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Motivations
» M-Theory compactifications with fluxes

e It is interesting to study models with N/ = 1
in d = 3 (e.g. in relation to the cosmological
constant problem)

e String/M-Theory compactifications to four di-
mensions

» Holography
e AdS solutions dual to SCFT
e RG flow solutions

e Relation to interesting holographic flows in
String Theory (e.g. Polchinski—Strassler, Klebanov—
Strassler)

» Geometric conditions corresponding to M5-
brane wrapping various cycles (especially ‘exotic’
ones, e.g. associative)

e [ he same conditions are satisfied by particular
brane intersections

» Emphasize the role of G-structures and espe-
clally of generalized calibrations in the context
of supersymmetric geometries with fluxes




Killing spinor equations, special holonomy, and
G-structures

Supersymmetric solutions of supergravity admit 'Killing
spinors'

Killing spinor equations

{S?;(JM — vM*’: -|" Qﬂ.;‘f =] §
(4 possible algebraic equations for ¢ Oe = 0)
# independent solutions <= unbroken supersymmetry

When all the fields are set to zero, except the metric, so-
lutions to Ve = 0 are Ricci-flat, special holonomy man-
ifolds:

dim(M)=2n SU(n) (Calabi—Yau)
dim(M)=4n Sp(n) (hyper—Kahler)
dim(M)=7 G

dim(M)=8 Spin(7)

e Including the form-fields (i.e. Fluxes) — Q3 #=0

— the holonomy of the Levi—Civita (or spin-) connection
is not a good principle for determining the number of
solutions

» G-structures are the most appropriate mathematical
framework to study geometries with fluxes [Gauntlett, DM, Pakis,
Waldram]




A G-structure on a manifold M is a (global) reduction of
the frame bundle to a sub-bundle with fibre G

Key facts:
e equivalent to a set of (globally defined) G-invariant

tensors, or spinors, on M

e tensors are decomposed into irreducible representa-
tions of GG

e departure from special holonomy is measured by the
Intrinsic Torsion

TE!‘\l@gJ‘:ean, g® g+t = so(n)
i=1

Each class is a characterized by calculable quantities, de-
noted W;

- Why is this useful in supergravity?

Solutions to the Killing spinor equations define a particular
G-structure, and its type ( "class of intrinsic torsion") can
be determined analyzing bosonic equations obeyed by the
G-invariant forms

Flux = Intrinsic Torsion




Example: Go-structures in d = 7 [Fernandez, Gray]

e T hese are defined by the associative three-form ¢
e Under SO(7) — Go, 21—=7+14

e Classes of intrinsic torsion

TEN Qg =W W@ W3O W,
7 ey L A0 4 ¥

dp e A*Z W1 & W3 G Wy
35 - 1+27+7
d*xp €N Wo@ Wy
21 — 1447

E.g. M has G>-holonomy iffdg =0=d % ¢




M-T heory on eight-manifolds with fluxes [Dm,sparks]

e Aim: characterize the most general supersymmetric M-
Theory "compactifications” to three-dimensions

e 11-dim supergravity
Bosonic fields: gun, Gunpo

Killing spinor equation;

: n i & o
MYy = vMTF = '2@ (GNPQRI_NPQRﬂ.; — BGMNFQFNPQ) il

Bianchi identity: dG =0
G eq. of motion: d*G+5GAG = Xg — x(Mg) ~ [GAG

e We are interested in compactifications to d = 3 which
preserve (at least) NV = 1 supersymmetry.

warped metric  ds}; = €22@)(ds3 + gunda™da”)

N
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Note: we have made no particular assumptions, apart
from requiring the 3-dim external space to be Minkowskis
or AdSs




Reminder of known results [K. Becker], [Acharya,de la

Ossa,Gukov]

e Assumption: £ is a Spin(8) Majorana—Weyl spinor of
definite chirality

= It defines a Spin(7)-structure on Mg. Equivalently de-
fined by the Spin(7)-invariant Cayley four-form

\\; o A €
ey T Y (IS

e General solution

ds}; = H2Pds?(RY?) + H'/3d52(Spin(7))
G = volaAd(H™ ') 4+ Gar
g s 1
*H + EG;::TAGE? = .Xga
Gy is in the 27 representation of the SO(8) — Spin(7)
decomposition of four-forms: 70 — 35 + 27 4+ 7 4+ 1
e T hese are clearly M2-brane-type of solutions

e AdS3 compactifications are ruled out

e Additional Killing spinors of the same chirality reduce
further the holonomy of d3?. E.g. N =2 — SU(4) [K.
Becker,M. Becker], N' = 3 — Sp(2), etc.
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Motivations for the existence of more general
solutions

e More general Minkowskis vacua from wrapped M5-branes

O012|345|67 8 9|# M5-branes wrapped on

Ge
associative 3-cycles inside Go x S = N =1

01234567 8|9 # M5-branes wrapped on SLAG

CYs
3-cycles inside CYs x T2 = N =2
e (Warped) AdSs vacua

M5-branes wrapped on 4-cycles or M2-branes wrapped on
S! — effective strings. In the ‘near-horizon' limit should
give AdSs vacua

Consider simply the Freund—Rubin solutions: AdS; x My
with M7 having weak G2 holonomy, and write the metric
as

ds}; = cosh?(2mr)ds?(AdSs) + dr? + d32

e M5/M2 bound states

Mb5-brane world volume action comprises a self-dual three-
form //, inducing an M2-brane charge via a WZ coupling
— supersymmetric solutions corresponding to (‘dyonic’
or ‘dielectric') M5/M2

e [ here were known supersymmetric solutions with G-
flux, which were not of the type just reviewed




e Require the existence of a Gax-structure defined on Mg,
or equivalently, of a non-chiral Spin(8) Killing spinor

e We take n=e22¢Yp® (L ®E) Mofy = £€s
» This is a completely generic spinor
» Note that we have N =1 in d = 3: Vb +myp =0

The Gao-structure is defined by the following forms:

1
Kpm = &t " Ymé-
1€+11 - 11E-] 2
b L &4 M ok
TrLTETD — —|— F}'ri't.'rbj 2
: 1€+]] - 1€=]] o

or equivalently by two Cayley forms with opposite dualities

L

i .
wmn;rn' T | | £, ||2 E.‘!’Tr‘]'r'rn.n'_n‘rgi
<

e The spinors £+ cannot be normalized to unity! Rather,
supersymmetry implies

1
5 (141 +1le-11%) = 1

= = (412~ llE- 1)

sin ¢
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The geometry on the eight-manifold

e \WWe obtain a set of conditions on the forms, equivalent
to the supersymmetry conditions

e T he metric has the canonical form:
dsg = e®2 (gl (z, y)da'dz’ + e sec? (dy?)

e At any fixed y, the Ga-structure has intrinsic torsion in
Wi & Wa (2747)

e The fluxes are completely fixed:

[ =e32d(e32sin¢) + 4mK cos¢

Fsin¢— *F =e%2d(e®?¢cos¢) —4m(ix xd— oA K Sin()
e The G equation of motion:

1
d(e®? x f) + 5eﬁﬂ-ﬁ AF = Xg

The total G-flux is defined as G = e32(F 4+ volz A f)
e Note that m #= 0 — AdSs3 solutions are not ruled out

e sin( = +1 — recover M2-brane L Spin(7) manifold (one
spinor vanishes in this limit! And m = 0)

In the following I will illustrate some examples, for which
the general equations simplify

; £ &




Example 1: F' is self-dual

e Imposing F = «F (and m = 0) the general equations
simplify considerably

¢ gt . Sinle

o d(e®2VW-) = 0 = Mg is to conformal to Spin(7)--
holonomy

e | he fluxes are

3dA
—d(e®? cos ()

f

¥
Gintemal

Il

e [ he Bianchi identity and & equation of motion are sat-
isfied automatically v

E.g. The "deformed M2-brane solutions” obtained in
[Cvetic,Lii,Pope] are of this type (the case of Mg « R® has
been checked explicitly in [K.Becker,M.Becker,Sriharsha])

Ginternal = gl p deﬁ?B

e 38 = c— u & oia?
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Example 2: Vanishing internal flux F (purely
electric solutions)

e Imposing I = 0 the equations simplify again. Here we
have:

8 =Ccos{

e d(e®”¢) = dme*Pixg x ¢ = (def: ¢ = e38¢)

1
42

ds}, = sec?¢ (dsg(Ang) + dcg) + d5%

» This is just AdSs x My. With M7 having weak Go-

holonomy
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M3

Wrapped or intersected M5-branes (and associ-
ated non-linear PDE's)

e In [Fayyazuddin Smith] the supersymmetry conditions de-
scribing Mb-branes wrapped on holomorphic cycles (or
M5-branes intersections) were used to obtain non-linear
PDS's. E.g.

— "
0123|45[67|89# 88./Ga -+ OgsJ =sources
L CYI [ R:! - |

This is the Bianchi identity (dG =sources) for the geom-
etry — a type of SU(2)-structure in d =7.

e In our approach these equations are reproduced as spe-
cial cases, and generalizations to other cycles are straight-
forward. E.g.

Example 3a:

M5 wrapped on associative 3-cycles — N =1ind=3

MS l012’3456?89#

Gv i

i o
d7 [e7%2 %7 d7(e%%¢)| 4 Or(e%? 7 ¢) = sources
Example 3b:

M5 wrapped on SLAG 3-cycles — N =2 ind=3

M5 |01 2(3 4567 8|9 #
¥ “Tﬁ’.\'_
de [€794 %6 d6(e®2IMR)]| + Op:(e34Re2) = sources
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Example 4: A ‘dyonic’ solution (physical signif-
icance of sin ()

e M5/M2 bound state solution (in flat space)
[Izquierdo,Lambert, Papadopoulos, Townsend]

ML RY> G

HﬁlUl%‘3456789‘#

From the general conditions, inserting a simple ansatz,
we obtain:

4%, = H-X(sina + H cos? a)? [ds?(R12)

+ H ___au.du -+ Haix.dx]

Sin° a+H cos? a
tan’¢ = +tan’a « is a constant
Flux: G = zcosaxsdH+1sin ad H-tAvol(RY?)+sin 2a(. . . )
G equation of motion = [OpH =0

» This solution interpolates between the flat M5-brane
and M2-brane

e It is an instance of a class of ‘dyonic' or ‘dielectric'
solutions, with interpolating supersymmetry

» sin¢ measures the ratio of M5 to M2 brane charges.
E.g. sin¢ = 0 — the M2-brane charge vanishes
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The role of Generalized Calibrations

The set of supersymmetry conditions, constraining the
type of G-structure, can be nicely reinterpreted in terms
of generalized calibrations

e Special holonomy manifolds are characterized by (one
or more) covariantly constant form(s) =. These forms
can be used to characterize special sub-manifolds, which
are called 'calibrated’

A ‘calibration’ is a form =, such that;:
- = =1
- 1y= < voly for any tangent plane V

A cycle 2 is calibrated by = if the inequality is saturated
for any plane tangent to

» Important: a cycle Z is
calibrated & volume minimizing < supersymmetric

E.g. in a G>-holonomy manifold there are the associative
(¢) and the co-associative (x¢) calibrations

e In the presence of fluxes the notion of calibration should
be extended — ‘generalized calibrations'

16




T he definition is changed replacing the requirement d= =
0 with

- d= = appropriate fluxes

‘Appropriate’ means that the condition can be used to
show that a probe brane has minimal energy when it wraps
a calibrated cycle x:

E[=,flux] = Mass[vols] + WZ[flux]

e T he notion of calibration can also be extended in a
different way, by switching on world-volume fields on a
probe brane

e On an Mb-brane there is a self-dual three-form //.
Taking this into account, [Birwald,Lambert,West] derived a
bound for the M5-brane energy E[X, //]

v +xNH <volyF
v, x are usual bi-linears constructed from parallel spinors
e Using dv = dy = 0 = dH = A calibrated pair

(/1,%), that saturates the bound, gives minimal M5-brane
energy in its equivalence class, and is supersymmetric

17




Using the Hamiltonian formulation of the Mb-brane, we
derived a generalized BPS bound in the presence of back-
ground G-flux:

v+ x N H+4 Covoly < voly E

- Covols = 4Cs — 5ixC A (C — 2H) is a new term

- k is a time-like vector field — k = 2

- the energy E depends on the background G-flux
- dH = *G

» A pair (X, H) is calibrated, i.e. it has minimal M5-brane
energy and is supersymmetric iff, the forms k, x, v satisfy

g = %X_IG - %u.; * G
d)( - E};-G
dv = 4*xG—-—xAG

e These are the necessary and sufficient conditions for
the existence of (at least) one Killing spinor in M-T heory
[Gauntlett, Pakis]

e T hese conditions are equivalent to our set of conditions.
E.g. x ~ sin¢dz! A dz?

= sin ¢ Measures the amount of M2-brane charge induced
on the Mb5-brane by the WZ coupling with //
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M—Theory on six-manifolds [Gauntlett, DM, Sparks,Waldram]
(to appear)

Motivations:

e Study the most general (warped) supersymmetric AdSs
solutions in M-Theory — dual to 4-dim SCFT

(e Characterize 5-dim Minkowski flux compactifications of
M-Theory)

warped metric  ds?, = e?2()(ds2 + gmndr™dz™)

%J'L' or AJ%\°

fl LIX G'jn_'j]‘_j'_jff afbit ra r}’ 3&“&.1‘ l' c H"

spinor N=v9v@E
¥
5d ¢ d
e if £ is a 6d chiral spinor

= G =0, A =constant, Mg is a Calabi—Yau three-fold

(This follows also from the superpotential W = [JAG
[Behrndt, Gukov])

e Taking £ non-chiral, once again we can have non-trivial
flux

e £ complex, non-chiral spinor < SU(2)-structure on Msg,
characterized by

J, 2,0y, K, K?
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The geometry on Mg

e [ he metric has the canonical form:
dsg = gi;(z,y)da'da? + sec? (dy® + €4 cos® ((dy + p)?

o K?# = sec( is a Killing vector — U(1) R-symmetry
e At any fixed vy, M4 is Kahler

e Q =¢eBmMQ, = Qe L A20 (L is U(1) bundle)
e The flux is completely fixed:

x¢F = e7%2d(e®2 cos¢K?) — 4am(J — K1 A K2sin¢)

s =

» The (2,0) form, and the spinors, are charged under the
U(1l) isometry

e Analogous to the conifold (see [Klebanov, Witten]). The
conifold is a cone over the T1! space:

U(l) — Tl
l
92 w82
U(1l) is an isometry — KK reducing gives back S2 x 52
S? x 52 is Kéahler, with (2,0)-form Q) = €¥Qg

¢ €[0,4n] (k= 2)

= $2¢20) has charge 2 — spinors have charge 1
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Example: N = 1 solution of [mMaldacena,Nufiez]

e T he solution was constructed in 7d gauged supergravity
and uplifted to M-Theory is AdSs Xwarped Me

e It corresponds to the near-horizon limit of M5-branes
wrapped on H?

Geometry of Mg

e The base is H? x S? with non-Einstein metric

ds? = %(d}{z +dY?) + f(y*)(d6? + sin® 6d¢*)

e Q=e3 Yec[0,¥] =  has R-charge 2 v

» One can think of Mg as a generalization of the conifold

conifold Mg Maldacena—Nuhnez
r radial direction cohomegeinity-one in y
T base of the cone Ms fixed-y sections
st — e st — M5
! l
823 97 H? x §2
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Supersymmetry

Generalized | Intrinsic Torsion
Calibrations |F|“X€’5| of a G-Structure

L AdS/CFT - Flows I
—@mpactiﬂcations I

| Intersecting Branes |

—Wapped Branes l
‘
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Possible directions for future work
p construct new examples of:
e AdS solutions (AdS/CFT or M-Theory vacua)

e 'dielectric solutions’, i.e. solutions with inter-
polating supersymmetry

e compactifications to Minkowski space-time
(hard, need to include corrections)

» Derive generalized superpotentials for flux com-
pactifications. This is a general problem, i.e.
arising also in String Theory compactifications,
that can be addressed using generalized calibra-
tions
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Generalized calibrations and superpotentials

Special holonomy —— Calibrations — Superpotentials

[Gukov,Vafa, Witten] [Gukov]
W = /(calibratic}n) A (flux)

e M-Theory on Spin(7)-manifolds [Acharya,De la Ossa, Gukov]
[M. Becker,Constantin]

WZ/W;'\G

dsi; = HPds*(RY?) + H3d5?(Spin(T))
G = volsAd(H™!) 4+ Gar

F0H 4+ =Gor AGar = Xg

1
2
e We have shown that there exist much more general
solutions

G-structure — Generalized Calibrations — [7]

e There should be more general superpotentials related
to generalized calibrations!

W = /(generalized calibration) A (flux)
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