
QM – A  Solution 

 

A)  According to uncertainty principle, Δp�Δx≈ħ.  Therefore we expect the 

most probable values of the momentum to lie within ±ħ/L . 

 

B)  A wave function of a particle with certain momentum should be a 

eigenfunction of the momentum operator, with the value of the 

momentum being its eigenvalue. Therefore, for momentum p0 the 

wavefunction should have a form 

  
ψp (x) = C ⋅ e ip0x / h

 

The probability to measure momentum p0 is then a square of  

ap = ψ p (x)
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Let’s calculate ap: 
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Let’s study the function 
sin2 y

y 2 : 

                            
As one can see, most of the distribution is contained within |y|<2, so for 

our probability distribution we get 20 ≤
h

Lp
, or 

L
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0 ≤ , which is within 

a factor of two from the estimate in A) 



 

C) The wavefunction right after the measurement will be ψp from B). To 

get the value of the constant C one can use the relation ψp∫ ψqdx = δ(p − q) , 

but it is easier to use the formula for probability obtained above: 
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Integrating by parts, the last integral can be shown to equal to  

sin2 y

y 2 dy = sin y
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Therefore 2πħC2=1, and 
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QM- B Solution

The general form of the wave function is

Ae~k~ + Be-~kz for

Ce~’~ + de-~’~ for

Fe~ for

z~0
0<x<a

x~a

with k = ~/~-~/]~ and

At the boundaries x = 0 and x = a, the wave function and its first
derivative are continuous. Using also the fact that~ in this case~
there is no reflected waver B = 0~ we have.

A=C+D

A = ~ (C - D) (2)

Ce~’~ + De-~’~ = Fei~’~ (3)

Ce - De =                    (4)k

Setting IAI2 = IFI2 we have from (1) and (3)

IC+DI2 = [Ce{k’~+

::>- ICI2 + Inl~ + 2Re[CD*] : ICI

Choose the overall phase so that C is real. Then (1) and (2) give

k~
C+D=~(C-D) ~ D is also real

C2 + D2 + 2CD = C2 + D2 + 2CDRe[e2~’~]

’]ZT" ~2T’2]~2

a 2ma2



QNI- C1 Solution

The simplest example of a bound state of two particles is the bound system of
an electron and a positron (anti-electron) called positronium.

a) Using what you know about the hydrogen atom, determine the ground state
energy of positronium and the size (average electron-positron separation)
of the ground state.

The only constants in the problem are: ]~, c, the mass m, and the
electron charge e.

The only combination of the above constants that sets an energy
scale is mc2.

The only combination of the above constants that sets a distance
scale

The only difference in the constants between the hydrogen atom
and positronium is the mass. For hydrogen it is the electron mass
rn~ (the proton can be considered to have approximately infinite
mass) while for positronium it is the reduced mass

me ÷ me 2

The ground state energy of positronium is E0 = -6.SeV, half of the
energy of the ground state of hydrogen.

The electron-positron separation in the positronium ground state is
10-s cm~ twice the radius of the ground state of hydrogen.



b) The ground state of positrionium decays into a two-photon final state with
a lifetime of about 0.1 ns. Find the expression for the polarization part of
the coherent two-photon final state. You’ll want to use the fact that the
ground state of positronium is a state of odd (negative) parity since it is a
1S (L = O) state and the intrinsic parity of it’s two constituents, the electron
and positron, are opposite.

Since the Hamiltonian is invariant under parity transformation, the
ground state is an eigenstate of parity.

Since the ground state orbital angular momentum is zero, the parity
is the product of the intrinsic parities of the electron and positron

Since electromagnetic interactions are invariant under parity
transformations, parity is conserved an d the final two photon state
is also a state of negative parity.

Let the line along which the photons are emitted be the z-axis. By
angular momentum conservation, if the photon emitted along the
+z direction is right-handed polarized (Lz = ~]~) then the photon
emitted along the -z direction is also right-harnded polarized
(Lz :
Under the parity transformation, the direction of momentum
changes while the direction of angular momentum stays fixed. ~
the two photon state IRR,} transforms to the ILL}.

In order for the final state I¢} to be a state of parity eigenstate with
negative parity, we must have

IR.RI -

c) Joe and Sarah set up detectors on opposite sides of the positronium to
measure the polarization of the emitted photons. If Joe measures the po-
larization of his photon to be right-handed, what is the probability that
Sarah will find her photon to be x-polarized?

I<RxlR~> - <RxlLL>I2 --
1

I<RI/~><xIR> - <~IL><xIL>I2 = I<xl/~>l2 -- ~

d) If Joe measures the polarization of his photon to be x-polarized, what is
the probability that Sarah will find her photon to also be x-polarized?
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QM - D1 Solution

A) From general properties of Schroedinger’s equation:
Since the potential is an even function of x, the wavefunctions will
be either even or odd functions of x.

¯ For l<lx I<L the solution is a sine wave and for the Ix I<l the
wavefunction is exponentially decreasing.

¯ The boundary conditions are that ~b and ~b’ are contiguous
functions between -L and L, and ~(L)=~(-L)=O.

Therefore the four lowest levels (two even, two odd) will be:

U

B) Let us use A) to write down general representations of the
wavefunctions:

! ~÷L (X) = a. sink(L- x)

[ ~_~+~(x)=b.(e°~+e-~)
L ~f_L+_.I(X) "~ a. sink(L + x)

f ~I÷L(X) =a.sink(L-x)

~_~÷~(x) = b. (e’~ -e-~)

~_L÷_t(X) =-a. sink(L + x)

~]2m(U0 -E) ~ The coefficients a and bwhere k- ~ and o~=            =       .
h h h

are determined by the boundary conditions and the total normalization of
the wavefunctions. Let us consider the requirement of continuity of ~b and
~b’:

even :                                 odd :

a. sink(L-l)= b. (e~ + e-~) ~ a. sink(L-l)= b. (e~ -e-°~)

-k’a’cosk(L-l)=b’c~’(e°~-e-°~) [-k.a.cosk(L-l)=b.o~.(e°~ +e-~)

Dividing on by the other we get



tan k(L - l) = -k 1 and tan k(L - l) = -k tanh ~
o~ tanh ~                              c~

Since a is large, this equation can be approximately solved
approximating tan k(L-I) around 2nn as shown in the figure below:
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k=n _ 1 (L-l).c~.tanh
,and E=h~k2

~/I1

tanh od 1
(odd)     2mk=n _    (L-I).oU

by

C) Even and odd level’s energies are close to each other and close to the
energy levels of an infinitely deep rectangular well with width (L-l). When



Uo is infinitely large, the problem becomes a system o~ two infinitely deep
wells. The energy levels are degenerate, and correspond to the particle
motion either in the left or in the right well. When Uo is finite, so is the
probability for a particle to tunnel from one side to the other. The
stationary states then start corresponding to the particle moving in both
wells, and the energy levels split.
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