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Problem A
1 Solutions for Problem 1

a) AQ = 0 for adiabatic processes, and thus the first law of thermodynamics becomes:

AU+ A =0, (1)
where A is the work done by gas, and U is its internal energy. Using A = P,AV and
AU = Cy AT we obtain:

Cyv(To —TY) + Py(Vo — Vi) = 0. (2)

Using the equation of state for the ideal gas PV = RT and the relation between heat
capacities Cp — Cyy = R we get (after some straightforward algebraic manipulations):

_ T+ PV BTy

T = —. 3
5 Cr ) (3)
b) Using the result from part a) we immediately obtain:
CyTy + PV, RTy
Tf=—"——, Vi=—-. 4
7 o, =g (4)

The easiest way to compute the temperature difference is to use the first law of ther-
modynamics directly:

Cy(Ty—Ty) + P(Vo—V)=0

, (5)

Adding these equations we get:

Cv(Ty =Th) = Pi(Va = Vi) + Po(Vi = V). (6)

The next step is to invoke the differential version of the adiabatic equation:
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YR (Vo =Vi) + Vi(P—P) =0, (7)
TP(Vy=Va) + Vao(Pr—P) =0
Then we can easily show that
1
Ty =T = (P — B)(V2 = V1), (8)
Cr
which is always positive. More explicitly, we can use the adiabatic equation again:
Vi
%—WZTJ%(Pl—PQ) 9)
to show that
Cy, Vi 2
Tf_Tl:O_]%FQ(PQ_Pl) 3 (10)

which is quadratic in P, — P;.

Thus the change in temperature is a second order correction wrt the change in pressure.
It is possible to make this change as small as we want by making the weights that we
add to or remove from the piston at each step very small. The change in temperature is
always positive, as expected from the second law of thermodynamics.
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Solutions for Problem 2

a) Insert E = (p3 + p; + p2)/2m + V(x,y, z) into

e PEdr
(D(x7y727vapy7pz)d7—: mv (11)

and integrate over dxdydz to get the distribution over momenta:

F(ps,py,p.) = /d:rdydz O(z,y, 2, Pz, Py, P2) (12)
e~ Bi+py+p2)/2m

[ dp.dp,dp. e—BP3+py+p2)/2m

Note that the terms containing V(x,y,z) drop out. F(p,,py,p.) factorizes into 3
terms: F(pg, py,p.) = Y(v,)V(v,)¥(v,), where

e_ﬁmva%/2
\I](’Ux) = W, etc. (13)

The Gaussian integral in the denominator can be taken, resulting in:
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Bm\ V2 .
\I/(vx)dvx—<§) e~Pmvn/2, (14)

Sketch of W(v,) is a Gaussian centered on 0.
b) Calculation are identical for the x, y, and z components. We do just the x component
below.

_ 1 -
KE, = émvg, (15)

%) 1/2 3/2 0o
i= [ Cevtie = (32) () [ ewfa=g o

Thus KE, = %kT as expected from the equipartition theorem (8 = 1/kT), and
similarly for y and z.

where

c¢) Given F(v,, vy, v,), what is f(v) - the probability that the molecule’s velocity is between
v and v + dv?

3/2
f(v)dv = / dQ*dvF (vg, vy, v,) = (52_m> Ardy v2e= M2, (17)
0 7r
so that
3/2
f(U) = (g—m> 47‘(‘1}2@_6"“)2/2. (18)
7r

The sketch has a maximum at y/2/m and a Gaussian tail.

d) Instead of integrating over x, y, and z, integrate Eq. (11) over v,, v,, and v,. This
results in:

)
[ [ [ dxdydz e=BV(zw2)’

the fraction of molecules within dxdydz of a given point (x,y, z). In other words, this is
the spatial density:

Fz,y,2) (19)

n(z,y, z) = nge PV Ev2), (20)

For a flat Earth, the potential energy of a molecule at a small height h above ground
is V' = mgh, resulting in (after integrating out the x and y components):

n(z) = n(0)e I (21)
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Problem 2 (partition function, average energ
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Problem 2 (cont’d)
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Problem 1 (multiplicity, entropy)
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(a) S=kB|nQ=kB|nf(N)+NkBInV+N—2kaInU 1 (‘%j _ NT

T lau 52U
2U N f

U=—-k T - in agreement with the equipartition theorem
N f k, 2

WhenT - 0,U —» 0, and S — - «© - doesn’'t make sense. This means that the expression
for Q holds in the “classical” limit of high temperatures, it should be modified at low T.
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Problem 1 (cont’d)
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(c) Q(U,V,N):f(N)VNusN/z

QU,V,N)ecV IV =V, U2 —U, N2




Problem D1

TFR.

HALRER. THERLMAC. FPrysics f#iBLerd SoLu 7704)

l L& 4L

/ % %j“? é;:g 5”&«;, + ) & 75

A VASA A e

Bovremanms

Uif“ mgégw%%y T{é@f@ﬁj ?ﬁgﬁj

G = VAN

@Wwé‘&!

= BNT +mMN 4+ N ET = MA wfﬁgiéquﬁ

I5.



Bob
Text Box
Problem D1





(@)

¢@ wsjqold

At

T=

Problem 3 (degenerate Fermi gas) (cont’'d)

The number of electron per unit volume: N = I g(e)f(g)de

_ 1, e<E.
0, all the states up to & = E,. are filled, at ¢ > E. — empty: fe)=
0, ¢>E;
3/2E,

N=Ig(8)f(5)d5:i‘jg(5)d5:21 ( j J’\/E 5_37[ (ijslz(EF)g/z

h*

L

3

5 2/3 2 2/3 34 213
2N)2/3 h (3 LN IRV (6 6-10 _21 3 ~85. 102 | =11.10"J=6.7eV
am\ 7 8m| " 8x9.1.10

The total energy of all &

3
electrons in the conduction U, = jgx g(g)dg =—NE_
band (per unit volume): 0 o
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Problem 3 (degenerate Fermi gas) (cont’d)

(b) 1 —
1 =0.9 exp(‘g1 EFj=9 g =E;+k;TIn9

nie)=
(£) £ E
exp T +1 exp T +1
B B

/ 1 ~0.1 exp[gz_EFj:% ¢,=E. —k,TIn9

Ae=2k,TIN9=0.11¢eV "« (8 £ j
2 F

()

Er+Ae/2 3 Ag
N, = [n(e)ale) dg— S,ZFXO5><A5——N——N><0012
Er-Ag/2 4 EF

Thus, at T=300K, the ratio of the “current-carrying” electrons to all electrons in the
conduction band is 0.012 or 1.2 %.
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