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Causality imposes constraints on effective field theories. 

Example: 

for                cannot be embedded in any consistent UV theory. 

L = (@�)2 + �(@�)4 + · · ·

� < 0

[Adams, Arkani-Hamed, Dubovsky, Nicolas, Rattazzi] 

This plays a key role in the proof of the a theorem. 

Similar constraints on higher curvature gravity are even 
stronger: 

L =
p
g(R+ ↵GBR

2 + · · · ) ) ↵GB = 0!

[Komargodski, Schwimmer] 
[Camanho, Edelstein, Maldacena, Zhiboedov] 



Two arguments for this type of constraint: 

• Causality in non-trivial backgrounds 

• Optical theorem / dispersion relations 

Both are indirect: to any order perturbatively around vacuum, 

This must fail at some point (UV); but why and where, exactly? 

Also, both arguments are inherently Lorentzian signature. 

[�(x),�(y)] = 0 (spacelike)



But good Lorentzian theories are in one-to-one correspondence 
with good Euclidean theories:

Lorentz invariant 

Unitary 

Causal 

Minkowski space:

SO(d) invariant 

Reflection positive 

Euclidean:

Schwinger, 
Wightman,  

Osterwalder, 
Schrader

So where is the problem in the Euclidean theory?



This talk: Sum rules for position space correlators 

• d > 2 

• strong or weak coupling (CFT, EFT)

The sum rules + reflection positivity imply infrared constraints. 

In various limits, these constraints reproduce many known facts 
and some new ones:



�(@�)4• “Almost”-Euclidean derivation of                 and a-theorem 

• Maldacena-Shenker-Stanford Chaos bound 

• Constraints on fine-tuning of non-renormalizable operators

In CFT:

In EFT: 

• If N large: holographic dual of 

• Sign constraints on OPE coefficients / anomalous dimensions 
of high-spin operators 

• Bootstrap derivation of Hofman-Maldacena bounds on a/c 

• Maldacena-Zhiboedov: no higher spin currents in CFT

�(@�)4



CFT:
1509.00014 and 1601.07904  
with Sachin Jain and Sandipan Kundu 

Perturbative QFT:
work in progress  
with Nima Afkhami-Jeddi, Venkatesa Chandrasekaran, and 
Amir Tajdini 

In most of the talk I will use CFT language, but almost everything 
has a corresponding statement in (non-conformal) perturbative EFT.



Holographic Motivation

Holographic 4d CFTs have a=c. 

Anomaly coefficients in <TTT>

This is dictated by locality in the bulk: 

S =

Z
p
g(R+ small)

Two ingredients are probably needed: 

• Bootstrap (some successes in d=2) 

• Causality (important in bulk argument)
[Camanho, Edelstein, Maldacena, Zhiboedov] 

Can we derive this from CFT?



Causality review



Causality:

This is a Lorentzian statement. 

But bootstrap is usually formulated in terms of Euclidean 
correlation functions. 

h |[O(x), O(y)]| i = 0 (x� y)2 < 0 .

So first: 

How is causality encoded in Euclidean correlators? 

This was understood long ago [eg, Streater and Wightman].



Euclidean correlators 

are: 

• Permutation invariant 

• With singularities only at coincident points 

• and no branch cuts (ie, single-valued). 

Ex: conformal scalar 

G(x1, x2, . . . ) ⌘ hO(x1)O(x2) . . . i

G(x1, x2, . . . ) = G(x2, x1, . . . )

hO(0, 0)O(⌧2, y2)i = (⌧22 + y22)
�2�



But if we analytically continue to complex time: 

then there is an intricate structure of singularities and branch 
cuts. 

Ex: conformal scalar 2pt function

⌧i 2 C

G = (⌧22 + y22)
�2�

⌧22 = �y22



Therefore the analytic continuation to Lorentzian signature is 
ambiguous. 

This ambiguity is why operators do not commute in Lorentzian 
QFT. 

hO1O2i

hO2O1iSo: Commutator                     =  discontinuity across the cut. 

The branch point is exactly at the Minkowski lightcone, so the 2pt 
function is trivially causal.

h[O1, O2]i



 (x1)  (x4)
O(x2)

4-point functions

More generally, there is a branch cut whenever an operator 
passes the lightcone of another operator: 

O(x3)



SO(d) invariance of the Euclidean correlator automatically 
implies that the first branch cuts you encounter are as expected. 

 (x1)  (x4)

O(x2)

O(x3)

But once you pass the first branch cut, symmetries do not tell 
you the location of other branch cuts.



Causality is the statement that the lightcone singularity in this 
situation cannot appear “too soon.” 

This is a statement that the correlator is analytic on some region 
of complexified spacetime. 

 (x1)  (x4)

O(x2)

O(x3)



Same picture on the complex time plane:

...

...
hOO  i

h OO i

complex ⌧2

[O,O] becomes non-zero 
when we hit this singularity.

cf: i-epsilon prescription



CFT

This was for a general QFT. 

In CFT, can phrase in terms of the cross ratios: 

and causality is statement about where               is analytic, on a 
multi-sheeted C x C. 

(Example later.)  

zz̄ =
x

2
12x

2
34

x

2
13x

2
24

, (1� z)(1� z̄) =
x

2
14x

2
23

x

2
13x

2
24

[Luscher, Mack ’74]

G(z, z̄)



The key ingredient in Euclidean QFT that prevents singularities 
from being in the "wrong place" is reflection positivity: 

Reflection-positive Euclidean theories 

Unitary, causal Lorentzian theories 

[Schwinger, Wightman, Osterwalder, Schrader, etc.]

We will first “rediscover” this result in CFT in a way amenable to 
bootstrap, then extend it to derive low energy constraints.



Building on lightcone bootstrap,  

but allowing for timelike-separated operators. 

[Komargodski, Zhiboedov;  
Fitzpatrick et al; Alday et al; etc]



The "Shockwave State"



Define the “shockwave state”: 

| i ⌘  (t = i�, ~x = 0)|0i

  

h |Tµ⌫(x)| i

�For small       this creates a stress tensor with support on an 
expanding null shell:



Probe the shockwave with an operator O:

  

O

O

Causality is a statement about the commutator

h |[O(x2), O(x3)]| i

= disc. h (�i�)O(x2)O(x3) (i�)i

==> This 4pt function must be analytic before the lightcone



z

After taking z around zero (holding     fixed),

The lightcone singularity as O —> O must not appear in the 
purple region. 

ie, it appears exactly at the red dot (=the Minkowski lightcone) 
or below it (=time delay), but not above it (=time advance)

The Causality Requirement:
z̄



So far, we've just translated causality into a statement about a 
particular CFT correlator. 

Next: analyze this correlator using the conformal block expansion. 



The purple region is a complexified region of spacetime "just 
before" the lightcone: 

  

O

O

O !  

G(z, z̄)

[TH, Jain, Kundu].

• In a reflection-positive CFT, the s-channel OPE                 
converges in this Lorentzian configuration. 

• Therefore                    is analytic on the purple region. 

• Therefore this correlator is causal.



To derive IR constraints, integrate this analytic function on a 
closed contour: 

I
G = 0And require Position space  

“dispersion relation”

  

O

O



When the dust settles, the sum rule + crossing symmetry implies 

where           is an OPE coefficient. 

For example, stress tensor exchange: 

�IR =

Z

UV
dx|something|2

� 0

�IR

�IR ⇠ hO(0)O(1)T��(1)i

[TH, Jain, Kundu].

More generally: constraints on coupling to the lowest-dimension 
operator at each spin (s=2 or higher)

x

`�2



Application #1: A trivial case

For scalar probes, 

the coupling is fixed by conformal Ward identity: 

The causality constraint gives this obvious inequality.

O

O

Tµ⌫

 

 

� =
�O� 

c
> 0



Application #2: Maldacena-Zhiboedov Theorem

Comparing  magnitude of spin-2 to spin-L: 

Conserved currents with spin > 2 are not allowed. 

(Unless there is an infinite number of them, as in free 
theory.) 



Application #3: Probes with spin

For probes with spin, stress-tensor exchange is nontrivial (not 
fixed by Ward identity): 

 

 

Tµ⌫

Same logic gives a new “null energy”-like constraint 

[TH, Jain, Kundu]

Oµ⌫⇢...

Oµ⌫⇢...

h"·O(0)"⇤ ·O(y+, y�)T��(1)i > 0
for y+ ! 0



An interesting example is 

which includes the anomaly coefficients a,c 

hTµ⌫T�⇢T��i

different approach: Komargodski, Kulaxizi, Parnachev, Zhiboedov 
Also: new constraints for other external operators. 

[TH, Jain, Kundu]
1

3
<

a

c
<

31

18 [Hofman, Li, Meltzer,  
Poland, Rejon-Barrera 

causality ==> 

This is a bootstrap derivation of the Hofman-Maldacena energy 
calorimeter constraints.



[Camanho, Edelstein,  
Maldacena, Zhiboedov]

The more recent constraints  

are much stronger versions of Hofman-Maldacena. 

To derive this from CFT is difficult, but plausibly within reach with 
existing techniques and enough effort: 

1. Compute anomalous dimensions by lightcone bootstrap 

2. Apply causality constraints

a ⇡ c



Application #4: Holographic Dual of (@�)2 + �(@�)4

Consider a scalar theory in AdS with this contact interaction. 

(Gravity is decoupled.) 

If              , the dual CFT violates the sum rule. 

Therefore we reproduce the Adams et al. result directly from 
the CFT bootstrap:

� < 0

� > 0



Application #5: Another look at

Most of what I said does not require CFT. 

Can also apply sum rule directly to flat-space, perturbative QFT. 
For example: 

Sum rule says that wrong-sign leads to causality-violating 
commutators. 

This is an “almost-Euclidean” derivation of the a-theorem. 

(Different from previous slide, because we’re not using 
holography here!)

�(@�)4

L = (@�)2 + �(@�)4 + · · ·



Application #6: Fine tuning

Consider 

L = (@�)2 +
�4

f4
(@�)4 +

�8

f8
(@�)8 + · · ·

�4 ⌧ �8 is disallowed

Compare magnitude of spin-2 and spin-4 sum rules: 

“Non-renormalizable EFT cannot be arbitrarily fine-tuned”



Thank you

Summary:

In a causal/unitary QFT, position-space correlation 
functions have analogues of 

• “optical theorem” positivity conditions  

• “dispersion relations” relating UV <—> IR 

This imposes constraints on the IR couplings of both 
conformal and non-conformal QFTs.


