
 
 

TP - A  Solution 
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Solution to Problem TP-B

(a) Equation of State:
PV = NkT. (1)

First Law:

dQ = dE + PdV. (2)

E depends only on T .

NCV =

(

∂Q

∂T

)

V

=
dE

dT
(3)

NCP =

(

∂Q

∂T

)

P

=
dE

dT
+

d

dT
(PdV ) =

dE

dT
+ Nk. (4)

Therefore
CP = CV + k. (5)

(b) From (1),
PdV + V dP = NkdT. (6)

From (3) and (2) with dQ = 0,

dT =
dE

NCV

= −

PdV

NCV

. (7)

Combining (6) and (7)
γPdV + V dP = 0, (8)

with

γ = 1 +
k

CV

=
CP

CV

, (9)

where the last equality made use of (5). If CV is taken independent of T (exact for a
monatomic ideal gas), then (8) can be integrated to give

PV γ = constant. (10)

(c) Helium gas is monatomic, so that the only contribution to E is translational motion.
Therefore E = 3

2
kT, CV = 3

2
k, and γ = 5

3
. Equation (10) then implies that the P

increases by a factor of 25 = 32.



 
 

TP – C1   Solution 
 

(a) For quantum particles confined in a 2D “box:  
 
 
 
 
 
 
 

So g2D(ε) does not depend on energy. 
 
 

(b) The Fermi energy is given by: 
 
 
  

(c) The average energy per electron:   
 
 
 
 
 
 
 
     (d)   
 
 
 
 So, at 300K the system is not degenerate. 
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TP – C2  Solutions 
 
 
To find the entropy ),( TVS  use 
 
  pdVdUTdS +=  
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 B) For an adiabatic process 0=dS ⇒ =VT f 2/ constant 
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TP – D1 Solution

The magnetic moment µ is given by

µ =

∑

lm mµ̃e−βεlm

∑

lm e−βεlm

≡

1

βZ

∂Z

∂B
, (1)

where

Z =
∑

lm

e−βεlm
≡

∞
∑

l=0

e−βε̃l(l+1)

l
∑

m=−l

eβµ̃Bm, (2)

and β = (kT )−1. In both parts of the problem, B is small, so we may expand
to the lowest nontrivial order:

Z ≈

∞
∑

l=0

e−βε̃l(l+1)

l
∑

m=−l

[

1 +
1

2
(βµ̃B)2m2

]

, (3)

where the linear term in B vanishes because of the symmetry of the sum
over m.

case 1 Here βε̃ � 1 so that the sum over l is restricted to small l. The lowest
nontrivial order is l = 1, so that we can truncate the series there. We
therefore obtain

Z ≈ 1 + 3e−2βε̃ + (βµ̃B)2e−2βε̃. (4)

Finally, using the last equality of Eq. (1) and keeping only the leading
order in B and e−2βε̃, one finds

µ ≈

2µ̃2B

kT
exp

(

−

2ε̃

kT

)

. (5)

case 2 Here βε̃ is small, so there will be a large number of terms in the sum,
which will be dominated by terms where l � 1. Therefore in this limit
we may replace the sums by integrals and l(l + 1) by l2, giving

Z ≈

∫

∞

0

dl e−βε̃ l2
∫ l

−l

dm

[

1 +
1

2
(βµ̃B)2m2

]

=

∫

∞

0

dl e−βε̃ l2

[

2l +
1

3
(βµ̃B)2l3

]

. (6)

1



The integrals are elementary, and in the same manner as for case 1,
one obtains

Z ≈

1

βε̃
+

1

6

(

µ̃B

ε̃

)2

, (7)

and

µ ≈

µ̃2B

3ε̃
. (8)

To find a weaker criterion for (8), look back at Eq. (2). The largest

values of l that are important are given by l(l+1)βε̃ ∼ 1 or l ∼ (βε̃)−
1

2 .
Therefore that largest m in the second summation will also be of this
order, and the largest exponent in this term will be ∼ βµ̃B(βε̃)−

1

2 giving
the condition that this quantity should be small, or µ̃B �

√

ε̃kT . Since
kT � ε̃, this is weaker than the criterion given for case 2 above.

2



 

TP – D2   Solution 
 
(a)  The number of molecules within dh is:   
 
 
Where m is the mass of the molecule, Mpl and Rpl are the mass of the planet and its radius, 
respectively, no is the density of molecules at the planet’s surface. 

 
This is the same results you would get by considering the equilibrium condition:   
 
Where F is the total force exerted on the atmosphere by the plant’s surface:  
 
 
 
 

(b) The average potential energy of the molecules in the atmosphere is found by: 

 
 
(c)  Heat capacity:     
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