TP — A SOLUTION

For an ideal monatomic gas U=3/2nRT , C, =3/2Rand C,
Since the processis at constant pressureAQ = C,nAT giving

a n=AQ/(5/2RAT)=1000/(5/2*8.31* 10)

AU =3/ 2nRAT = (3/ 2)RAT(AQ/5/2RAT) =3AQ/5
AU = AQ - PAV

b:  PAV = AQ-AU =2/5AQ
AV = 2/5AQ/ P = (2/5)1000/10°m?

¢: T(dS) = dQ=C,n(dT)
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TP-B SOLUTION

(@) If the ground level energy is defined as zero and E is the energy of excited level:

Z :Zi:di exp(—,Bsi)=2+6exp(—,8E)

The probability that the atom isin its excited level:

_6exp(-BE)_ 3exp(-BE) _ 3
P(E) = = =
z 1+3exp(- BE) 3+exp(BE)
SinceE =1.2eV, T = 6000K (~0.5eV), BE = 2.32, exp(BE ) = 10 we get: P(E)= 3f10 =0.23

(b) The average energy per atomis:

Zop 2+6exp(-pe) exp(Be)+3

<£>=_16_Z_£><6exp(—ﬁ£) 3¢

(c) The specific heat is:
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TP — C1 SOLUTION

In equilibrium the chemical potential of the molecules on the surface sites must equal to the chemical
potential p of the gas outside the surface. Thus the required expression is given by substitution of
the latter chemical potential into the Fermi distribution of the adsorbed molecules [e(F—#)/*T 1.1)~1,
The chemical potential for the gas molecules (1) can be related to the number of gas molecules per
unit volume (n) by integrating the Maxwell-Boltzmann distribution over momentum:

d*p Sa—
n:/(27rh)3 N e

Then, if n is eliminated using the ideal gas law (P = nkT'), one can solve for the chemical potential
1, and put it back into the Fermi distribution for the adsorbed molecules. The resulting expression
for the adsorbed fraction is

CcP
1+ CP’
where It 5
C= 7T &P <_k‘T> ,
and

A 27Th2'
\ MkT

A is proportional to the thermal de Broglie wavelength, so that the combination C'P is dimensionless
by analogy with the ideal gas law.



TP - C2 SOLUTION

P, _  400®W

@ R, 47(5.800°m)

~=9.46110°W /Y

) Prgary =GR or, = 94600°W/ ? [7(2.4400° )| =1.77010"W

(c) Consider Mercury asahemisphere, then:  Fgq,y = 27'5?,\";,emuryaT4

Mercury

Solving for the temperature we have:

P 1/4 1 77 D-017W 1/4
Mercury = % = : > =535K
2R oy O 27{2.4410°m) 5.7610°W / K “n?
P ) 4T10%W B
@  Tan =[ = j = - =5,795K
4rRe, 0 4n{700°m) 5.76[10°W/ K *rri
—23
yiwows =g gelan - 5 g1 380 "I TKXSTOK _ 5 ) ayy,
h 6.62010 Js
) k. T -23
(@ vl —pglelveny _ 5 gl 3BUOTITKXEIK _ gy,

6.62[107* Js



TP —D1 SOLUTION

a) Final temperature stays the same at 300K.
Total pressure stays the same. Individual pressures are given by the law of partial
pressures with helium pressure at 1/6* 2=1/3 atm, neon pressure at 2/6* 2=2/3 atm and
argon pressure at 3/6* 32=1 atm.
Note the volumeis not initially divided equally but isin proportion to mole fractions
using PV=nRT or V/n=RT/P which is a constant.
Helium volume=1/6V, neon volume =1/3V, argon volume = 1/2V.

b) U only dependson T and not V for anideal gas A U=0

¢) dG=-SdT+VdP+udN. dG=V(dP) at constant T. dG = (nRT/P)(dP)

P
AG=nRT Ian for each component

AG=RT(n,In/6)+nyIn1/3)+n, In/2)) =
8.31¥30010°(1In(1/ 6) + 2In(1/ 3) + 3In(1/ 2)) = -1.5* 10" J

¢) For anidea gas U=3/3nRTand dU=3/2nR(dT)
du =T(dS) - P(dV) + u(dN)
dS = 3/2nRdT/T + nRdV/V with dN=0
Thus S=3/2nRINT + nRINV + constant or S= NRINT¥4/ /C, = k N InT¥?//NC,.
The constant C, = NC, to keep the entropy extensive.
Use V = NKk,T /Pto get
S=nRInT*?/PC,
Thus
AS=-AG/T =1.5* 10" /300=5*10*J/°K



TP — D2 SOLUTION

For the density, we have

wex [dinfie) o [ T ey, 1)

where f is the Fermi function

£ = )

e + 1’

with 3 = (kT)~'. Using the fact that €, < p?, it is convenient to change
dummy integration variables, writing

n o / " de g(01(6), 3)

o)

where
g(€) o 272 g (e), (4)

where 6 is the unit step function that vanishes for negative arguments. Noting
that the zero temperature Fermi function is a unit step function, we now may
write

0=n(r) =T =0) = [ deg(@)| iy 9] ®

~ e—u) 41

Using the fact that we are looking only for a small change, we may write this
as

(4 — 10)g(o) ~ / " de g — ©) — 010 — ©)

o0

= [Caes0 | -0 @

[e.9]

The integrand in the final integral has contributions that go to zero exponen-
tially when |e — u| > kT, so we can expand in T' by expanding ¢(e) around
i letting

g9(e) = g(u) + (e = w)g' () + ... (7)



Substituting above, we note that the integral over the first term in the series
vanishes. In the integral resulting from the second term, we integrate by
parts, and noting that the integrated part vanishes exponentially at oo, we
find

1

(= plgloo) = oy [ dee= 5 | — 00 ®

Carrying out the differentiation, and changing the dummy integration vari-
able to x = (e — u) gives

9 (1) /) me 9 (10) /) 2
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where o ) )
ree” T
o= [ d = (10)
Substituing g from Eq. (4) gives
d—2\ (kT)?
— ~ — R . 11
poeE < 2 > o =

We see that for d > 2, 4 decreases as we increase the temperature. For d = 1
it increases with temperature, while the crossover where it doesn’t vary is at
d=2.



