to KK reducing gives back $S^2 \times S^2$ $S^2 \times S^2$ is Kähler, with (2,0)-form $\Omega_{(2,0)} = \mathrm{e}^{i\varphi}\Omega_0$ $\varphi \in [0,4\pi] \ (k=2)$

 $\Rightarrow \Omega_{(2,0)}$ has charge 2 \rightarrow spinors have charge 1

Example: $\mathcal{N} = 1$ solution of [Maldacena, Nuñez]

- \bullet The solution was constructed in 7d gauged supergravity and uplifted to M-Theory is AdS₅ $\times_{\rm warped} M_6$
- ullet It corresponds to the near-horizon limit of M5-branes wrapped on H^2

Geometry of M₆

• The base is $H^2 \times S^2$ with non-Einstein metric

$$ds_4^2 = \frac{1}{Y^2}(dX^2 + dY^2) + f(y^2)(d\theta^2 + \sin^2\theta d\phi^2)$$

- $\Omega = \mathrm{e}^{i3\psi} \quad \psi \in [0, \frac{4\pi}{3}] \quad \Rightarrow \quad \Omega \text{ has R-charge 2 \checkmark}$
- ightharpoonup One can think of M_6 as a generalization of the conifold

conifold

M₆ Maldacena-Nuñez

r radial direction

cohomegeinity-one in y

 $T^{1,1}$ base of the cone

 M_5 fixed-y sections

$$\begin{array}{ccc} S^1 & \to & T^{1,1} \\ & & \downarrow \\ S^2 \times S^2 \end{array}$$

$$S^1 \rightarrow M_5$$

$$\downarrow \\ H^2 \times S^2$$

Supersymmetry

Possible directions for future work

- construct new examples of:
- AdS solutions (AdS/CFT or M-Theory vacua)
- 'dielectric solutions', i.e. solutions with interpolating supersymmetry
- compactifications to Minkowski space-time (hard, need to include corrections)
- ▶ Derive generalized superpotentials for flux compactifications. This is a general problem, i.e. arising also in String Theory compactifications, that can be addressed using generalized calibrations

Generalized calibrations and superpotentials

Special holonomy → Calibrations → Superpotentials

[Gukov, Vafa, Witten] [Gukov]

$$W = \int (calibration) \wedge (flux)$$

M-Theory on Spin(7)-manifolds [Acharya, De la Ossa, Gukov]
 [M. Becker, Constantin]

$$W = \int \Psi \wedge G$$

 \Rightarrow

$$d\hat{s}_{11}^{2} = H^{-2/3}ds^{2}(\mathbb{R}^{1,2}) + H^{1/3}d\tilde{s}^{2}(Spin(7))$$

$$G = \text{vol}_{3} \wedge d(H^{-1}) + G_{27}$$

$$\tilde{*} \tilde{\Box} H + \frac{1}{2}G_{27} \wedge G_{27} = X_{8}$$

We have shown that there exist much more general solutions

G-structure \longrightarrow Generalized Calibrations \longrightarrow [?]

 There should be more general superpotentials related to generalized calibrations!

$$W = \int (generalized calibration) \wedge (flux)$$