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A)
av = Y a1 + Y] gpisaperfect differential. Thus -2 = 2V
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Solution to Problem TP-B

(a) Equation of State:

PV = NET.
First Law:
dQ) = dE + PdV.
E depends only on T
oQ dFE
NCy = (=] =—
v (aT) , dT
oQ dE  d
N = =] ==+ -=(PdV) =
Cr (aT)P ar * arPdv)
Therefore
Cp=0Cy+k.

(b) From (1),
PdV +VdP = NkdT.

From (3) and (2) with d@Q = 0,

dE Pdv
dl' = =— .
NCy NCy

Combining (6) and (7)
yPdV +VdP =0,
with
k- Cp
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dE

— + Nk.
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where the last equality made use of (5). If Cy is taken independent of T (exact for a

monatomic ideal gas), then (8) can be integrated to give

PV7 = constant.

(10)

(c) Helium gas is monatomic, so that the only contribution to E is translational motion.
Therefore F = %l{:T, Cy = %l{:, and v = g Equation (10) then implies that the P

increases by a factor of 2° = 32.



TP —C1 Solution

(a) For quantum particles confined in a 2D “box; = ’E‘ k=" k= [k +k/?

N(k):% mk?  _ k?*(area) G(k)—k—z 6le)= 1 2me ZD(g):(ZS"'l)m— m
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Sog”°(¢) does not depend on energy.

(b) The Fermi energy is given by: N = [gle)area)de=A T €. E, = ﬂ:‘z (N]

(c) The average energy per electron:
E
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So, at 300K the system is not degenerate.



TP — C2 Solutions

To find the entropyS(V,T) use

TdS = dU + pdV

as=5 qr+95| ov =Y ar+Y v
oT|, . oT ov|;

Then
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B) For an adiabatic proces$ =0 = T "'4/ = constant

oU ouU
C)dQ=dU + pdV =— dT +(— + p)dVv
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TP — D1 Solution

The magnetic moment y is given by

B Zlm m/je_ﬁelm
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where 1
oo
Z — Z e_ﬁqm = Z e_ﬁgl(l""l) Z eﬁﬂBm’ (2)
Ilm =0 m=—1

and 8 = (KT)~!. In both parts of the problem, B is small, so we may expand
to the lowest nontrivial order:
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where the linear term in B vanishes because of the symmetry of the sum
over m.

case 1 Here € > 1 so that the sum over [ is restricted to small [. The lowest
nontrivial order is [ = 1, so that we can truncate the series there. We
therefore obtain

7~ 1+ 3e % + (BaB)%e . (4)

Finally, using the last equality of Eq. (1) and keeping only the leading
order in B and e~2%¢, one finds

252 B 2¢
pa 28 (—k—T) (5)

case 2 Here (3¢ is small, so there will be a large number of terms in the sum,
which will be dominated by terms where [ > 1. Therefore in this limit
we may replace the sums by integrals and [(I + 1) by [?, giving
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The integrals are elementary, and in the same manner as for case 1,
one obtains

1 1 /aB\’
I~ —+ - =
ﬁg+6(g), (7)
and g
o
~ (8)

3¢
To find a weaker criterion for (8), look back at Eq. (2). The largest

values of [ that are important are given by (I +1)8¢ ~ 1 or [ ~ (3¢)~z.
Therefore that largest m in the second summation will also be of this
order, and the largest exponent in this term will be ~ 3 [LB(ﬁE)_% giving
the condition that this quantity should be small, or iB < VékT. Since

kT > €, this is weaker than the criterion given for case 2 above.



TP — D2 Solution

(@) The number of molecules within dh istN(h « h+dh)=n, exp{— rll]g:j(area)dh

B

Wherem s the mass of the molecuM,, andR;, are the mass of the planet and its radius,
respectivelyn, is the density of molecules at the planet’'s s@fac
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This is the same results you would get by consigettie equilibrium condition:

Where F is the total force exerted on the atmosphgithe plant’s surface: F=M am9
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(b) The average potential energy of the moleculeseratmosphere is found by:
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