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Outline

I recall some facts about 2d CFT
I what kind of field theories are being described, and their lattice

versions
I the basics of SLE
I conformal restriction measures
I identification of the stress tensor and derivation of the Ward

identities of c = 0 CFT
I extension to c > 0: conformal loop ensemble (CLE)



Conformal Field Theory
I massless, renormalised 2d euclidean QFT
I local operators which transform simply under conformal

transformations z → f (z):

φ(z, z̄) → f ′(z)∆φ f ′(z)
∆φ

φ
(

f (z), f (z)
)

I stress tensor T(z) generates infinitesimal conformal
transformations z → z + α(z) via insertion of

∫

C

dz
2πi

α(z)T(z) + c.c.

into correlation functions
I equivalent to OPEs

T(z) · φ(z1, z̄1) =
∆φ

(z− z1)2 φ(z1, z̄1) +
1

z− z1
∂z1φ(z1, z̄1) + · · ·

T(z) · T(z1) =
c/2

(z− z1)4 +
2

(z− z1)2 T(z1) +
1

z− z1
∂z1T(z1) + · · ·



Example: O(n) scalar field theory

I n-component field Φj, bare action

S =
∫ [ n∑

j=1

(
(∂Φj)2 + m2

0Φ
2
j
)

+ λ0
( n∑

j=1

Φ2
j
)2

]
d2r

I critical point at m2
R = 0 for n ≤ 2

I RG fixed point at λ0 →∞
I world-lines of particles do not cross



Space-imaginary time picture



Lattice version

I gas of non-intersecting loops and open curves weighted by their
total length, factor n for each closed loop, eg

I n = 1: Ising model
I n = 2: dual to Kosterlitz-Thouless transition
I n = 0: self-avoiding walks (“quenched approximation”)



I in the continuum limit (at critical point) these loops become
fractal curves - what is the measure on these?

I or, what is the measure on just one of them?
I specify conditions on the boundary of a simple connected domain
D such that there is always a single open curve from r1 to r2:

1

2

D



I such curves can be ‘grown’ on the lattice by a discrete
exploration process:

I SLE describes the continuous version of this
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The postulates of SLE

γ
1

γ
2

D

I Denote the curve by γ, and divide it into two disjoint parts.
I conditional measure on γ2 given γ1 is the same as the

unconditional measure on γ2 in D \ γ1

I moreover this is conformally related to the measure on γ in D



I choose D = upper half plane H
I let Kt be the curve + all the regions enclosed by it at time t

I let gt(z) be the conformal mapping which sends H \ Kt to H,
normalised so that

gt(z) ∼ z + 0 +
2t
z

+ · · · (as z →∞)

I gt sends the growing tip into at on the real axis
I the evolution of gt satisfies the Loewner equation

dgt(z)
dt

=
2

gt(z)− at



I if curve is continuous so is at

I so instead of thinking about a measure on curves we can think
about a measure on continuous functions at

Theorem. [Schramm] If above postulates hold then at is
proportional to a standard Brownian motion.
That is

at =
√

κ Bt

so that 〈at〉 = 0, 〈(at1 − at2
)2〉 = κ|t1 − t2|.
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I one-parameter family of conformally invariant measures on
curves labelled by κ

I many boundary and bulk scaling dimensions can be derived
rigorously from the postulates of SLE
[Lawler-Schramm-Werner]

I stochastic process ⇒ Fokker-Planck equations (2nd order PDEs)
­ BPZ differential equations of CFT following from condition
that boundary field Φj satisfies L−2Φj ∝ L2

−1Φj

[Bauer-Bernard]

n = −2 cos(4π/κ) (2 ≤ κ ≤ 8)

central charge c =
(3κ− 8)(6− κ)

2κ



I how we identify the stress tensor T for these random curves?
I can we derive the conformal Ward identities?



I start with the simplest case n = 0 (“quenched approximation”)
I satisfies conformal restriction
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D

A

γ A

I measure on γ restricted not to lie in A is the same as the measure
we get by conformally mapping D → D \ A

I expect this to be true for n = 0 but not in general, because
‘vacuum processes’ are sensitive to A.

I Theorems (1)[L-S-W] SLE satisfies this only for κ = 8
3 ;

(2)[Werner] there is a unique measure on single self-avoiding
loops which satisfies restriction



What is the stress tensor?
I in Minkowski space TµνdSν gives the energy-momentum flow

across dSµ

I its trace measures response to a dilatation (so vanishes at an RG
fixed point)

I in Euclidean space its non-zero components measure the
response of the medium to a local anisotropic shear

I in 2d it has two independent components (T, T) which have
‘spin’ ±2: under z → zeiθ, T → e−2iθT , T → e2iθT

I leads to the following guess:



I slits of lengths {εj}, at angles {θj}, centred on points {zj}
I let

P
({εj}, {θj}, {zj}

)
= Pr

(
γ intersects every slit

)

and let

Q
({zj}) = lim

εj→0

∏

j

(8/πε2
j )

∏

j

∫
dθj

2π
e−2iθjP(. . .)



Theorem. [Doyon-Riva-JC]: the limit exists and if we identify

Q
({zj}) =

〈φ(0)T(z1)T(z1) . . . φ(∞)〉
〈φ(0)φ(∞)〉

then the RHS satisfies the conformal Ward identities with c = 0.

I Proof: based on conformal restriction applied to the probabilities
that γ avoids subsets of the slits.

I by conditioning γ also to pass around given points {ζj} and
taking limits as they coincide, can generate a whole set of local
fields which form a closed operator algebra

I ⇒ complete and rigorous construction of a whole sector of the
CFT
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How do we make CFTs with c > 0?

Conformal Loop Ensemble
[Werner-Lawler-Sheffield]:

I start with the (unique) measure on single self-avoiding loops
I partition function

Z ∝
∫ L dR

R
∼ ln L



I let them rain down independently and uniformly for a ‘time’ τ

Z ∼ econst.τ ln L

I for small enough τ these form disjoint clusters



I look only at the outermost boundaries:

I these are conjectured to be the same as the outermost set of loops
in the O(n) model for n > 0



I to get the full nested set, fill them iteratively

I none of this changes Z, so central charge c = const. τ
I if τ too large, get one big cluster (⇒ c > 1)



The stress tensor for the conformal loop ensemble

I let N(1, 2) = number of loops separating z1 and z2
I this has a divergence ∝ log

(
(z1 − z2)/a

)
from small loops, so

subtract this and define

T(z) ∝ lim
z1→z2

(
∂z1∂z2N(1, 2)− const.

(z1 − z2)2

)

I N(1, 2) is conformally invariant, so the first term transforms with
conformal weight 2

I subtraction leads to the conformal anomaly c 6= 0
I we can use restriction property to show that T satisfies conformal

Ward identities as before



Summary

I SLE and its extensions give a (rigorous) geometrical picture of
the continuum limit of systems which should also be described
by CFT

I conformal invariance is manifest
I in the simplest case of conformal restriction we can identify the

stress tensor and derive the Ward identities of a c = 0 CFT
I we can define a complete set of local correlation functions and

show they satisfy expected OPEs
I by using the CLE we can extend this to theories with c > 0


