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1 Introduction

Sometimes a solution to a mathematical problem is so beautiful that it can
impede further progress for a whole century. So is the case with the Killing-
Cartan classi�cation of semi-simple Lie algebras (Killing, 1888; Cartan, 1952).
It is elegant, it is beautiful, and it says that the 3 classical families and 5
exceptional algebras are all there is, but what does that mean?

The construction of all Lie algebras outlined here (for a more detailed pre-
sentation, consult (Cvitanovi�c, 2004)) is an attempt to answer to this question.
It is not a satisfactory answer { as a classi�cation of semi-simple Lie groups it
is incomplete { but it does o�er a di�erent perspective on the exceptional Lie
algebras. The question that started the whole odyssey is: What is the group
theoretic weight for Quantum Chromodynamic diagram

= ? (1)

A quantum-�eld theorist cares about such diagrams because they arise in
calculations related to questions such as asymptotic freedom. The answer
turns out to require quite a bit of group theory, and the result is better
understood as the answer to a di�erent question: Suppose someone came into
your oÆce and asked

\On planet Z, mesons consist of quarks and antiquarks, but
baryons contain 3 quarks in a symmetric color combination. What
is the color group?"

If you �nd the particle physics jargon distracting, here is another way to posing
the same question: \Classical Lie groups preserve bilinear vector norms. What
Lie groups preserve trilinear, quadrilinear, and higher order invariants?"

The answer easily �lls a book (Cvitanovi�c, 2004). It relies on a new no-
tation: invariant tensors $ \Feynman" diagrams, and a new computational



2 Predrag Cvitanovi�c

method, diagrammatic from start to �nish. It leads to surprising new rela-
tions: all exceptional Lie groups emerge together, in one family, and groups
such as E7 and SO(4) are related to each other as \negative dimensional"
partners.

Here we o�er a telegraphic version of the \invariance groups" program. We
start with a review of basic group-theoretic notions, in a somewhat unorthodox
notation suited to the purpose at hand. A reader might want to skip directly
to the interesting part, starting with sect. 3.

The big item on the \to do" list: prove that the resulting classi�cation
(primitive invariants! all semi-simple Lie algebras) is exhaustive, and prove
the existence of F4, E6, E7 and E8 within this approach.

2 Lie groups, a review

Here we review some basic group theory: linear transformations, invari-
ance groups, diagrammatic notation, primitive invariants, reduction of multi-
particle states, Lie algebras.

2.1 Linear transformations

Consider an n-dimensional vector space V 2 C , and a group G acting linearly
on V (consult any introduction to linear algebra (Gel0fand, 1961; Lang, 1971;
Nomizu, 1979)). A basis fe1; � � � ; eng is any linearly independent subset of V
whose span is V . n, the number of basis elements is called the dimension of
the vector space V . In calculations to be undertaken a vector x 2 V is often
speci�ed by the n-tuple (x1; � � � ; xn)t in C n , its coordinates x =

P
eaxa in a

given basis. We rarely, if ever, actually �x an explicit basis, but thinking this
way makes it easier to manipulate tensorial objects. Under a general linear
transformation in GL(n; C ) = fG : C n ! C n j det(G) 6= 0g a basis set of V
is mapped into another basis set by multiplication with a [n�n] matrix G
with entries in C , the standard rep of GL(n; C ),

e0 a = eb(G�1)b
a ; x0a = Ga

bxb :

The space of all n-tuples (x1; x2; : : : ; xn)
t, xi 2 C on which these matrices act

is the standard representation space V .
Under left multiplication the column (row transposed) of basis vectors

transforms as e0
t
= Gyet, where the dual rep Gy = (G�1)t is the transpose of

the inverse of G. This observation motivates introduction of a dual represen-
tation space �V , is the set of all linear forms on V over the �eld C . This is also
an n-dimensional vector space, a space on which GL(n; C ) acts via the dual
rep Gy.

If fe1; � � � ; eng is a basis of V , then �V is spanned by the dual basis
ff1; � � � ; fng, the set of n linear forms fa such that
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fa(e
b) = Æba ;

where Æba is the Kronecker symbol, Æba = 1 if a = b, and zero otherwise. The
dual representation space coordinates, distinguished here by upper indices,
(y1; y2; : : : ; yn), transform under GL(n; C ) as

y0a = Ga
by

b : (2)

In the index notationGy is represented byGa
b, andG byGb

a. ForGL(n; C ) no
complex conjugation is implied by the y notation; that interpretation applies
only to unitary subgroups of GL(n; C ). In what follows we shall need the
following notions:

The de�ning rep of group G:

G : V ! V ; [n� n] matrices Ga
b 2 G :

The de�ning multiplet: a \1-particle wave function" q 2 V transforms as

q0a = Ga
bqb ; a; b = 1; 2; : : : ; n :

The dual multiplet: \antiparticle" wave function �q 2 �V transforms as

q0a = Ga
bq

b :

Tensors: multi-particle states transform as V p
 �V q ! V p
 �V q, for example

p0aq
0
br

0c = G f
a G e

b G
c
dpfqer

d :

Unless explicitly stated otherwise, repeated upper/lower index pairs are al-
ways summed over

Ga
bxb �

nX
b=1

Ga
bxb :

2.2 Invariants

A multinomial
H(�q; �r; : : : ; s) = h :::c

ab::: qarb : : : sc

is an invariant of the group G if for all G 2 G and any set of vectors q; r; s; : : :
it satis�es

invariance condition: H(Gy�q;Gy�r; : : : Gs) = H(�q; �r; : : : ; s) :

Take a �nite list of primitive invariants:

P = fp1; p2; : : : ; pkg :
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(As it is diÆcult to state what a primitive invariant is before explaining what
it is not, the de�nition is postponed to sect. 2.5.)

De�nition. An invariance group G is the set of all linear transformations
which satisfy a �nite number of invariance conditions (ie, preserve all primitive
invariants 2 P)

p1(x; �y) = p1(Gx;G
y�y) ; p2(x; y; z; : : :) = p2(Gx;Gy;Gz : : :) ; : : : :

No other primitive invariants exist.

Example: orthogonal group O(3)

De�ning space: 3-dimensional Euclidean space of 3-component real vectors

x; y; � � � 2 V = R
3 ; V = �V

Primitive invariants:

length L(x; x) = Æijxixj

volume V (x; y; z) = �ijkxiyjzk

Invariant tensors:

Æij = ji ; �ijk =
kji
: (3)

Example: unitary group U(n)

De�ning space: n-dimensional vector space of n-component complex vectors

xa 2 V = C
n

Dual space: space of n-component complex vectors xa 2 �V = C
n transforming

under G 2 G as
x0a = Ga

bx
b

Primitive invariants: a single primitive invariant, norm of a complex vector

N(�x; x) = jxj2 = Æab x
bxa =

nX
a=1

x�axa :

The Kronecker Æab = b a is the only primitive invariant tensor. The
invariance group G is the unitary group U(n) whose elements satisfy GyG = 1:

x0
a
y0a = xb(GyG)b

cyc = xaya ;

All invariance groups considered here will be subgroups of U(n), ie have
Æab as one of their primitive invariant tensors.
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2.3 Diagrammatic notation

Depending on the context, we shall employ either the tensorial index notation

p0aq
0
br

0c = Gab
c; d

efpfqer
d ; Gab

c; d
ef = G f

a G e
b G

c
d ;

or the collective indices notation

q0� = G�
�q� � =

�
c

ab

�
; � =

�
ef
d

�
;

or the diagrammatic notation

��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���

���
���
���
���

f

���
���
���
���

a
b
c d

G e =
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���

���
���
���
��� e

��
��
��
��c d

fa
b ;

whichever is most convenient for the purpose at hand.
We shall refer to diagrams representing agglomerations of invariant tensors

as birdtracks, a group-theoretical version of Feynman diagrams, with invariant
tensors corresponding to vertices (blobs with external legs)

X� = Xabc
de = X

d
e
a
b
c

; hcdab =

b

da

c

;

and index contractions corresponding to propagators (Kronecker deltas)

Æab = b a :

Rules

(1) Direct arrows from upper indices \downward" toward the lower indices:

hcdab =

b

da

c

(2) Indicate which in (out) arrow corresponds to the �rst upper (lower) index:

Re
abcd =

a b c d e

index is the first index
Here the leftmost

R :
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(3) Read indices in the counterclockwise order around the vertex:

xbcead =

b

the indices
Order of reading

a

X

e

d

c

:

2.4 Composed invariants, tree invariants

Which rep is \de�ning"? The de�ning rep of group G is the [n�n] matrix rep
acting on the de�ning vector space V . The de�ning space V need not carry
the lowest dimensional rep of G.
De�nition. A composed invariant tensor is a product and/or contraction of
invariant tensors.

Example: SO(3) composed invariant tensors

Æij�klm =

k mj

i

l

; �ijmÆmn�nkl =

n

j ki l

m

: (4)

Corresponding invariants:

product L(x; y)V (z; r; s) ; index contraction V (x; y;
d

dz
)V (z; r; s) :

De�nition. A tree invariant involves no loops of index contractions.

Example: a tensor with an internal loop

Tensors drawn in (4) are tree invariants. The tensor

hijkl = �ims�jnm�krn�`sr =

s
i

j

l

k

m

n
r

;

with internal loop indices m;n; r; s summed over, is not a tree invariant.

2.5 Primitive invariants

De�nition. An invariant tensor is primitive if it cannot be expressed as a
linear combination of tree invariants composed of other primitive invariant
tensors.
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Example: SO(3) invariant tensors

The Kronecker delta and the Levi-Civita tensor (3) are the primitive invariant
tensors of our 3-dimensional space:

P =

(
ji ;

kji

)
:

4-vertex loop is not a primitive, because the Levi-Civita relation

=
1

2

�
�

�

reduces it to a sum of tree contractions:

i l

j k

=
j

i

k

l
+

j

i

k

l

Let T = ft0; t1 : : : trg = a maximal set of r linearly independent tree
invariants t� 2 V p 
 �V q.

Primitiveness assumption. Any invariant tensor h 2 V p 
 �V q can be ex-
pressed as a linear sum over the basis set T .

h =

rX
�=0

h�t� :

Example: invariant tensor basis sets

Given primitives P = fÆij ; fijkg, any invariant tensor h 2 V p (here denoted
by a blob) is expressible as

= P ; = V

= A +B + C +D +E
��
��
��
��

��
��
��
��

+ F

= G +H + : : : ; � � �
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2.6 Reduction of tensor reps: Projection operators

Dual of a tensor T ! T y is obtained by

(a) exchanging the upper and the lower indices, ie. reversing arrows
(b) reversing the order of the indices, ie. transposing a diagram into its mirror

image.

Example: A tensor and its dual

X� = Xabc
de = X

d
e
a
b
c

; X� = Xed
cba =

d
e
a
b
c

X :

Contraction of tensors Xy and Y

X�Y� = Xbp:::b1
aq:::a2a1

Y
a1a2:::aq
b1:::bp

= YX :

Motivation for drawing a dual tensor as a 
ip of the initial diagram: contrac-
tion XyX = jX j2 can be drawn in a plane.

For a de�ning space V = �V = Rn de�ned on reals there is no distinction
between up and down indices, and lines carry no arrows

Æji = Æij = ji :

Invariant tensor M 2 V p+q
 �V p+q is a self-dual

M : V p
 �V q ! V p
 �V q

if it is invariant under transposition and arrow reversal.

Example: symmetric cubic invariant

Given the 3 primitive invariant tensors:

Æba = a b ; dabc =

a

b c

; dabc =

a

b c

:

(dabc fully symmetric) one can construct only 3 self-dual tensors M : V
�V !
V 
 �V

Æab Æ
c
d =

a b

d c
; ÆadÆ

c
b =

c

a b

d
; dacedebd = ���

���
���
���

e
d

a

��
��
��
��

b
��
��
��
��

c
��������

���
���
���
���

;
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all three self-dual under transposition and arrow reversal.
A Hermitian matrix M is diagonalizable by a unitary transformation C

CMCy =

0
BBBB@
�1 0 0 : : :
0 �1 0
0 0 �1

�2
...

. . .

1
CCCCA :

Removing a factor (M��j1) from the characteristic equation
Q
(M��i1) = 0

yields a projection operator:

Pi =
Y
j 6=i

M � �j1

�i � �j
= Cy

0
BBBBBBBBBBBBBB@

0
. . . 0

0 0
BB@
1 0 : : : 0
0 1
...

. . .
...

0 : : : 1

1
CCA

0

0
. . .

0

1
CCCCCCCCCCCCCCA

C

for each distinct eigenvalue of M .

Example: U(n) invariant matrices

U(n) is the invariance group of the norm of a complex vector jxj2 = Æabx
bxa,

only primitive invariant tensor: Æab = a b

Can construct 2 invariant hermitian matrices M 2 V 2
 �V 2:

identity : 1a cd;b = Æab Æ
c
d =

a b

d c
; trace : T a c

d;b = ÆadÆ
c
b =

c

a b

d
:

The characteristic equation for T in tensor, birdtrack, matrix notation:

T af
d;e T

e c
f;b = ÆadÆ

f
e Æ

e
fÆ

c
b = nT a c

d;b ;

������������ ������������ = n ������������

T 2 = nT :

where Æee = n = the dimension of the de�ning vector space V . The roots of
the characteristic equation T 2 = nT are �1 = 0, �2 = n. The corresponding
projection operators decompose U(n)! SU(n)� U(1):
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SU(n) adjoint rep: P1 = T�n1
0�n

= 1� 1
n
T

������������ = � 1
n

������������

U(n) singlet: P2 = T�0�1
n�1

= 1
n
T

= 1
n

������������ :

2.7 In�nitesimal transformations

In�nitesimal unitary transformation, its action on the dual space:

Ga
b = Æba + i�j(Tj)

b
a ; Ga

b = Æab � i�j(Tj)
a
b ; j�j j � 1 :

is parametrized by

N = dimension of the group (Lie algebra, adjoint rep) � n2

real parameters �j . The adjoint representation matrices fT1; T2; � � � ; TNg are
generators of in�nitesimal transformations, drawn as

1p
a
(Ti)

a
b =

b
i

a
a; b = 1; 2; : : : ; n ; i = 1; 2; : : : ; N ;

where a is an (arbitrary) overall normalization. The adjoint representation
Kronecker delta will be drawn as a thin straight line

Æij = i j ; i; j = 1; 2; : : : ; N :

The decomposition of V 
 �V into (ir)reducible subspaces always contains
the adjoint subspace:

1 =
1

n
T + PA +

X
�6=A

P�

ÆadÆ
c
b =

1

n
Æab Æ

c
d + (PA)

a
b ;

c
d +

X
�6=A

(P�)
a
b ;

c
d

=
1

n
+ +

X
�

λ
:

where the adjoint rep projection operators is drawn in terms of the generators:

(PA)
a
b ;

c
d =

1

a
(Ti)

a
b (Ti)

c
d =

1

a
:

The arbitrary normalization a cancels out in the projection operator orthog-
onality condition

tr (TiTj) = a Æij

= :
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2.8 Invariance under in�nitesimal transformations

By de�nition, an invariant tensor h is unchanged under an in�nitesimal trans-
formation

G�
�h� = (Æ�

� + �j(Tj)�
�)h� +O(�2) = h� ;

so the generators of in�nitesimal transformations annihilate invariant tensors

Tih = 0 :

The tensorial index notation is cumbersome:

p0aq
0
br

0c = G f
a G e

b G
c
dpfqer

d

G f
a G e

b G
c
d = ÆfaÆ

e
bÆ

c
d + �j((Tj)

f
aÆ

e
bÆ

c
d + Æfa (Tj)

e
bÆ

c
d � ÆfaÆ

e
b (Tj)

c
d) +O(�2) ;

but diagrammatically the invariance condition is easy to grasp. The sum

+ � + �

vanishes, i.e. the group acts as a derivative.

2.9 Lie algebra

The generators Ti are themselves invariant tensors, so they also must satisfy
the invariance condition,

0 = � + � :

Redraw, replace the adjoint rep generators by the structure constants: and
you have the Lie algebra commutation relation

i j

� =

TiTj � TjTi = iCijkTk : (5)

For a generator of an in�nitesimal transformation acting on the adjoint
rep, A! A , it is convenient to replace the arrow by a full dot

��
��
��
�� = =

���
���
���
���

���
���
���
���

����
����
����
����

�
����
����
����

����
����
����

��
��
��
��

����
����
����
����

(Ti)jk � �iCijk = �tr [Ti; Tj ]Tk ;
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where the dot stands for a fully antisymmetric structure constant iCijk . Keep
track of the overall signs by always reading indices counterclockwise around a
vertex

�iCijk =

kj

i

; = � ��
��
��
�� : (6)

The invariance condition for structure constants Cijk is

0 = + + :

Redraw with the dot-vertex to obtain the Jacobi relation

j

i l

k

� =

CijmCmkl � CljmCmki = CimlCjkm : (7)

Example: Evaluation of any SU(n) graph

Remember (1),

= ?;

the one graph that launched this whole odyssey?
We saw that the adjoint rep projection operator for the invariance group

of the norm of a complex vector jxj2 = Æab x
bxa is

SU(n): ������������ = � 1

n
������������ :

Eliminate Cijk 3-vertices using

=

���
���
���
���

���
���
���
���

����
����
����
����

�
����
����
����

����
����
����

���
���
���
���

����
����
����

����
����
����

:

Evaluation is performed by a recursive substitution, the algorithm easily au-
tomated
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=
��
��
��
��

�
��
��
��
��

=
��
��
��
��

�
��
��
��
��

� . . . =
����

���
���
���
���

�
��
��
��
��

���
���
���
���

� . . .

=
��
��
��
��

� ��
��
��
��

� ���
���
���
���

+
��
��
��
��

� . . .

= n2�1
n

��
��
��
��

� ��
��
��
��

����
����
����
����

+ 2
n

���
���
���

���
���
���

+
���
���
���

���
���
���

��
��
��
��

� 1
n

���
���
���
���

+ . . .

arriving at

=n

�
��
��
��
��

+
��
��
��
��

�
+2

�
+ +

�
:

Collecting everything together, we �nally obtain

SU(n) : = 2n2(n2 + 12) :

Any SU(n) graph, no matter how complicated, is eventually reduced to a
polynomial in traces of Æaa = n, the dimension of the de�ning rep.

2.10 A brief history of birdtracks

Semi-simple Lie groups are here presented in an unconventional way, as \bird-
tracks". This notation has two lineages; a group-theoretical lineage, and a
quantum �eld theory lineage:

Group-theoretical lineage

1930: Wigner (Wigner, 1959): all group theory weights in atomic, nuclear, and
particle physics can be reduced to 3n-j coeÆcients.
1956: I. B. Levinson (Levinson, 1956): presents the Wigner 3n-j coeÆcients
in graphical form, appears to be the �rst paper to introduce diagrammatic
notation for any group-theoretical problem. See Yutsis, Levinson and Vanagas
(Yutsis et al., 1964) for a full exposition. For the most recent survey, see
G. E. Stedman (Stedman, 1990).
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Quantum �eld-theoretic lineage

1949: R. P. Feynman (Feynman, 1949): beautiful sketches of the very �rst
\Feynman diagrams" .
1971: R. Penrose's (Penrose, 1971a,b) drawings of symmetrizers and antisym-
metrizers.
1974: G. 't Hooft ('t Hooft, 1974) double-line notation for U(n) gluons.
1976: P. Cvitanovi�c (Cvitanovi�c, 1976, 1977b) birdtracks for classical and
exceptional Lie groups.

In the quantum groups literature graphs composed of 3-vertices are called
trivalent. The Jacobi relation (7) in diagrammatic form (Cvitanovi�c, 1976) ap-
pears in literature for the �rst time in 1976. This set of diagrams has since been
given moniker IHX (Bar-Natan, 1995). who refers to the full anti-symmetry of
structure constants (6) as the \AS relation", and to the Lie algebra commu-
tator (5) as the \STU relation", by analogy to the Mandelstam's scattering
cross-channel variables (s; t; u).

A reader might ask: \These are Feynman diagrams. Why rename them
birdtracks?" In quantum �eld theory Feynman diagrams are a mnemonic de-
vice, an aid in writing down an integral, which then has to be evaluated by
other means. \Birdtracks" are a calculational method: all calculations are car-
ried out in terms of diagrams, from start to �nish. Left behind are blackboards
and pages of squiggles of kind that made my colleague Bernice Durand ex-
claim: \What are these birdtracks!?" and thus give them the name.

3 Lie groups as invariance groups

We proceed to classify groups that leave trilinear or higher invariants. The
strategy:

i) de�ne an invariance group by specifying a list of primitive invariants
ii) primitiveness and invariance conditions ! algebraic relations between

primitive invariants
iii) construct invariant matrices acting on tensor product spaces,
iv) construct projection operators for reduced rep from characteristic equa-

tions for invariant matrices.
v) determine allowed realizations from Diophantine conditions on represen-

tation dimensions.

When the next invariant is added, the group of invariance transformations
of the previous invariants splits into two subsets; those transformations which
preserve the new invariant, and those which do not. Such successive decompo-
sitions yield Diophantine conditions on rep dimensions, so constraining that
they limit the possibilities to a few which can be easily identi�ed.

The logic of this construction schematically indicated by the chains of
subgroups
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qq

E +...8

G +...2 F +...4 E +...6

SU(  )n

SO(  )n Sp(  )n

E +...7

Primitive invariants

qqq

qqqq

higher order

qq

Invariance group

The arrows indicate the primitive invariants which characterize a particular
group.

As a warm-up, we derive the \E6 family" as a family of groups that pre-
serve a symmetric cubic invariant.

3.1 E6 primitives

What invariance group preserves norms of complex vectors, as well as a sym-
metric cubic invariant

D(p; q; r) = D(q; p; r) = D(p; r; q) = dabcpaqbrc ?

i) primitive invariant tensors:

Æba = a b ; dabc =

a

b c

; dabc = (dabc)
� =

a

b c

:

ii) primitiveness: daefd
efb is proportional to Æab , the only primitive 2-index

tensor. This can be used to �x the dabc's normalization:

= :

invariance condition:

+ + = 0 :

iii) all invariant self-dual matrices in V 
 �V ! V 
 �V :

Æab Æ
c
d =

a b

d c
; ÆadÆ

c
b =

c

a b

d
; dacedebd = ���

���
���
���

e
d

a

��
��
��
��

b
��
��
��
��

c
��������

���
���
���
���

:
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Contract the invariance condition with dabc:

+ 2 = 0 :

Contract with (Ti)
b
a to get an invariance condition on the adjoint projection

operator PA:

+ 2 = 0 :

Adjoint projection operator in the invariant tensor basis (A, B, C to be
�xed):

(Ti)
a
b (Ti)

d
c = A(Æac Æ

d
b + BÆab Æ

d
c + Cdadedbce)

������������ = A

�
+B ������������ + C ���

���
���
�����

��
��
��

��
��
��
��

���
���
���
���

������

�
:

Substituting PA

0 = n+B + C + 2

(
+B + C

)

0 = B + C +
n+ 2

3
:

iv) projection operators are orthonormal: PA is orthogonal to the singlet
projection operator P1, 0 = PAP1.

This yields the second relation on the coeÆcients:

0 =
1

n
������ ������ ������������ = 1 + nB + C :

Normalization �xed by PAPA = PA:

������ = ��
��
��
��

������ = A

�
1 + 0� C

2

�
������ :

The three relations yield the adjoint projection operator for the E6 family:

������ ���
���
���
��� =

2

9 + n

�
3 + ������������ � (3 + n) ���

���
���
�����

��
��
��

��
��
��
��

������

���
���
���
���

�
:

The dimension of the adjoint rep is given by:

N = Æii = =

����������������

= nA(n+B + C) =
4n(n� 1)

n+ 9
:

As the de�ning and adjoint rep dimensions n and N are integers, this formula
is a Diophantine condition, satis�ed by a small family of invariance groups,
the E6 row in the Magic Triangle of �g. 1, with E6 corresponding to n = 27
and N = 78.
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4 G2 and E8 families of invariance groups

We classify next all groups that leave invariant a symmetric quadratic invari-
ant and an antisymmetric cubic invariant

+ B= A

,

(3)SO

E family8

(3)SU

n=7 n=6

= 0

(n)(n),(n),

=

6 =

SU SO Sp

2G

primitives:

quartic primitive no quartic primitive

any adjoint representation

Jacobi

no relations

two relations one relation

alternativity

assume:

Assumption of no relation between the three 4-index invariant tree tensors
constructed by the 3 distinct ways of contracting two fabc tensors leads to the
G2 family of invariance groups (Cvitanovi�c, 2004), interesting its own right,
but omitted here for brevity. If there is a relation between the three such
tensors, symmetries this relation is necessarily the Jacobi relation.

The E8 family of invariance groups follows if the primitive invariants are
symmetric quadratic, antisymmetric cubic

i j ; = � ��
��
��
�� ; (8)

and the Jacobi relation is satis�ed:

� = : (9)

The task the we face is:

(i) enumerate all Lie groups that leave these primitives invariant.
(ii) demonstrate that we can reduce all loops

; ; ; � � � : (10)
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Accomplished so far: The Diophantine conditions yield all of the E8 family
Lie algebras, and no stragglers.

\To do":

(i) so far no proof that there exist no further Diophantine conditions.
(ii) The projection operators for E8 family enable us to evaluate diagrams

with internal loops of length 5 or smaller, but we have no proof that any
vacuum bubble can be so evaluated.

4.1 Two-index tensors

Remember

= ?;

the graph that launched this whole odyssey?
A loop with four structure constants is reduced by reducing the A
A !

A
A space. By the Jacobi relation there are only two linearly independent
tree invariants in A4 constructed from the cubic invariant:

and

induces a decomposition of ^2A antisymmetric tensors:

= +

�
�

�

+
1

N
+

�
� 1

N

�
1 = P +P +P� +Ps :� (11)

The A
A! A
A matrix

Qij;kl =
k

i

j

l
:

can decompose only the symmetric subspace Sym2A.
What next? The key is the primitiveness assumption: any invariant tensor

is a linear sum over the tree invariants constructed from the quadratic and
the cubic invariants, i.e. no quartic primitive invariant exists in the adjoint
rep.
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4.2 Primitiveness assumption

By the primitiveness assumption, the 4-index loop invariant Q2 is express-
ible in terms of Qij;k`, CijmCmk` and Æij , hence on the traceless symmetric
subspace

0 =

�
+ p + q

��
� 1

N

�
0 = (Q2 + pQ+ q1)Ps :

The assumption that there exists no primitive quar-
tic invariant is the de�ning relation for the E8 family.

CoeÆcients p, q follow from symmetry and the Jacobi relation, yielding the
characteristic equation for Q�

Q2 � 1

6
Q� 5

3(N + 2)
1

�
Ps = (Q� �1)(Q� ��1)Ps = 0 :

Rewrite the condition on an eigenvalue of Q,

�2 � 1

6
�� 5

3(N + 2)
= 0 ;

as formula for N :

N + 2 =
5

3�(�� 1=6)
= 60

�
6� ��1

6
� 2 +

6

6� ��1

�
:

As we shall seek for values of � such that the adjoint rep dimension N is an
integer, it is convenient to re-parametrize the two eigenvalues as

� =
1

6

1

1�m=6
= � 1

m� 6
; �� =

1

6

1

1� 6=m
=

1

6

m

m� 6
:

In terms of the parameter m, the dimension of the adjoint representation is
given by

N = �122 + 10m+ 360=m: (12)

As N is an integer, allowed m are rationals m = P=Q, P and Q relative
primes. It turns out that we need to check only a handful of rationals m > 6.

4.3 Further Diophantine conditions

The associated projection operators:

P = ���
���
���
���

=
1

�� ��

�
� �� � 1� ��

N

�

P = =
1

�� � �

�
� � � 1� �

N

�
:
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reduce the A
A space into irreps of dimensions:

d = trP =
(N + 2)(1=�+N � 1)

2(1� ��=�)

=
5(m� 6)2(5m� 36)(2m� 9)

m(m+ 6)
; (13)

d =
270(m� 6)2(m� 5)(m� 8)

m2(m+ 6)
: (14)

To summarize: A
A decomposes into 5 irreducible reps

1 = P +P +P� +P +P :

The decomposition is parametrized by a rational m and is possible only if
dimensions N and d are integers. From the decomposition of the Sym3A if
follows, by the same line of reasoning, that there is a rep of dimension

d =
5(m� 5)(m� 8)(m� 6)2(2m� 15)(5m� 36)

m3(3 +m)(6 +m)
(36�m) : (15)

m 5 8 9 10 12 15 18 24 30 36

N 0 3 8 14 28 52 78 133 190 248

d5 0 0 1 7 56 273 650 1,463 1,520 0

d 0 -3 0 64 700 4,096 11,648 40,755 87,040 147,250

d
����
����
����
���� 0 0 27 189 1,701 10,829 34,749 152,152 392,445 779,247

Table 1. All solutions of the Diophantine conditions (12), (13), (14) and (15): the
m = 30 solution still survives this set of conditions.

Our homework problem is done: the reduction of the adjoint rep 4-vertex
loops for all exceptional Lie groups. The main result of all this heavy bird-
tracking is, however, much more interesting than the problem we set out to
solve:

The solutions of A
A! A
A Diophantine conditions yield all exceptional
Lie algebras, see table 1. N > 248 is excluded by the positivity of d , N = 248
is special, as P = 0 implies existence of a tensorial identity on the Sym3A
subspace. I eliminate (somewhat indirectly) the m = 30 case by the semi-
simplicity condition; Landsberg and Manivel (Landsberg and Manivel, 2002c)
identify the m = 30 solution as a non-reductive Lie algebra.
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5 Exceptional magic

After \some algebra" F4 and E7 families emerge in a similar fashion. A closer
scrutiny of the solutions to all V 
 �V ! V 
 �V Diophantine conditions appro-
priately re-parametrized

m 8 9 10 12 15 18 20 24 30 36 40 � � � 360
F4 0 0 3 8 . 21 . 52 . � � � .

E6 0 0 2 8 16 . 35 36 78 . � � � .

E7 0 1 3 9 21 35 . 66 99 133 . � � � .

E8 3 8 14 28 52 78 . 133 190 248 . � � � .

leads to a surprise: all of them are the one and the same condition

N =
(`� 6)(m� 6)

3
� 72 +

360

`
+

360

m

which magically arranges all exceptional families into theMagic Triangle. The

triangle is called \magic", because it contains the Magic Square (Vinberg,
1994; Freudenthal, 1964a).

E 8
248

248

E 7
56

133

D6

66

32

E 7

133

133
E 6

78

78

F 4

52

26

F 4

52

52

A5
15

35

A5

35

20
C3

21

14

A2

8

6
E 6

78

27
2A2

16

9

C3

21

14
A2

8

8
A1

5

3

3A1

9

4

3A1
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8

A1

3

3

A2

8

8
A1

3

3

U(1)
1

1

A1

3

4

(1)U2
2

2

(1)U2
3

2

U(1)
1

2

0

1

0

1

0

1

0

2

0

0

0

0

0

0

0

0

0

0

0

0

G2

14

14
D4

28

28

D4

28

8

2G
14

7

A2

8

3

A1

3

20

0

Fig. 1. All solutions of the Diophantine conditions place the de�ning and adjoint
reps exceptional Lie groups into a triangular array. Within each entry: the number
in the upper left corner is N , the dimension of the corresponding Lie algebra, and
the number in the lower left corner is n, the dimension of the de�ning rep. The
expressions for n for the top four rows are guesses.
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5.1 A brief history of exceptional magic

There are many di�erent strands woven into \exceptional magic" described
only in small part in this monograph. I will try to summarize few of the steps
along the way, the ones that seem important to me - with apologies to anyone
whose work I have overseen.
1894: in his thesis Cartan (Cartan, 1914) identi�es G2 as the group of octo-
nion isomorphisms, and notes that E7 has a skew-symmetric quadratic and a
symmetric quartic invariant.
1907: Dickinson characterizes E6 as a 27-dimensional group with a cubic in-
variant.
1934: Jordan, von Neumann and Wigner (Jordan et al., 1934) introduce oc-
tonions and Jordan algebras into physics, in a failed attempt at formulating a
new quantum mechanics which would explain the neutron, discovered in 1932.
1954-66: First noted by Rosenfeld (Rosenfeld, 1956), the Magic Square was
rediscovered by Freudenthal, and made rigorous by Freudenthal and Tits
(Freudenthal, 1954; Tits, 1966). A mathematician's history of the octonion
underpinning of exceptional Lie groups is given in a delightful review by
Freudenthal (Freudenthal, 1964b).
1976: G�ursey and collaborators (G�ursey and Sikivie, 1976) take up octonionic
formulations in a failed attempt of formulating a quantum mechanics of quark
con�nement.
1975-77: Primitive invariants construction of all semi-simple Lie algebras
(Cvitanovi�c, 1976) and the Magic Triangle (Cvitanovi�c, 1977b), except for
the E8 family.
1979: E8 family primitiveness assumption (no quartic primitive invariant),
inspired by Okubo's observation (Okubo, 1979) that the quartic Dynkin index
vanishes for the exceptional Lie algebras.
1979: E7 symmetry in extended supergravities discovered by Cremmer and
Julia (Cremmer and Julia, 1979).
1981:Magic Triangle, the E7 family and its SO(4)-family of \negative dimen-
sional" relatives published (Cvitanovi�c, 1981a). The total number of citations
in the next 20 years: 3 (three).
1981: Magic Triangle in extended supergravities constructed by Julia (Julia,
1981). Appears unrelated to the Magic Triangle described here.
1987-2001: Angelopoulos (Angelopoulos, 2001) classi�es Lie algebras by the
spectrum of the Casimir operator acting on A
A, and, inter alia, obtains the
same E8 family.
1995 : Vogel (Vogel, 1995) notes that for the exceptional groups the dimensions
and casimirs of the A
A adjoint rep tensor product decomposition P +P +

P� +P +P are rational functions of the quadratic Casimir a (related to
my parameter m by a = 1=m� 6 ).
1996: Deligne (Deligne, 1996) conjectures that for A1, A2, G2, F4, E6, E7 and
E8 the dimensions of higher tensor reps 
Ak could likewise be expressed as
rational functions of parameter a.
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1996: Cohen and de Man (Cohen and de Man, 1996) verify by computer al-
gebra the Deligne conjecture for all reps up to 
A4. They note that \miracu-
lously for all these rational functions both numerator and denominator factor
in Q[a] as a product of linear factors". This is immediate in the derivation
outlined above.
1999: Cohen and de Man (Cohen and de Man, 1999) derive the projection
operators and dimension formulas of sect. 4 for the E8 family by the same
birdtrack computations (they cite (Cvitanovi�c, 2004), not noticing that the
calculation was already in the current draft of the webbook).
2001-2003: J. M. Landsberg and L. Manivel (Landsberg and Manivel, 2002c,
2001, 2002b,a) utilize projective geometry and triality to interpret the Magic
Triangle, recover the known dimension and decomposition formulas, and de-
rive an in�nity of higher-dimensional rep formulas.
2002: Deligne and Gross (Deligne and Gross, 2002) derive the Magic Triangle
by a method di�erent from the derivation outlined here.

6 Epilogue

\Why did you do this?" you might well ask.

Here is an answer.

It has to do with a conjecture of �niteness of gauge theories, which, by its
own twisted logic, led to this sidetrack, birdtracks and exceptional magic:

If gauge invariance of QED guarantees that all UV and IR diver-
gences cancel, why not also the �nite parts?

And indeed; when electron magnetic moment diagrams are grouped into
gauge invariant subsets, a rather surprising thing happens (Cvitanovi�c, 1977a);
while the �nite part of each Feynman diagram is of order of 10 to 100, every
subset computed so far adds up to approximately

�1

2

��
�

�n
:

If you take this numerical observation seriously, the \zeroth" order approxi-
mation to the electron magnetic moment is given by

1

2
(g � 2) =

1

2

�

�

1�
1� ��

�

�2�2 + \corrections":

Now, this is a great heresy - my colleagues will tell you that Dyson (Dyson,
1952) has shown that the perturbation expansion is an asymptotic series, in
the sense that the nth order contribution should be exploding combinatorially

1

2
(g � 2) � � � �+ nn

��
�

�n
+ � � � ;
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and not growing slowly like my estimate

1

2
(g � 2) � � � �+ n

��
�

�n
+ � � � :

I kept looking for a simpler gauge theory in which I could compute many
orders in perturbation theory and check the conjecture. We learned how to
count Feynman diagrams. I formulated a planar �eld theory whose perturba-
tion expansion is convergent (Cvitanovi�c, 1981b). I learned how to compute
the group weights of Feynman diagrams in non-Abelian gauge theories (Cvi-
tanovi�c, 1976). By marrying Poincar�e to Feynman we found a new perturba-
tive expansion more compact than the standard Feynman diagram expansions
(Cvitanovi�c et al., 1999). No dice. To this day I still do not know how to prove
or disprove the conjecture.

QCD quarks are supposed to come in three colors. This requires evalua-
tion of SU(3) group theoretic factors, something anyone can do. In the spirit
of Teutonic completeness, I wanted to check all possible cases; what would
happen if the nucleon consisted of 4 quarks, doodling

���
���
���
���

��
��
��
��

���� ����

�
����
����
����
����

������ ���� = n(n2 � 1) ;

and so on, and so forth. In no time, and totally unexpectedly, all exceptional
Lie groups arose, not from conditions on Cartan lattices, but on the same geo-
metrical footing as the classical invariance groups of quadratic norms, SO(n),
SU(n) and Sp (n).

6.1 Magic ahead

For many years nobody, truly nobody, showed a glimmer of interest in the
exceptional Lie algebra parts of my construction, so there was no pressure to
publish it before completing it:

By completing it I mean �nding the algorithms that would reduce any
bubble diagram to a number, for any semi-simple Lie algebra. The task is
accomplished for G2, but for F4, E6, E7 and E8 it is still an open problem.
This, perhaps, is only matter of algebra (all of my computations were done by
hand, mostly on trains and in airports), but the truly frustrating unanswered
question is:

Where does the Magic Triangle come from? Why is it symmetric across
the diagonal? Some of the other approaches explain the symmetry, but my
derivation misses it. Most likely the starting idea - to classify all simple Lie
groups from the primitiveness assumption - is 
awed. Is there a mother of
all Lie algebras, some analytic function (just as the Gamma function extends
combinatorics on n objects into complex plane) which yields the Magic Tri-
angle for a set of integer parameter values?
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And then there is a practical issue of unorthodox notation: transferring
birdtracks from hand drawings to LaTeX took another 21 years. In this I was
rescued by Anders Johansen who undertook drawing some 4,000 birdtracks
needed to complete (Cvitanovi�c, 2004), of elegance far outstripping that of
the old masters.
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