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‘ Russian Doll RG: General Properties I

Renormalization Group:

Given a hamiltonian
H(g, L)

where g are couplings and L a length scale, this
hamiltonian has the same spectrum as

H(g(L'),L')
as long as g depends appropriately on L.

How g depends on L is encoded in the beta
functions:

L =¢ is the RG scale

e The renormalization group flows are analogous to

dynamical systems, with [ the “RG time”.

e Usually low energy properties correspond to an
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infra-red fixed point of the RG flow

//x flxed pOI "

e Are other kinds of flows possible, e.g. limit cycles,

chaos??
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A Russian Doll renormalization group trajectory we
define to be one that is cyclic, i.e. the couplings
return to their initial values after a finite RG time I:

g(e*L) = g(L)

L =¢ is the RG scale

Here, )\, the period of the RG flows, is a fixed
model-dependent constant.

e Implications for the spectrum: periodicity in the
spectrum of eigen-energies as a function of scale.
l.e. self-similarity of the spectrum upon a discrete

scale transformation:

{E(9,L)} ={E(g,¢*L)}

e Implications for the S-matrix:

S(e*Em) = S(Eepm)
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‘ Kosterlitz- Thouless flows at one-loop I

The Kosterlitz-Thouless flows arise in a multitude of

systems, and are thought to be well understood.

e Arise as the continuum limit of XXZ Heisenberg

chain:

H = Z Sw z—|—1 SySz—l—l—l_ASz z—|—1)

e Arise as perturbations of Luttinger liquids. Here the

currents are fermion bilinears: J¢ = ¢Ta%9.

As a continuum field theory, it corresponds to
anisotropic current-current interactions for su(2).
The action is

&z _
S = Sfreet / <4gL(J+J LI - 4g||J3J3)
2T

= Stree +4 — fermion interactions
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To one loop the beta functions are well-known:

dg >
— =4 — =4
dl 91, g9

There exists the RG invariant:
Q=gj—91 = ——

h is the main parameter of the model, and is a
measure of the anisotropy. (A is related to A of the
spin chain).
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Y
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Eliminating g, and defining h as above one gets

The coupling g| as a function of scale L = exp(!) is:

g|| = —gtan(h(l - lo))

Thus one observes the periodicity:

g (e*L) = g (L), AM—loop = %,

DOES THIS BEHAVIOR PERSIST
NON-PERTURBATIVELY??

10
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All-orders Beta function for general current-current
perturbations:

Definition of the models:

S=35 +/d2—wz o4
-Gk 27 AgA

Gy is a level k current algebra for the (super) group
G, with currents J2.

—b
04 =d4JeJ
Also define the purely chiral operator:

T4 = djyJ*J"

11
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The Beta function depends on some structure
constants C, D, C' which are easily computed in the
cft.

_ 1
O04(2,2) 08 (0) ~ 5ogB O (0)

1 ~
T4 (2)08(0) ~ > (2kDEP + CEP) 0€(0)

To two loops:

1 k

B BCAED
Bga = —§ngcCAC — §ngchDECOA + oo

All-orders formula:

1 3 / / N
Bg=—35C(g',g" )1+ k*D*/4) + %5-C(¢'D,¢'D)D — 5C(g'D, g)

® g = a row vector
e D =matrix, D5 = > e Dg%gc

e C(a,b) = a row vector,
Cla,b)a = o anboCEC

o g =g/(1-KD?/4)

12
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All orders beta function for Anisotropic su(2):

dgy _ —491(1+g))°
dl (1-4g7)
dgr  —491(g) +91)

dl — (1-g¢3)1—g))

There continues to be an RG invariant:

0 gl—9;  _
(L+gp)?(gl -1 16

13
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""" sG - shG
— c¢yclicsG e KT
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Eliminating g, :

gy _ 4o+ "0 1) (9 - (1+9)Q)
@ (1—g)°

The above equation is easily integrated and the
solution explicitely has the cyclic property:

g“(G)\L) — g||(L)7 A= 2% — 2)\1—loop

15
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Massive verses Massless:

In the isotropic limit A = 0, there are two different
theories:

e g1 =g IR fixed point. Massless theory. O(3)

sigma model at ¥ = 7.

e g1 = —g)- UV fixed point. Massive theory.

sine-Gordon at the su(2) invariant point.

e When h # 0, expect two possibilities: massive

verses massless

16
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‘ Spectrum and S-matrices I

The cyclic regime of the KT flows can be formally

mapped onto the sine-Gordon theory:

2
S = /d_:c ! (0¢)? + A cos bo
4 2

2

b2 =
1+ ih/2

This theory has a quantum affine symmetry

Z/{q(sj(;)) with ¢ = —exp(—7h/2) real.

Requiring the S-matrix to commute with U, (sl(2))
fixes it up to an overall scalar factor, subject to
constraints of crossing and unitarity, for which there
are minimal solutions.

17
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Massive case:

Spectrum: a massive doublet of charge +1 spinons.
Agrees with the low energy limit of the spin-chain.

Relativistic dispersion relation:

E = mcosh 3, p = msinh 3

Exact spinon-spinon S-matrix:

¢ = ¢ iBh/2 g — _o—mh/2

e The S-matrix is an analytic extension of the
sine-Gordon one with a different overall scalar

factor. Satisfies all the constraints.

e Matches the XXZ spin chain S-matrix at low
energies, with A < —1. Differs at high energies

18
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because of relativistic dispersion, related to explicite

lattice cut-off of the spin chain.

19
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Massless case:

Dispersion:
m m
E=—¢" p=—e’  right — movers
2 2
m m
E=—¢", p = —Ee_ﬁ left — movers

The scattering of left with right movers:

S1,r = as before

20
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Periodic properties of the S-matrix:

Though the arguments leading to the S-matrix were
entirely independent of the RG, the S-matrix has
periodic properties correctly predicted by the RG,
i.e. of precisely the correct period \ = 27 /h:

S(B+2)) = S(B)

e In the massless case, the above is valid at all

energies.

e In the massive case: only at high energies,

indicating a UV limit cycle.

21
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‘ Finite Size Effects I

E(R) = ground state energy on a cylinder of

circumference R.

Define the effective Virasoro central chargece.g(R):

cert tracks the RG flow. Usually ¢(r) is an
uneventful function smoothly interpolating between
UV and IR fixed point values of c.

RG equations for ceg:

Since c. is related to a one-point function, it obeys
RG scaling equations.

)TF (1 /‘2 (Z(’@ﬂ‘
~ 3R2dlogR

22
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Simple RG arguments imply:

dCef-f R
C;H(GAR) — C/eff(R)a Céﬂf = W;R)

23
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TBA analysis of ceg:
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Approximate analytic result for the massless case:

cet(MR) 1+ 25> 1 %\sm (e**'ms¢E (—inh))
s =log2n/mR

C1(z) = (1 —-27*)((2), ( = Riemannzeta

This is log-periodic behaviour.

e In the massive case, this behaviour only appears in
the deep UV.

24
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‘A stringy solution to the S-matrix I

The quantum affine symmetry only fixed the

S-matrix up to an overall scalar factor. We

investigated another solution to the S-matrix which

is simply the analytic extension of usual sine-Gordon
. . . 2 _ 2

soliton S-matrix to the coupling b* = TRy

Satisfies algebraic unitarity but not real analyticity,

which may be pathological.
Properties of the spectrum:

The S-matrix has poles corresponding to resonances

of mass:
— nw -
myp = 2Mscosh =%, n=1,2,3,..,00

25
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Russian Doll property:

Closing the bootstrap leads particles of higher spin j
with a stringy mass formula:

For h small:

where the Regge slope and intercept are

26
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‘ Russian Doll Superconductors I

BCS hamiltonian (in the pairing approximation)

N N
H=Y,",¢blb; — Y Vigblby

7,3 =

rG—I—Z'@ If E; > Ej
‘/jj’ — G |f Sj = €jl,
\G—’l:(") ii g; < &y

G = go
©=hi

— (RN N |

e The ¢; are equally spaced energy levels

—w < €; < w with level spacing 29.

e This kind of hamiltonian (with © = 0) is used to

describe very small superconducting grains.

e Simplest extension of BCS that breaks time reversal.

27
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Gap equation:
Z VJJ E Aj = Aje'™
Continuum limit:

s [ 438 [ - [143

where A(e) = A(e)ew(s), E =2+ A2

Solving for the gap yields an infinite number of

solutions A,,. They can be parameterized as follows:

W nm
An: ’ tn:t —7 :()71,27...7
sinh ¢,, 0t h "

where £, is the principal solution to the equation

h T
tan(hty) = — 0<t —
an(htg) . <O<2h

The gaps satisfy Ag > Ay > - --

28
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RG equations:

Next we derive RG equations for our model. Let gy,
hn denote the couplings for the hamiltonian Hy
with N energy levels. The idea behind the RG
method is to derive an effective hamiltonian Hpy_1
depending on renormalized couplings gn_1, hn_1
by integrating out the highest energy levels e or €;.

In the large NV limit one can define a variable
s = log No/N, where Ny is the initial size of the

system.
dg 2 2 Ny
— = h = log —.
The solution to the above equation is
g(s) = htan [hs + tan~* (‘%O)} , 9o = g(Np).

g(s +A) =g(s) <= g(e*N)=g(N), A=

S

29
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Role of condensates in the cyclic RG:

In each cycle the coupling g jumps from oo to —oc.
Note:

Thus the condensate |¢](_3)nc+sl)) of one RG cycle plays

the same role as |¢](3788> of the next cycle

Scaling properties of the gaps:

Api1 R e A, n large

30
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Numerical Work: One-Cooper Pair problem:

The bound states of one-Cooper pair problem are
widely known to be the precursors to the BCS
condensates. For the one-pair problem we can easily
work at large system sizes N. In this problem one
looks for eigenstates of the form

M=Z%mm

For this problem we find a very similar structure: an
infinite number of bound states and a cyclic RG.

Bound state energies:

) 2mn
En:_—7 tn:t —7 EZ;
etn — 1 0+ h "

where £ is the principal solution to the equation
1 h 7

tan [ =hty | = —, 0<ty< —.

(2 O) g "k

31
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Exact eigenstates of one-Cooper pair Hamiltonian
for N levels, from Ny = 500 down to 50. We depict

only the states nearest to zero. The vertical lines are
at the values N,, = e ""*1 N,. The dotted horizontal

lines show the cyclicity of the spectrum.

32
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‘ Conclusions and open questions I

e Cyclic RG trajectories are surprisingly commonplace

e Microscopic origins of the modified BCS theory?
e c-theorem?
e 341 d examples?

e Chaotic flows?

33



