Orientiholes

Frederik Denef, Mboyo Esole and Megha Padi, arXiv:0901.2540

イロト イ理ト イヨト イヨト

æ

Outline

Motivation and basic idea

Review of $\mathcal{N}=2$ black hole bound states

Type IIA orientiholes

Motivation and basic idea

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

The IIB (F-theory) landscape

- Central in modern string phenomenology (Fenomenology)
 - GUT model building [Beasley-Heckman-Vafa,...]
 - models of inflation [Baumann-Dymarsky-Klebanov-McAllister,...]

• moduli stabilization [Kachru-Kallosh-Linde-Trivedi,...]

The IIB (F-theory) landscape

- Central in modern string phenomenology (Fenomenology)
 - GUT model building [Beasley-Heckman-Vafa,...]
 - models of inflation [Baumann-Dymarsky-Klebanov-McAllister,...]

- moduli stabilization [Kachru-Kallosh-Linde-Trivedi,...]
- Missing: global picture
 - genuine, fully consistent compactifications
 - systematics

The IIB (F-theory) landscape

- Central in modern string phenomenology (Fenomenology)
 - GUT model building [Beasley-Heckman-Vafa,...]
 - models of inflation [Baumann-Dymarsky-Klebanov-McAllister,...]
 - moduli stabilization [Kachru-Kallosh-Linde-Trivedi,...]
- Missing: global picture
 - genuine, fully consistent compactifications
 - systematics
- In principle simple [Vafa]:

F-theory compactification with 4 susies in 4 \dim

elliptically fibered CY 4-fold + 4-flux

All CY4 hypersurfaces in weighted \mathbb{CP}^5 Total number = 1, 100, 055 [Lynker-Schimmrigk-Wisskirchen]:

Elliptically fibered subset

At least 49,751:

 $h_+ \equiv h^{3,1} + h^{1,1}$ versus $h_- \equiv h^{3,1} - h^{1,1}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Number of flux vacua

Continuum estimate for number of vacua for *fixed* CY4 within region \mathcal{M} of complex structure moduli space [Ashok-Denef-Douglas]:

$$N_{vac} = \operatorname{Vol}\left[S^{b_4}|_{R^2 = \frac{\chi}{12}}\right] \int_{\mathcal{M}} e(D)$$

where

$$\operatorname{Vol}\left[S^{b}|_{R^{2}=\frac{\chi}{12}}\right] = \frac{(\pi R^{2})^{\frac{b}{2}}}{(\frac{b}{2})!}$$

Example with largest χ :

$$w = (1, 1, 84, 516, 1204, 1806), \quad h^{3,1} = 303148, \quad h^{1,1} = 252,$$

 $b_4 = 1, 819, 942, \quad \chi = 1, 820, 448$

has

$$N_{vac} \propto \mathrm{Vol} = 10^{139598}.$$

Weakly coupled IIB picture

[Sen]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- CY3 orientifold with
 - 07 + 03
 - D7 + D3
 - RR + NSNS 3-flux + worldvolume 2-flux

Weakly coupled IIB picture

[Sen]

- CY3 orientifold with
 - O7 + O3
 - D7 + D3
 - RR + NSNS 3-flux + worldvolume 2-flux
- Virtually all vacuum degeneracy arises from D-brane d.o.f.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Weakly coupled IIB picture

[Sen]

- CY3 orientifold with
 - O7 + O3
 - D7 + D3
 - RR + NSNS 3-flux + worldvolume 2-flux
- Virtually all vacuum degeneracy arises from D-brane d.o.f.
- Constructing all = intractable. Instead: how many D-brane vacua in different sectors? [Douglas]

Problems with conventional approach

- ADD-formula far outside of regime of asymptotic validity $Q_{D3} \gg b_4$ (because $Q_{D3} \sim \frac{b_4}{24}$)
- D7-D3 bound states not taken into account
- No systematic enumeration of different sectors of D7 configuration space
- Even more basic issues such as K-theory constraints and D-term stability have not systematically been addressed.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Start with IIB O7/O3 orientifold (no bulk flux) and perform following procedure:

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Start with IIB O7/O3 orientifold (no bulk flux) and perform following procedure:

• Take
$$g_s^{(4)} \rightarrow 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Start with IIB O7/O3 orientifold (no bulk flux) and perform following procedure:

1 Take
$$g_s^{(4)} \rightarrow 0$$

2 Compactify 'visible' space $\mathbb{R}^3 \to T^3$

Start with IIB O7/O3 orientifold (no bulk flux) and perform following procedure:

1 Take
$$g_s^{(4)} \rightarrow 0$$

- 2 Compactify 'visible' space $\mathbb{R}^3 \to T^3$
- **3** T-dualize along spatial T^3 :

 $IIB \rightarrow IIA\,, \qquad D7/D3 \rightarrow D4/D0\,, \qquad O7/O3 \rightarrow O4/O0\,.$

Start with IIB O7/O3 orientifold (no bulk flux) and perform following procedure:

1 Take
$$g_s^{(4)} \rightarrow 0$$

- 2 Compactify 'visible' space $\mathbb{R}^3 \to T^3$
- **3** T-dualize along spatial T^3 :

 $\textit{IIB} \rightarrow \textit{IIA}\,, \qquad \textit{D7/D3} \rightarrow \textit{D4/D0}\,, \qquad \textit{O7/O3} \rightarrow \textit{O4/O0}\,.$

() Decompactify $\tilde{T}^3 \to \mathbb{R}^3$

Start with IIB O7/O3 orientifold (no bulk flux) and perform following procedure:

1 Take
$$g_s^{(4)} \rightarrow 0$$

- 2 Compactify 'visible' space $\mathbb{R}^3 \to T^3$
- **3** T-dualize along spatial T^3 :

 $\textit{IIB} \rightarrow \textit{IIA}\,, \qquad \textit{D7/D3} \rightarrow \textit{D4/D0}\,, \qquad \textit{O7/O3} \rightarrow \textit{O4/O0}\,.$

- Decompactify $\tilde{T}^3 \to \mathbb{R}^3$
- Take $g_s^{(4)}$ up again

Result: Orientiholes

Key fact:

Witten index vacua \Leftrightarrow index of BPS states

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Estimate numbers of vacua in various sectors landscape by "measuring" (refined) Bekenstein-Hawking entropy of various mesoscopic black hole configurations: $N_{\rm vac} \sim e^{S_{BH}}$

- Estimate numbers of vacua in various sectors landscape by "measuring" (refined) Bekenstein-Hawking entropy of various mesoscopic black hole configurations: $N_{\rm vac} \sim e^{S_{BH}}$
- Finer enumeration from multiparticle quantum states (the fuzzball approach to landscapeology)

- Estimate numbers of vacua in various sectors landscape by "measuring" (refined) Bekenstein-Hawking entropy of various mesoscopic black hole configurations: $N_{\rm vac} \sim e^{S_{BH}}$
- Finer enumeration from multiparticle quantum states (the fuzzball approach to landscapeology)

• brane-brane open string indices \Leftrightarrow angular momenta

- Estimate numbers of vacua in various sectors landscape by "measuring" (refined) Bekenstein-Hawking entropy of various mesoscopic black hole configurations: $N_{\rm vac} \sim e^{S_{BH}}$
- Finer enumeration from multiparticle quantum states (the fuzzball approach to landscapeology)
- brane-brane open string indices ⇔ angular momenta
- Subtle \mathbb{Z}_2 "tadpoles" on IIB side = charge measurable by Aharonov-Bohm experiment

Other motivations

- funky spacetimes, where you can take a walk around the center of the universe and come back as your mirror image.
- e new invariants and associated modular forms, wall crossing formulae, ...
- **③** new version of the OSV conjecture: $Z_{OH} \sim Z_{top}$ (linear!)

Review of $\mathcal{N} = 2$ black hole bound states

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Single centered black holes

Spherically symmetric BPS black hole of charge $\Gamma \equiv (p^{\Lambda}, q_{\Lambda})$:

 $ds^{2} = -e^{2U(r)}dt^{2} + e^{-2U(r)}d\vec{x}^{2}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Single centered black holes

Spherically symmetric BPS black hole of charge $\Gamma \equiv (p^{\Lambda}, q_{\Lambda})$: $ds^{2} = -e^{2U(r)}dt^{2} + e^{-2U(r)}d\vec{x}^{2}$

Solutions ⇔ attractors [Ferrara-Kallosh-Strominger]:

Single centered black holes

Spherically symmetric BPS black hole of charge $\Gamma \equiv (p^{\Lambda}, q_{\Lambda})$:

$ds^2 = -e^{2U(r)}dt^2 + e^{-2U(r)}d\vec{x}^2$

Solutions \Leftrightarrow attractors [Ferrara-Kallosh-Strominger]:

Radial inward flow of vector multiplet moduli $t^{A}(r)$ is gradient flow of central charge $|Z(\Gamma, t)|$.

BH entropy:

$$S(\Gamma) = \pi \min_{t} |Z(\Gamma, t)|^2$$

More general BPS solutions exist: multi-centered bound states:

$$ds^{2} = -e^{2U(\vec{x})} \left(dt - \omega_{i} dx^{i} \right)^{2} + e^{-2U(\vec{x})} d\vec{x}^{2}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

More general BPS solutions exist: multi-centered bound states:

$$ds^{2} = -e^{2U(\vec{x})} \left(dt - \omega_{i} dx^{i} \right)^{2} + e^{-2U(\vec{x})} d\vec{x}^{2}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Centers have nonparallel charges.

More general BPS solutions exist: multi-centered bound states:

$$ds^{2} = -e^{2U(\vec{x})} \left(dt - \omega_{i} dx^{i} \right)^{2} + e^{-2U(\vec{x})} d\vec{x}^{2}.$$

- Centers have nonparallel charges.
- Bound in the sense that positions are constrained by gravitational, scalar and electromagnetic forces.

More general BPS solutions exist: multi-centered bound states:

$$ds^{2} = -e^{2U(\vec{x})} \left(dt - \omega_{i} dx^{i} \right)^{2} + e^{-2U(\vec{x})} d\vec{x}^{2}.$$

- Centers have nonparallel charges.
- Bound in the sense that positions are constrained by gravitational, scalar and electromagnetic forces.
- Stationary but with intrinsic spin from e.m. field

Explicit multicentered BPS solutions

 N-centered solutions characterized by harmonic function H(x) from 3d space into charge space:

$$H(ec{x}) = \sum_{i=1}^{N} rac{\Gamma_i}{|ec{x} - ec{x_i}|} + H_\infty$$

with H_{∞} determined by $t_{|\vec{x}|=\infty}$ and total charge Γ .

Explicit multicentered BPS solutions

 N-centered solutions characterized by harmonic function H(x) from 3d space into charge space:

$$H(ec{x}) = \sum_{i=1}^{N} rac{\Gamma_i}{|ec{x} - ec{x_i}|} + H_\infty$$

with H_{∞} determined by $t_{|\vec{x}|=\infty}$ and total charge Γ .

Positions constrained by

$$\sum_{j=1}^{N} \frac{\langle \Gamma_{i}, \Gamma_{j} \rangle}{|\vec{x}_{i} - \vec{x}_{j}|} = 2 \operatorname{Im} \left(e^{-i\alpha} Z(\Gamma_{i}) \right)_{|\vec{x}| = \infty}$$

where $\langle \Gamma_1, \Gamma_2 \rangle = \Gamma_1^{\mathrm{m}} \cdot \Gamma_2^{\mathrm{e}} - \Gamma_1^{\mathrm{e}} \cdot \Gamma_2^{\mathrm{m}}$ and $\alpha = \arg Z(\Gamma)$.

Explicit multicentered BPS solutions

 N-centered solutions characterized by harmonic function H(x) from 3d space into charge space:

$$H(ec{x}) = \sum_{i=1}^{N} rac{\Gamma_i}{|ec{x} - ec{x_i}|} + H_\infty$$

with H_{∞} determined by $t_{|\vec{x}|=\infty}$ and total charge Γ .

Positions constrained by

$$\sum_{j=1}^{N} \frac{\langle \Gamma_{i}, \Gamma_{j} \rangle}{|\vec{x}_{i} - \vec{x}_{j}|} = 2 \operatorname{Im} \left(e^{-i\alpha} Z(\Gamma_{i}) \right)_{|\vec{x}| = \infty}$$

where $\langle \Gamma_1, \Gamma_2 \rangle = \Gamma_1^{\mathrm{m}} \cdot \Gamma_2^{\mathrm{e}} - \Gamma_1^{\mathrm{e}} \cdot \Gamma_2^{\mathrm{m}}$ and $\alpha = \arg Z(\Gamma)$.

 All fields can be extracted completely explicitly from the entropy function S(Γ) on charge space, e.g.

$$e^{2U(\vec{x})} = \frac{\pi}{S(H(\vec{x}))}$$

・ロト・西ト・ヨト・ヨー シック

 $\Gamma_1 \bullet \Gamma_2$

• Equilibrium distance from position constraint:

$$|\vec{x}_1 - \vec{x}_2| = \left. \frac{\langle \Gamma_1, \Gamma_2 \rangle}{2} \left. \frac{|Z_1 + Z_2|}{\operatorname{Im}(Z_1 \overline{Z_2})} \right|_{|\vec{x}| = \infty} \right.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $\Gamma_1 \bullet \Gamma_2$

• Equilibrium distance from position constraint:

$$|\vec{x}_1 - \vec{x}_2| = \left. \frac{\langle \Gamma_1, \Gamma_2 \rangle}{2} \left. \frac{|Z_1 + Z_2|}{\operatorname{Im}(Z_1 \overline{Z_2})} \right|_{|\vec{x}| = \infty} \right.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• When MS wall is crossed: RHS $\rightarrow \infty$ and then becomes negative: decay

 $\Gamma_1 \bullet \Gamma_2$

• Equilibrium distance from position constraint:

$$|\vec{x}_1 - \vec{x}_2| = \left. \frac{\langle \Gamma_1, \Gamma_2 \rangle}{2} \left. \frac{|Z_1 + Z_2|}{\operatorname{Im}(Z_1 \overline{Z_2})} \right|_{|\vec{x}| = \infty} \right.$$

• When MS wall is crossed: RHS $\rightarrow \infty$ and then becomes negative: decay

• Spin:

$$J = \frac{\langle \Gamma_1, \Gamma_2 \rangle}{2}$$

(日) (日) (日) (日) (日) (日) (日) (日)

Example: pure $D4 = D6 - \overline{D6}$ molecule

• Pure D4 with D4-charge P has

$$Z \sim -P \cdot \frac{t^2}{2} - \frac{P^3}{24}.$$

Example: pure $D4 = D6 - \overline{D6}$ molecule

• Pure D4 with D4-charge P has

$$Z \sim -P \cdot \frac{t^2}{2} - \frac{P^3}{24}.$$

Z(t) = 0 at $t \sim i P \Rightarrow$ No single centered solution.

Example: pure $D4 = D6 - \overline{D6}$ molecule

• Pure D4 with D4-charge P has

$$Z \sim -P \cdot \frac{t^2}{2} - \frac{P^3}{24}.$$

Z(t) = 0 at $t \sim i P \Rightarrow$ No single centered solution.

• Instead: realized as bound state of single D6 with U(1) flux F = P/2 and anti-(single D6 with flux F = -P/2):

Stable for $\text{Im } t > \mathcal{O}(P)$.

Transition between $g_s|\Gamma| \gg 1$ and $g_s|\Gamma| \ll 1$ pictures

• Mass squared lightest bosonic modes of open strings between Γ_1 and Γ_2 :

$$M^2/M_s^2 \sim \frac{|\vec{x}_1 - \vec{x}_2|^2}{\ell_s^2} + \Delta \alpha$$
$$= c(t) g_s^2 + \Delta \alpha$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Transition between $g_s|\Gamma| \gg 1$ and $g_s|\Gamma| \ll 1$ pictures

• Mass squared lightest bosonic modes of open strings between Γ_1 and Γ_2 :

$$M^2/M_s^2 \sim \frac{|\vec{x}_1 - \vec{x}_2|^2}{\ell_s^2} + \Delta \alpha$$
$$= c(t) g_s^2 + \Delta \alpha$$

• On stable side of MS wall $\Delta \alpha < 0$, so if g_s gets sufficiently small, open strings become tachyonic and branes condense into single centered D-brane.

The flow tree - BPS state correspondence

• Establishing existence of multicentered BPS configurations not easy: position constraints, $S(H(\vec{x})) \in \mathbb{R}^+ \ \forall \vec{x}, ...$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The flow tree - BPS state correspondence

- Establishing existence of multicentered BPS configurations not easy: position constraints, $S(H(\vec{x})) \in \mathbb{R}^+ \ \forall \vec{x}, \dots$ However:
- Conjecture: Branches of multicentered configuration moduli spaces in 1-1 correspondence with attractor flow trees:

The flow tree - BPS state correspondence

- Establishing existence of multicentered BPS configurations not easy: position constraints, $S(H(\vec{x})) \in \mathbb{R}^+ \ \forall \vec{x}, \dots$ However:
- Conjecture: Branches of multicentered configuration moduli spaces in 1-1 correspondence with attractor flow trees:

• Much simpler to check & enumerate!

Flow tree decomposition of BPS Hilbert space

• Flow trees can also be given microscopic interpretations (decay sequences / tachyon gluing).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Flow tree decomposition of BPS Hilbert space

- Flow trees can also be given microscopic interpretations (decay sequences / tachyon gluing).
- ⇒ Hilbert space of BPS states of charge Γ in background t has canonical decomposition in attractor flow tree sectors:

The BPS index

Hilbert space of BPS states in 4d $\mathcal{N} = 2$ theories:

 $\mathcal{H}(\Gamma, t) = (\frac{1}{2}, 0, 0) \otimes \mathcal{H}'(\Gamma, t)$

Index:

$$\Omega(\Gamma, t) = \operatorname{Tr}_{\mathcal{H}'(\Gamma, t)} (-1)^{2J'_3} = (-1)^{\dim_{\mathbb{C}} \mathcal{M}} \chi(\mathcal{M})$$

Wall crossing formula for primitive splits

• Near marginal stability wall $\Gamma \rightarrow \Gamma_1 + \Gamma_2$ (with Γ_1 and Γ_2 primitive), the decaying part of $\mathcal{H}'(\Gamma, t)$ has following factorized form:

 $\Delta \mathcal{H}'(\Gamma, t) = (J) \otimes \mathcal{H}'(\Gamma_1, t) \otimes \mathcal{H}'(\Gamma_2, t)$ with $J = \frac{1}{2}(\langle \Gamma_1, \Gamma_2 \rangle - 1).$

Wall crossing formula for primitive splits

• Near marginal stability wall $\Gamma \rightarrow \Gamma_1 + \Gamma_2$ (with Γ_1 and Γ_2 primitive), the decaying part of $\mathcal{H}'(\Gamma, t)$ has following factorized form:

 $\Delta \mathcal{H}'(\Gamma, t) = (J) \otimes \mathcal{H}'(\Gamma_1, t) \otimes \mathcal{H}'(\Gamma_2, t)$

with $J = \frac{1}{2} (\langle \Gamma_1, \Gamma_2 \rangle - 1).$

- Spin *J* factor:
 - macroscopically from intrinsic angular momentum monopole-electron system (-1/2 from spin-magnetic coupling)
 - microscopically from quantizing open string tachyon moduli space $\mathcal{M}_{susy} = \mathbb{CP}^{2J}$.

Wall crossing formula for primitive splits

• Near marginal stability wall $\Gamma \rightarrow \Gamma_1 + \Gamma_2$ (with Γ_1 and Γ_2 primitive), the decaying part of $\mathcal{H}'(\Gamma, t)$ has following factorized form:

 $\Delta \mathcal{H}'(\Gamma, t) = (J) \otimes \mathcal{H}'(\Gamma_1, t) \otimes \mathcal{H}'(\Gamma_2, t)$

with $J = \frac{1}{2} (\langle \Gamma_1, \Gamma_2 \rangle - 1).$

- Spin *J* factor:
 - macroscopically from intrinsic angular momentum monopole-electron system (-1/2 from spin-magnetic coupling)
 - microscopically from quantizing open string tachyon moduli space $\mathcal{M}_{susy} = \mathbb{CP}^{2J}$.
- Implies index jump

 $\Delta \Omega = (-)^{2J} (2J+1) \Omega(\Gamma_1, t_{\rm ms}) \Omega(\Gamma_2, t_{\rm ms}).$

Type IIA orientiholes

・ロト < 団ト < 三ト < 三ト ・ 三 ・ のへの

Solutions

 $= \mathcal{N} = 2$ solutions invariant under τ' . Two cases:

 $\begin{aligned} \tau_{O4/O0} &= \Omega \, \sigma^* \mathcal{P}^* \\ \tau_{O6/O2} &= \Omega \, (-1)^{F_L} \, \sigma^* \mathcal{P}^* \, . \end{aligned}$

where $\mathcal{P}: \vec{x} \to -\vec{x}$ and σ is internal involution.

E.g. O4/O0 one modulus case:

$$\begin{split} \Gamma_1 &= (P^0, P^1, Q_1, Q_0)_1 \,, \quad \Gamma_{-1} = \Gamma_1' = (-P^0, P^1, -Q_1, Q_0)_1 \,, \\ \Gamma_0 &= (0, P^1, 0, Q_0)_0 \,. \end{split}$$

Main difference

Phase α_{∞} is fixed by choice of orientifold projection:

$$\alpha_{\infty} = 0 \quad (O4/O0), \qquad \alpha_{\infty} = -\frac{\pi}{2} \quad (O6/O2)$$

Consequence: if $\alpha_{\infty} = \pi + \arg Z$: neg. mass, grav. repuslive, inverted attr. flow, attr. point \rightarrow repulsor point, sol. singular.

Basic bound state

• Simplest possibility:

```
\Gamma = \Gamma_1 + \Gamma_0 + \Gamma_1'
```

i.e. bound state of charge with its own image (+ charge in the middle of the universe)

• From integrability constraint:

$$\frac{I(\Gamma_1,\Gamma_0)}{|\vec{x}_1|} = 2\mathrm{Im}[e^{-i\alpha}Z_1]_{\infty}.$$

where

$$I(\Gamma_1,\Gamma_0):=rac{\langle\Gamma_1,\Gamma_1'
angle}{2}+\langle\Gamma_1,\Gamma_0
angle=2J$$

 $\bullet \Rightarrow \mathsf{Stability} \ \mathsf{condition}:$

$$I(\Gamma_0,\Gamma_1)\operatorname{Im}[e^{-i\alpha}Z_1]_{\infty}>0$$
.

Wall crossing formula

• Index counting orientifold invariant BPS states:

$$\Omega_{\mathrm{inv}}(\Gamma,t) = \mathrm{Tr}_{_{\mathcal{H}_{\mathrm{inv}}'(\Gamma,t)}}(-)^{2J_3'} = (-1)^{\dim_{\mathbb{C}}\mathcal{M}_{\mathrm{inv}}}\,\chi(\mathcal{M}_{\mathrm{inv}})\,.$$

Wall crossing formula

• Index counting orientifold invariant BPS states:

$$\Omega_{\mathrm{inv}}(\Gamma, t) = \mathrm{Tr}_{\mathcal{H}'_{\mathrm{inv}}(\Gamma, t)}(-)^{2J'_3} = (-1)^{\dim_{\mathbb{C}} \mathcal{M}_{\mathrm{inv}}} \, \chi(\mathcal{M}_{\mathrm{inv}}) \, .$$

• Wall crossing formula

 $\Delta\Omega_{\mathrm{inv}} = (-1)^{I(\Gamma_1,\Gamma_0)-1} \left| I(\Gamma_1,\Gamma_0) \right| \Omega(\Gamma_1,t_{\mathrm{ms}}) \,\Omega_{\mathrm{inv}}(\Gamma_0,t_{\mathrm{ms}}) \,.$

Wall crossing formula

• Index counting orientifold invariant BPS states:

$$\Omega_{\mathrm{inv}}(\Gamma, t) = \mathrm{Tr}_{\mathcal{H}'_{\mathrm{inv}}(\Gamma, t)}(-)^{2J'_3} = (-1)^{\dim_{\mathbb{C}} \mathcal{M}_{\mathrm{inv}}} \, \chi(\mathcal{M}_{\mathrm{inv}}) \, .$$

Wall crossing formula

 $\Delta\Omega_{\rm inv} = (-1)^{I(\Gamma_1,\Gamma_0)-1} \left| I(\Gamma_1,\Gamma_0) \right| \Omega(\Gamma_1,t_{\rm ms}) \,\Omega_{\rm inv}(\Gamma_0,t_{\rm ms}) \,.$

Corollary, by comparing to microscopic picture:
 angular momentum of pair = open string Witten index

\mathbb{Z}_2 torsion charge

• For charge odd under τ (e.g. D6 in O4/O0 case): Aharonov Bohm experiment can distinguish between odd and even number of dipoles.

• Related to subtle anomalies on IIB side.

- Example: pure D7 branes in degree 8 hypersurface in $CP_{4,1,1,1,1}^4$ O3/O7 orientifolded by reflection of first coordinate.
- Complicated story (cf. previous talk at Rutgers)

D7 (possibly with flux) obtained from two D9-D9' pairs with a, b units of flux.

Orientihole split flow:

Predicts Euler characteristics moduli spaces:

а	2	3	4	5	6	7
$\chi(\mathcal{M})$	3729	33540	104825	223440	388905	598884

Orientihole split flow:

 \checkmark

Predicts Euler characteristics moduli spaces:

а	2	3	4	5	6	7
$\chi(\mathcal{M})$	3729	33540	104825	223440	388905	598884

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Orientihole split flow:

Predicts Euler characteristics moduli spaces:

а	2	3	4	5	6	7
$\chi(\mathcal{M})$	3729	33540	104825	223440	388905	598884

Note: decays at quite large vol.!

•
$$\Gamma = -8\Gamma_{O4} + \Gamma_{O4} = (0, 28, 0, \frac{133}{3})$$

- $\Gamma = -8\Gamma_{O4} + \Gamma_{O4} = (0, 28, 0, \frac{133}{3})$
- Single centered black holes solutions exist with $S = \frac{S_{BH}}{2} = 1789$ in large volume approx. but at $t_* \approx 2i \rightsquigarrow$ can't trust result.

- $\Gamma = -8\Gamma_{O4} + \Gamma_{O4} = (0, 28, 0, \frac{133}{3})$
- Single centered black holes solutions exist with $S = \frac{S_{BH}}{2} = 1789$ in large volume approx. but at $t_* \approx 2i \rightsquigarrow$ can't trust result.
- Do single centered solutions exist in fully corrected theory?

- $\Gamma = -8\Gamma_{O4} + \Gamma_{O4} = (0, 28, 0, \frac{133}{3})$
- Single centered black holes solutions exist with $S = \frac{S_{BH}}{2} = 1789$ in large volume approx. but at $t_* \approx 2i \rightsquigarrow$ can't trust result.
- Do single centered solutions exist in fully corrected theory? Physical argument: scaling solutions exist (for a = 2).

Fat multicentered solutions:

S = 1540 in large vol. approx. (ok Im $t_* \approx 7$) \Rightarrow In this sector $N_{\rm vac} \approx 10^{668}$.

Directions for future work

- lift to M-theory
- solutions in T^3 . MS = ??
- corrections to Z
- map different landscape sectors to different kinds of BH configurations

- implications stability issues for fenomenology
- nonprimitive wall crossing
- OSV, modular forms
- bulk fluxes
- on nonsusy