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Motivation and basic idea



The IIB (F-theory) landscape

Central in modern string phenomenology (Fenomenology)

GUT model building [Beasley-Heckman-Vafa,...]

models of inflation [Baumann-Dymarsky-Klebanov-McAllister,...]

moduli stabilization [Kachru-Kallosh-Linde-Trivedi,...]

Missing: global picture

genuine, fully consistent compactifications
systematics

In principle simple [Vafa]:

F-theory compactification with 4 susies in 4 dim
⇔

elliptically fibered CY 4-fold + 4-flux
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All CY4 hypersurfaces in weighted CP5

Total number = 1, 100, 055 [Lynker-Schimmrigk-Wisskirchen]:

h+ ≡ h3,1 + h1,1 versus h− ≡ h3,1 − h1,1

ND3 =
χ

24
≈ h+

4
.



Elliptically fibered subset

At least 49, 751:

h+ ≡ h3,1 + h1,1 versus h− ≡ h3,1 − h1,1



Number of flux vacua

Continuum estimate for number of vacua for fixed CY4 within
region M of complex structure moduli space [Ashok-Denef-Douglas]:

Nvac = Vol
[
Sb4 |R2= χ

12

] ∫
M

e(D)

where

Vol
[
Sb|R2= χ

12

]
=

(πR2)
b
2

(b
2 )!

Example with largest χ:

w = (1, 1, 84, 516, 1204, 1806) , h3,1 = 303148 , h1,1 = 252 ,

b4 = 1, 819, 942 , χ = 1, 820, 448

has
Nvac ∝ Vol = 10139598.



Weakly coupled IIB picture

[Sen]

(pq)-7

T2

D7

T2

O7

CY3 orientifold with

O7 + O3
D7 + D3
RR + NSNS 3-flux + worldvolume 2-flux

Virtually all vacuum degeneracy arises from D-brane d.o.f.

Constructing all = intractable. Instead: how many D-brane
vacua in different sectors? [Douglas]
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Problems with conventional approach

ADD-formula far outside of regime of asymptotic validity
QD3 � b4 (because QD3 ∼ b4

24)

D7-D3 bound states not taken into account

No systematic enumeration of different sectors of D7
configuration space

Even more basic issues such as K-theory constraints and
D-term stability have not systematically been addressed.



Basic idea

Start with IIB O7/O3 orientifold (no bulk flux) and perform
following procedure:

1 Take g
(4)
s → 0

2 Compactify ‘visible’ space R3 → T 3

3 T-dualize along spatial T 3:

IIB → IIA , D7/D3 → D4/D0 , O7/O3 → O4/O0 .

4 Decompactify T̃ 3 → R3

5 Take g
(4)
s up again
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Result: Orientiholes

Γ1

Γ−1

Γ2

Γ−2

Γ0

Key fact:

Witten index vacua ⇔ index of BPS states



“Experimental” landscapeology

Estimate numbers of vacua in various sectors landscape by
“measuring” (refined) Bekenstein-Hawking entropy of various
mesoscopic black hole configurations: Nvac ∼ eSBH

Finer enumeration from multiparticle quantum states (the
fuzzball approach to landscapeology)

brane-brane open string indices ⇔ angular momenta

Subtle Z2 “tadpoles” on IIB side = charge measurable by
Aharonov-Bohm experiment
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Other motivations

1 funky spacetimes, where you can take a walk around the
center of the universe and come back as your mirror image.

2 new invariants and associated modular forms, wall crossing
formulae, ...

3 new version of the OSV conjecture: ZOH ∼ Ztop (linear!)



Review of N = 2 black hole bound states



Single centered black holes

Spherically symmetric BPS black hole of charge Γ ≡ (pΛ, qΛ):

ds2 = −e2U(r)dt2 + e−2U(r)d~x2

t

Solutions ⇔ attractors [Ferrara-Kallosh-Strominger]:

Radial inward flow of vector multiplet moduli tA(r) is gradient flow
of central charge |Z (Γ, t)|.

BH entropy:
S(Γ) = π min

t
|Z (Γ, t)|2
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BPS black hole molecules

More general BPS solutions exist: multi-centered bound states:

ds2 = −e2U(~x)
(
dt − ωidx i

)2
+ e−2U(~x)d~x2.

Centers have nonparallel charges.

Bound in the sense that positions are constrained by
gravitational, scalar and electromagnetic forces.

Stationary but with intrinsic spin from e.m. field
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Explicit multicentered BPS solutions

N-centered solutions characterized by harmonic function H(~x)
from 3d space into charge space:

H(~x) =
N∑

i=1

Γi

|~x − ~xi |
+ H∞

with H∞ determined by t|~x |=∞ and total charge Γ.

Positions constrained by

N∑
j=1

〈Γi , Γj〉
|~xi − ~xj |

= 2 Im
(
e−iαZ (Γi )

)
|~x |=∞

where 〈Γ1, Γ2〉 = Γm
1 · Γe

2 − Γe
1 · Γm

2 and α = arg Z (Γ).

All fields can be extracted completely explicitly from the
entropy function S(Γ) on charge space, e.g.

e2U(~x) =
π

S(H(~x))
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2-centered example and decay at marginal stability

Γ1 Γ2

Equilibrium distance from position constraint:

|~x1 − ~x2| =
〈Γ1, Γ2〉

2

|Z1 + Z2|
Im(Z1Z2)

∣∣∣∣
|~x |=∞

When MS wall is crossed: RHS →∞ and then becomes
negative: decay

Spin:

J =
〈Γ1, Γ2〉

2



2-centered example and decay at marginal stability

Γ1 Γ2

Equilibrium distance from position constraint:

|~x1 − ~x2| =
〈Γ1, Γ2〉

2

|Z1 + Z2|
Im(Z1Z2)

∣∣∣∣
|~x |=∞

When MS wall is crossed: RHS →∞ and then becomes
negative: decay

Spin:

J =
〈Γ1, Γ2〉

2



2-centered example and decay at marginal stability

Γ1 Γ2

Equilibrium distance from position constraint:

|~x1 − ~x2| =
〈Γ1, Γ2〉

2

|Z1 + Z2|
Im(Z1Z2)

∣∣∣∣
|~x |=∞

When MS wall is crossed: RHS →∞ and then becomes
negative: decay

Spin:

J =
〈Γ1, Γ2〉

2



2-centered example and decay at marginal stability

Γ1 Γ2

Equilibrium distance from position constraint:

|~x1 − ~x2| =
〈Γ1, Γ2〉

2

|Z1 + Z2|
Im(Z1Z2)

∣∣∣∣
|~x |=∞

When MS wall is crossed: RHS →∞ and then becomes
negative: decay

Spin:

J =
〈Γ1, Γ2〉

2



Example: pure D4 = D6− D6 molecule

Pure D4 with D4-charge P has

Z ∼ −P · t2

2
− P3

24
.

Z (t) = 0 at t ∼ i P ⇒ No single centered solution.

Instead: realized as bound state of single D6 with U(1) flux
F = P/2 and anti-(single D6 with flux F = −P/2):

-D6[-P/2]D6[P/2]

Stable for Im t > O(P).
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Transition between gs |Γ| � 1 and gs |Γ| � 1 pictures

Mass squared lightest bosonic modes of open strings between
Γ1 and Γ2:

M2/M2
s ∼ |~x1 − ~x2|2

`2
s

+ ∆α

= c(t) g2
s + ∆α

On stable side of MS wall ∆α < 0, so if gs gets sufficiently
small, open strings become tachyonic and branes condense
into single centered D-brane.

 single D-brane Quiver Higgs Quiver Coulomb two particles
(sugra)

0 |∆α| 3/2c |∆α|c sgI
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The flow tree - BPS state correspondence

Establishing existence of multicentered BPS configurations not
easy: position constraints, S(H(~x)) ∈ R+ ∀~x , ...

However:

Conjecture: Branches of multicentered configuration moduli
spaces in 1-1 correspondence with attractor flow trees:

Γ

ΓΓE'

ms

E''

E

Much simpler to check & enumerate!
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Flow tree decomposition of BPS Hilbert space

Flow trees can also be given microscopic interpretations
(decay sequences / tachyon gluing).

⇒ Hilbert space of BPS states of charge Γ in background t
has canonical decomposition in attractor flow tree sectors:

H(Γ, t) =

+ + + +
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The BPS index

Hilbert space of BPS states in 4d N = 2 theories:

H(Γ, t) = (1
2 , 0, 0)⊗H′(Γ, t)

Index:

Ω(Γ, t) = TrH′(Γ,t) (−1)2J′3 = (−1)dimCM χ(M) .



Wall crossing formula for primitive splits

J
Γ1 Γ2

Near marginal stability wall Γ → Γ1 + Γ2 (with Γ1 and Γ2

primitive), the decaying part of H′(Γ, t) has following
factorized form:

∆H′(Γ, t) = (J)⊗H′(Γ1, t)⊗H′(Γ2, t)

with J = 1
2(〈Γ1, Γ2〉 − 1).

Spin J factor:
macroscopically from intrinsic angular momentum
monopole-electron system (−1/2 from spin-magnetic coupling)
microscopically from quantizing open string tachyon moduli
space Msusy = CP2J .

Implies index jump

∆Ω = (−)2J(2J + 1) Ω(Γ1, tms) Ω(Γ2, tms).
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Type IIA orientiholes



Solutions

= N = 2 solutions invariant under τ ′. Two cases:

τO4/O0 = Ω σ∗P∗

τO6/O2 = Ω (−1)FL σ∗P∗ .

where P : ~x → −~x and σ is internal involution.

Γ1

Γ−1

Γ2

Γ−2

Γ0

E.g. O4/O0 one modulus case:

Γ1 = (P0,P1,Q1,Q0)1 , Γ−1 = Γ′1 = (−P0,P1,−Q1,Q0)1 ,

Γ0 = (0,P1, 0,Q0)0 .



Main difference

Phase α∞ is fixed by choice of orientifold projection:

α∞ = 0 (O4/O0) , α∞ = −π

2
(O6/O2)

Consequence: if α∞ = π + arg Z : neg. mass, grav. repuslive,
inverted attr. flow, attr. point → repulsor point, sol. singular.

0.05 0.10 0.15 0.20 0.25 0.30
1�r

1

2

3

4

5

6

7

1�S



Basic bound state

Simplest possibility:

Γ = Γ1 + Γ0 + Γ′1

i.e. bound state of charge with its own image (+ charge in the
middle of the universe)

From integrability constraint:

I (Γ1, Γ0)

|~x1|
= 2Im[e−iαZ1]∞ .

where

I (Γ1, Γ0) :=
〈Γ1, Γ

′
1〉

2
+ 〈Γ1, Γ0〉 = 2J

⇒ Stability condition:

I (Γ0, Γ1) Im[e−iαZ1]∞ > 0 .



Wall crossing formula

Index counting orientifold invariant BPS states:

Ωinv(Γ, t) = Tr
H′

inv
(Γ,t)

(−)2J′3 = (−1)dimCMinv χ(Minv) .

Wall crossing formula

∆Ωinv = (−1)I (Γ1,Γ0)−1 |I (Γ1, Γ0)|Ω(Γ1, tms) Ωinv(Γ0, tms) .

Corollary, by comparing to microscopic picture:

angular momentum of pair = open string Witten index
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Z2 torsion charge

α

α'

β'

β γ

For charge odd under τ (e.g. D6 in O4/O0 case): Aharonov
Bohm experiment can distinguish between odd and even
number of dipoles.

Related to subtle anomalies on IIB side.



Application to counting basic D7 vacua

Example: pure D7 branes in degree 8 hypersurface in
CP4

4,1,1,1,1 O3/O7 orientifolded by reflection of first
coordinate.

Complicated story (cf. previous talk at Rutgers)

D9

D9' T }
D7

<T>

D7 (possibly with flux) obtained from two D9-D9′ pairs with
a, b units of flux.



Application to counting basic D7 vacua

Orientihole split flow:

y   (a)spl

1 2

0

y   (b)spl

Predicts Euler characteristics moduli spaces:
a 2 3 4 5 6 7

χ(M) 3729 33540 104825 223440 388905 598884

X
Note: decays at quite large vol.!
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General tadpole canceling D7 vacua

Γ = −8ΓO4 + ΓO4 = (0, 28, 0, 133
3 )

Single centered black holes solutions exist with
S = SBH

2 = 1789 in large volume approx. but at t∗ ≈ 2i  
can’t trust result.

Do single centered solutions exist in fully corrected theory?
Physical argument: scaling solutions exist (for a = 2).

D0

Γ1 Γ2Γ−1Γ−2
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General tadpole canceling D7 vacua

Fat multicentered solutions:

Γ1

Γ2Γ−1Γ−2

S = 1540 in large vol. approx. (ok Im t∗ ≈ 7)

⇒ In this sector Nvac ≈ 10668.



Directions for future work

lift to M-theory

solutions in T 3. MS = ??

corrections to Z

map different landscape sectors to different kinds of BH
configurations

implications stability issues for fenomenology

nonprimitive wall crossing

OSV, modular forms

bulk fluxes

nonsusy
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