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Entanglement Entropy

Characterize entanglement in QFT:

t = const
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Emergent Geometry & Entanglement

Some relationship between entanglement and
emergent geometry:
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Ryu-Takayanagi formula

AdS/CFT: geometry emerges out of CFT

Ryu, Takayanagi 06

proven:
Maldacena, Lewkowycz " |3
{ = const
: Minimal surface

Classical grawty I|m|t

] Beautiful generallzatlon

area (m(A ,,
tof Bekenstein-Hawking |

SEE = e |
N larea law for Black Holes}

Entanglement = probe of emergent
geometry!
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Plan:

Two interesting consequences/lessons of this
formula:

® |arge-N phase transitions in Entanglement
Entropy

® Spacetime dynamics (Einstein’s Equations)
from the Entanglement First Law
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Plan:

Two interesting consequences/lessons of this
formula:

° f Large N phase transitions in Entanglement j

Entropy

° Spacetlme dynamlcs (Elnsteln S Equatlons)
from the Entanglement First Law
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Minimization procedure gives rise to
geometrlc phase transitions:

Two Iocally minimal surfaces
o Ay A1 Ao

A A
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Minimization procedure gives rise to
geometrlc phase transitions:

Two Iocally minimal surfaces
o Ay A1 Ao

Order parameter: Mutual Information

I(.A1,A2) = S(Al) -+ S(AQ) — S(Al U AQ)

I =0

I+40
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Bulk Quantum Corrections to RT
In a local QFT: Mutual Information can never be zero

1= ((0000) )

In fact we argued leading correction comes from
mutual information of bulk fields:

SE_EIOOP — SEE (Ab) —+- Sloc TF, Lewcowycz, Maldacena

Al Ao

I(A1; As) = Tk (AS; AS)
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Many S|m|Iar|t|es W|th Hawkmg Page

Global AdS

(D

As a function of TR
S = OG%) S =0(Gy)

Deep connections with deconfinement

transition of large-N gauge theories
Witten; Sundborg; Aharony, Marsano, Minwalla, Papadodimas, van Raamsdonk

In 2d EE connection is very strong!
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The replica trick

Main computational tool for EE in QFT

| hard to deal
Introduce Entanglement Renyi Entropy: with
1 n
Sn(-A) — n—llnTr’OA

Compute for integer n > 2 attempt to continue
to non-integer .... take the limit

lim 5, (A) = Spr(A)

Why! One can formulate Trp’; as a
euclidean path-integral
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The replica trick

trply

* Take n-copies of CFT on the Euclidean plane:

S




The replica trick

trp'y

* Take n-copies of CFT on the Euclidean plane:

_____ A A A e Split t=0 surface into
regions A and A°




The replica trick
trpﬁ — Z <i1‘PA Z ‘7/2> <i2‘PA--- Z |Zn> <7:n|PA |7/1>

* Take n-copies of CFT on the Euclidean plane:

_________ S * Split t=0 surface into
22 ; regions A and A°

e Cut and join according
to products and traces




The replica trick
trpﬁ — Z <i1‘PA Z ‘7/2> <i2‘PA--- Z |Zn> <7:n|PA |7/1>

* Take n-copies of CFT on the Euclidean plane:

_________ S * Split t=0 surface into
22 ; regions A and A°

e Cut and join according
to products and traces

this manifold:

* Partition function on

Sn(A) = (InZp, —nlnZy)




Two intervals leads to a complicated surface:

Riemann surface:

Z(M,) = complicated!

* Goal: use usual rules of AdS/CFT to compute
the partition function: Zcpr(M,,)




Bulk Solution?
_~ Boundary

conditions

(not minimal surface

2 but actual 3d manifold)

Solve Einstein’s equations subject to boundary
conditions and bulk regularity. 9BY = M

pree
ZM'n, — 27 €XP (_Sgr T O(CO)) Gy oxct

Classical gravity limit: only need least action solution

n

Many solutions!
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The case n = 2 is easy:

Double cover gives a simple torus, Headrick 10
and Z 4, is the thermal partition function.

T

A

Solid torus: "

space

Thermal AdS * BTZ black hole

Hawking Page phase transition!
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The case n = 2 is easy:

Double cover gives a simple torus,

Headrick 10

and Z 4, is the thermal partition function.

T

Solid torus: "

space

Thermal AdS

A

K(zx—1)
K (x)

(21 — 22)(23 — 24)

T =1

T :‘:

1/2

> ]- (22 — Z4)(21 — 23)

BTZ black hole

Hawking Page phase transition!




But to find EE need solutions
for all integer n??

Simplifying assumptions:

|. Least action solution is a handlebody
2. This handlebody preserves the boundary symmetries:

Zn replica symmetry not spontaneously broken

cyclic permutations of the replicas

We found two solutions satisfying these assumptions

Exchange dominance at » =1/2 for all =
Analytically continue the action to » =1- RT




A Handlebody is a 3 manifold which fills in the

Riemann surface in such a way that there are g=(n-1)
contractible cycles in the bulk (analog of solid torus)

Pick these cycles symmetrically to preserve replica
symmetry:

Rk
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Constructed as follows:

Find a flat SL(2,C) connection living on M,,. This can
then be extended to a 3d solution of Einstein’s
equations (a la Witten’s SL(2,C)CS description of gravity.)

In particular contractible cycles must necessarily
have zero SL(2,C) monodromy and this uniquely
specifies the flat connection

(e.g. we can find it numerically)

Extract Renyi Entropy!
Large-N phase transition at x=1/2

Bulk action is then easy to compute (numerically.)

Actually this algorithm works for non-integer n.
Why!
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G e n e ral Les S O n S: Maldacena Lewcowycz

Why can we analytically continue in n?

Quotient

> B,.},/Z,n Has fixed points

along co-dim 2 surfaces
/; Zon>2 ~ RT surface

Algorithm finds this!

° B,(Y“) has conical deficit singularities,
opening angle: 2n/n
* For n =~ 1 regain original bulk + tensionless
cosmic string
* Equations for cosmic string fixed by Einstein’s
equations - RT answer
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General Lessons:

Universality at large-c

(Riemann o< Ricci)

Solutions we construct are locally AdSs which is
maximally symmetric and thus remains a solution
including higher derivative corrections

Expect Renyi Entropy to be universal for large-c CFTs
Sn — Cfuniversal + O(CO)

(_

— Recall Sgrayv X C

Like universality of thermodynamics at large-c
Dijkgraaf, Maldacena, Moore,Verlinde "00 Keller "1

Additional constraint on spectrum: density of
states is O(c”) for h < O(c)
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CFT derivation Hartman 13

* Exact same prescription can be arrived at in a
completely different way for large-c CFTs

Z (M) :)0+0_0+0_) = Z Ci_Ci_P{(hn, hp, C; )

Twist operators in P
n conformal blocks
(CFT)" /2 % coefficients

“Classical conformal blocks”

primaries Zamolodchikov "87

* At large-c the relevant F's are computed by the
same monodromy problem as for the handlebodies
* Assuming nice behavior of the spectrum of
primaries as well as for the OPE coefficients one

arrives at the same result
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Plan:

Two interesting consequences/lessons of this
formula:

® |arge-N phase transitions in Entanglement
Entropy

i Spacetime dynamics (Einstein’s Equations) |
| from the Entanglement First Law
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Dynamics & Entanglement

If seometry emerges, what about the dynamics
of this geometry! eg Eintein’s Equations

Many Hints - Thermodynamic in Nature

Jacobson 95

Padmanabhan;Verlinde

Recent precise statement: linearized Einstein’s Equations
from “First Law of Entanglement”

Lashkarl McDermott Van Raamsdonk

Now dISCUSS a S|mple proof of thIS result
and extension to hlgher derlvatlve grawty
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First Law of Entanglement Entropy

0) € (H="Ha® Hac) pa = trac]|0)(0
Sa(pa) = —trpalogpa

Modular Hamiltonian (Entanglement Hamiltonian):

H(| ) = _logpa+C (T =1)
State dependent operator (always vacuum for this talk)

Calculate expectation in another state: Modular Energy
V)Wl Ea(ply) =ty HY

“Small”’ variation in state

Ealéa) = Ealpa) =0Ea ~ 3541 Sa(s)) = Salp)

pa = tracly
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Some Comments:

® “Small” change in state:
P(A) = 10) + Alg) + ...

® Can be understood as a consequence of the
positivity of relative entropy: Casini "08

a form of the
Bekenstein Bound

S(palpa) =0E —65 >0

Blanco, Casini, Hung, Myers " | 3
® For a PA athermal density matrix: exp(—3H)

an exact quantum statement of the first law
allowing for arbitrary first order variations:

ToS

Energy Energy

Tuesday, March 4, 2014



Modular Hamiltonian

Consider a local QFT; take A to be a subregion in a
constant time slice of the QFT:

/D

In general H, will be some horrible non local operator

Well known example of a Modular Hamiltonian:

/ Half space/Rindler wedge
Pt e P &
A H 4 = boost generator
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Modular Hamiltonian for a Ball in CFT

In a CFT can conformally map half space
to a ball and the Rindler wedge to D

Casini, Huerta, Myers | |

D Boost generator maps to:

Conformal Killing Vector
s

R

Ch (R* —t? — 72)0; — 2tz';)

This explicit expression for H will allow us to
understand the consequences of first law in AdS/CFT!
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The First Law in AdS/CFT

RT surface Basic setup:

Small perturbation to vacuum:

P(A)) = [0) + Al¢) +

Jab = gfbds + hap h <1

, Consider gravity waves on AdS

'\\\\ Entanglement Entropy:

4Gy / V95

Tuesday, March 4, 2014



Modular Energy in AdS/CFT
Assymptotically AdS:

ds® = 277 (d22 + nupdatda”) + zd_thﬁj)da:“d:E” + ...

Stress tensor constructed from assymptotic expansion:

Balasubramanian, Kraus ...

d
T 1) h(d) (Einstein Gravity)
< : > 167TGN '

Modular Energy:

d (RQ — fz) (d)
Hpr) = Fn = h
\Hp) B SGN/B 'R tt

B: 7% < R?

*(expansion found by solving EOM.We are soon to discuss deriving
the EOM - might worry this is circular. Never fear: first law
can also be used to directly derive this assymptotic behavior. )
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The First Law in AdS/CFT

058

" Both of these are integrals
of functionals of h

In summary:

Non-local constraint on metric
perturbations

--"
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The First Law in AdS/CFT

" Both of these are integrals

B of functionals of h
5 In summary:
.-~ . |/Non-local constraint on metric
T N :
| perturbations
2 Pé:)wer: applies to all sizes of balls centered at

v all boundary points, in all Lorentz frames

 }
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EOM «—> First Law

Claim: this set of non-local constraints on h,
equivalent to Einstein’s Equations

To show this we constructed a (D-2) form: X (1)
with the following properties:

/X=5EB /~X:5SB
B B

dx o< (EOM)vs, - |
*—___ Linearized metric EOM

Simple application of Stokes: (tt component)

0=6S5 — 0Ep / (EOM)
>
Since this should be true for all balls of all sizes etc:

(EOM)tt — O
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In all Lorentz frames labelled by a 4-vector: u”

wu”(EOM),, =0 =— (EOM),, =0

Does not work for the z-components of the EOM

Appeal to initial value formulation of gravity
on radial slices where these equations are

constraint equations. Just need to show they
are satisfied at the boundary (> = 0)

his s preserved under radial evolution.

Follows from conservation + tracelessness of T
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FOM ——

But how did we construct this magical form x (/) ?

First Law

Short answer: looked up lyer & Wald 94

They showed that all on=shell linearized perturbations
of a stationary black hole with a killing horizon
satisfy a first law.

The region of interest to us
can be thought of as a Rindler
wedge with a killing horizon:

2 . 1
€B — —Et[Z(?z + xz(‘?@] + E[RQ — 22 — t2 — 52] 8,5

gB’z:O — (B

Killing energy = modular energy
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lyer & Wald 94

Constructed a closed (D-2) form X(h,¢B)
for on-shell perturbations.

We generalized to

dx < (EOM)vs

BO NUSsS: TF, Guica, Hartman, Myers,Van Raamsdonk " |3

Their construction applies to arbitrary theories
of higher derivative gravity. Extend our proof:

RT (area Iaw) Swal d

Equations of Higher
derivative gravity

Einstein’s Equations ——
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lyer & Wald 94
Constructed a closed (D-2) form X(h,¢B)

for on-shell perturbations. (Covariant phase space formalism)

We generalized to X = 0Q[éR] — &g - O(h)
dX X (EOM)VZ Noether Charge Symplec.tic
BonUS: TF, Guica, Hartman, Myers,Van Raamsdonk " |3 POtentlaI

Their construction applies to arbitrary theories
of higher derivative gravity. Extend our proof:

RT (area Iaw) Swal q

Equations of Higher
derivative gravity

Einstein’s Equations ——
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Holographic Dictionary from First Law

<
—
\/
X

Remedy a gap in the proof:
Take size of ball to be vanishingly small:

2mE) 7

: —d L d—2

élElOR 5IIEB — d2 1 6<Ttt(l‘0)>
058 = 0SWald

First law along with the Wald functional
allows us to read off the stress tensor

from the asymptotic metric!

Allows us to derive the full
Fefferman-Graham expansion.
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Conclusions

* First Law for Entanglement Entropy:

* Non-local constraint on dual spacetime
* Equivalent to linearized metric EOM
* Also gives us the holographic dictionary

* Further work:

* Non-linear equations?
* More precise relationship to Jacobson!?
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