
 
 
 
 
 
 
 
Solution  1: 
 
mg=GMm/r2,   so  GM=gR2. 
 
At the equator, mV2/R=GMm/R2 – mg' = mg - 2mg/3 = mg/3. 
 
Hence,  g = 3V2/R. 
 
Potential energy of a particle at the surface is given by:    -GMm/R, and the total energy 
of a particle at the pole, traveling with speed u is:   
 
E = mu2/2 – GMm/R   =  mv2/2 – GMm/r  for any r and v.  This is equal to 0 for escape, 
i.e.  r → ∞ as v →0. 
 
Thus,  u=vesc when  mu2/2 = GMm/R. 
 
So,   vesc

2 = 2GM/R = 2gR = 6V2,  and 
 
vesc = √6 V . 
 

 



Solution Due to the rotation of the planet, the angular momentum of the
stone at the moment of release is (R+ h)2ωe. This is a conserved quantity,
so that if we measure the azimuthal angle φ of the stone from its position
at the moment or release, one has

φ̇ =
(R+ h)2

(R+ y)2
ωe ≈ ωe + 2ωe

h− y

R
, (1)

where R + y is the distance to the stone from the center of the planet.
We have used the fact that h � R in obtaining the second (approximate)
equality. Since the last term is already of order ωe, we may simply use
y = h− 1

2gt
2 to evalutate it, where t is the time since the stone was dropped.

Therefore
R(φ̇− ωe) = ωegt

2. (2)

Since φ̇ > ωe for t > 0, the stone will land due east of the plumb line. The
distance d away from the plumb line upon landing will be

d ≡
∫ t0

0
dtR(φ̇− ωe) = 1

3ωegt
3
0 =

ωeg

3

(
2h
g

) 3
2

=
ωe

3

√
8h3

g
, (3)

where t0 is the value of t when the stone hits the ground. Putting in values
gives an order of magnitude of d ∼ 10 cm.
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Solution: 
 

a) At equilibrium, -dV/dx = 0, so  [c(a2-x2)]/(x2+a2)2 = 0.  Thus,  x1 = +a, x2 = -a. 
 
Now, d2V/dx2 = 2cx(x2-3a2)/(x2+a2)3 ,  so x1  is unstable (d2V/dx2 <0), x2  is stable. 
 
For small oscillations, let x = -a + x', where x' << a.  Then the equation of motion is: 
 
m d2x/dt2 = - cx'(2a-x')/[(x'-a)2 + a2]2 ≈ - cx'/2a3 . 
 
So, T = 2π/ω = 2π √(2ma3/c) = 2πa √(2ma/c). 
 

b) Starting at x = -a, the total energy of the particle is:   
 
E=mv2/2 + V(-a) = mv2/2 – c/2a.     
 

1) For confinement, E<0, so v<√(c/ma). 
2) At -∞, V=0,  so E>0 is the requirement for escape to -∞.  So, v>√(c/ma). 
3) To escape to +∞, the particle must pass through x1 =  +a, where the potential 

energy is a maximum.  Thus,  E > V(a) = c/2a, so  v>√(2c/ma). 
 
 



Solution

Elementary solution

w
a

f

β

α

Let w be the magnitude of an acceleration of the ball with respect to the wedge and a
be the magnitude of an acceleration of the wedge in the laboratory system. Also let f be
the magnitude of a force of friction. Then the projection of an acceleration of the ball on
the direction parallel to the incline plane in the laboratory system is w−a cos α and Newton’s
second law for this component gives

m(w − a cos α) = −f + mg sin α .

The projections of an acceleration of the ball on the horizontal plane in the laboratory system
is w cos α− a, so the condition that the center of mass of the whole system does not move in
the horizontal direction reads as follows:

m(w cos α− a) = Ma .

Since the ball is rolling down without slipping, an angular acceleration of the ball is given by

β =
w

R
,

and satisfies the equation of motion:
Iβ = fR .

Hence

w − a cos α = − I

mR2
w + g sin α , w cos α =

(
1 +

M

m

)
a , (1)

and

a =
g sin α cos α

(1 + M
m

)( I
mR2 + 1)− cos2 α

.
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The moment of inertia is given by

I =
m

4
3
πR3

∫ R

0

drr2

∫ 2π

0

dθ sin θ

∫ π

0

dφ r2 sin2 θ =
2

5
mR2 .

Finally,

a =
g sin α cos α

7
5

(1 + M
m

)− cos2 α
.

Lagrange’s approach

α

l

s

H

x

y

Introduce the generalized coordinates s and l as shown in Fig. The coordinates (x0, y0) of
a center the ball are given by

x0 = s + l cos α + R sin α , y0 = H − l sin α . (2)

Since there is no slipping, the angular velocity of the ball is given by

ω =
l̇

R
. (3)

The Lagrangian reads as follows

L =
Mṡ2

2
+

m

2

[
(ṡ + l̇ cos α)2 + l̇2 sin2 α

]
+

Il̇2

2R2
+ mgl sin α =

=
Mṡ2

2
+

m

2

(
ṡ2 + l̇2 + 2ṡl̇ cos α

)
+

Il̇2

2R2
+ mgl sin α .

Lagrange’s equations coincide with Eqs.(1) provided s̈ = −a, l̈ = w.

3



Solution We have

T = 1
2

[
Mẋ2 + (mẋ2

1 +mẏ2
1)

]
, (1)

and
V = mgy1, (2)

where
x1 = x+ b sin θ ≈ x+ bθ, (3)

and
y1 = b(1− cos θ) ≈ 1

2bθ
2. (4)

It is clear by inspection that there is no net horizontal force on the composite
body consisting of both masses and the connecting string, so that the x
component of the center of mass

xc =
Mx+mx1

M +m
(5)

is not accelerated. In other words, there is no restoring force to the x
component of center of mass motion, so that one normal mode has zero
frequency, and simply consists of the motion x = x1 = x0 + v0t, where
x0 and v0 are constants. To find the other mode, we can without loss in
generality set xc = 0, which implies that

x = −m
M
x1. (6)

Use of (6) in (1) and (3), and then expressing T in terms of θ instead of the
x’s gives

T ≈ 1
2µb

2θ̇2 (7)

where µ is the reduced massMm/(M+m). In writing (7), the term involving
ẏ is neglected, because it is higher order than quadratic in small excursions
(using Eq. 4). The potential energy is similarly expanded as

V ≈ 1
2mgbθ̇

2. (8)

The equation of motion is now easily found by either using Ṫ + V̇ = 0 or by
using Lagrangian techiques:

θ̈ +
mg

µb
θ = 0, (9)

2



so that the angular vibrational frequency of this mode is given by

ω2 =
mg

µb
. (10)

The motion of the two masses in this mode is given by Eq. (6).
If one did not recognize the constant of motion that the above quick

solution, the problem is soluble by standard methods. In that case, the
kinetic energy for small displacements is

T = 1
2Mẋ2 + 1

2m(x+ bθ̇)2 (11)

from which it is simple to use Lagrangian techniques to obtain

ẍ+ bθ̈ + gθ = 0, (12)
(M +m)ẍ+mbθ̈ = 0, (13)

which are straightforwardly solved to yield results results identical to those
obtained above. Overall this method is more laborious, however.
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Solution

Let X1, X2 and x be coordinates of the heavy particles and the light one respectively. For
X1 < x < X2 the potential energy of the system reads,

U = (x−X1) f + (X2 − x) f = (X2 −X1) f .

Hence the “electron” moves freely between the “atoms”. Under the condition

|Ẋ1,2| ¿ |ẋ|

the quantity ∮
dx

2π
p(x) ∝ |ẋ| (X2 −X1) = C = const

is an adiabatic invariant. Combining this equation with the energy conservation law,

M

2
( Ẋ2

1 + Ẋ2
2 ) +

mẋ2

2
+ (X2 −X1) f = E = const ,

and assuming that the center mass of the system is at rest

M (Ẋ2 + Ẋ1) + m ẋ = 0 ,

one obtains,

MẊ2

4
+

(
1 +

m

2M

) mC2

2 X2
+ X f = E , where X = X2 −X1 .

Since m ¿ M we can neglect the term ∝ m/M . We have derived the equation which coincides
with the energy conservation law for the 1D particle of mass M/2 moving in the effective
potential

Ueff (X) =
mC2

2 X2
+ X f .

a

U (X)

X

eff
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The stable equilibrium condition

dUeff

dX

∣∣∣
X=a

= −mC2

a3
+ f = 0 ,

relates the constant C with the size of the “ion”. Then

d2Ueff

dX2

∣∣∣
X=a

=
3mC2

a4
=

3f

a
,

and the frequency of small oscillations is given by

ω2 =
2

M

d2Ueff

dX2

∣∣∣
X=a

=
6f

Ma
,
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Alternative Solution

Since the heavy particles move much more slowly than the light particles, we may approxi-
mately solve the problem by calculating the average force between the heavy particles at a
fixed position, and use that to determine the motion of the heavy particles. This average
force has a repulsive component FR produced by the collisions of the light particle with each
heavy particle. We note that the speed v of the light particle for a particular spacing X
between the heavy particles is independent of time, because the collisions are elastic, and
the contributions to the long range force from each heavy particle cancels. The outward
momentum transfer per collision is 2mv, with a time of 2X/v between collisions with the
same heavy particle. Thus FR is the quotient of these two quantities, FR = mv2/X. The
dependence of v on X may be obtained by the work–kinetic energy theorem

FRdX = −d
(

1

2
mv2

)
= −mvdv.

On substitution of the value of FR above, this equation simplifies to vdX = −Xdv, that is
d(Xv) = 0 and v = C/X, where C is a constant. Thus the repulsive force is given by

FR =
mC2

X3
.

The net average force is then

F (X) = FR − f =
mC2

X3
− f = f

(
a3

X3
− 1

)
≈ −3f

a
(X − a)

where the second equality uses the equilibrium condition F (a) = 0, and the leading term in
(X − a) determines the force constant k = 3f/a. The oscillation frequency ω is thus given
by

ω2 =
k

µ
=

6f

Ma
,

where µ is the reduced mass, here equaling M/2.
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