Rutgers University Department of Physics and Astronomy

2017-18 Handbook for Physics and Astronomy Graduate Students

previous section - table of contents - next section

Research Programs

Experimental Elementary Particle Physics

A lively area of experimental work in the department is High Energy Physics. This area includes both experiments studying particle physics at accelerators and experiments studying the new area of astroparticle physics. Eight faculty members supervise efforts involving roughly forty people (physicists, technical and clerical staff, graduate and undergraduate students) in a wide spectrum of elementary particle investigations. These efforts are well supported by the National Science Foundation, the Department of Energy and the University, and they have had considerable success in obtaining precious beam time at large accelerator facilities. At Rutgers, there are extensive resources for the construction and testing of detectors and electronics used in experiments, and dedicated computers for the analysis of the resulting data. Grants in this area provide financial support for advanced graduate students to spend full time on research, and they do not have to teach to earn an income.

Professors John Paul Chou, Yuri Gershtein, Eva Halkiadakis, Amit Lath, Steve Schnetzer and Sunil Somalwar

We are members of the Compact Muon Solenoid (CMS) Experiment, one of two large detector facilities being built for the Large Hadron Collider (LHC) under construction at the CERN laboratory near Geneva, Switzerland. When the LHC is completed in 2008, it will be the world's highest energy accelerator, colliding protons on protons at a center-of-mass energy of 14 TeV, seven times greater than that currently available. The LHC is a guaranteed discovery machine. Either the elusive Higgs boson particle will be discovered or, if not, other unexpected "new physics" must necessarily be found. The Higgs particle is a remnant of the Higgs Mechanism, the process that is believed to be the source of all mass. Its discovery would be a major breakthrough in our understanding of one of the fundamental properties of nature. Supersymmetry, the ultimate symmetry that relates fermions and bosons, is also likely to be found at the LHC. Supersymmetry is an elegant theory that is favored by many theorists and that may point the way toward a quantum theory of gravity. It is also a necessary ingredient of all string theories. More speculatively, evidence for large extra dimensions and for strong gravity manifested by a prolific production of mini black holes might also be seen. Clearly, the LHC will usher in an exciting new era in fundamental particle physics research.

Our group at Rutgers is well positioned to be active and leading participants in this forefront physics program. We plan to build on the expertise that we have gained in our work on the CDF detector at Fermilab to play a leading role in most if not all of the prominent physics studies mentioned above. In particular, we plan, initially, to concentrate on a search for the Higgs particle via its decay to a pair of tau leptons, the most sensitive decay mode in many supersymmetric Higgs scenarios. The ability to identify tau leptons will also be important in many supersymmetric particle searches and measurements providing a wealth of thesis opportunities. Identification of tau leptons in the large background of QCD jets at the LHC will be challenging. The expertise that our group has gained in developing these techniques in the "real world" environment of the CDF detector at the Fermilab Collider should prove invaluable.

In the area of detector hardware and construction, our group has played a leading role in designing custom, radiation-hard, deep sub micron electronics for the readout of the CMS pixel detector. We are currently working on an exciting new proposal that we recently made for building a luminosity monitor for CMS based on diamond pixel telescopes. This device will measure the bunch-by-bunch luminosity, intensity of the collisions, to a precision of about 1% while also monitoring the location of the collision point. Both of these are important inputs needed for many of the physics measurements. The luminosity monitor utilizes two advanced detector developments that our group has extensive expertise in, pixels and radiation-hard diamond sensors. We plan to construct the luminosity monitor at Rutgers during 2006 and 2007 and deliver the device to CERN for installation at CMS in time for the first physics running in 2008. This would be an excellent project for a graduate student to work on. It is a small scale device that a student could really "get their hands on" while, at the same time, learning state-of-the-art detector technology and electronics and participating in the large CMS Collaboration.

previous section - table of contents - next section


Back to Rutgers Physics Home Page

Please send any comments on this page to graduate@physics.rutgers.edu.

Revised October, 2017