
 
 
Solution QM -A: 
 
   

(a) Atomic configuration of Eu: 726102610262622 4654543423221 fspdspdspspss . 
 
(b) The 5d level has l = 3 and s = ½. We have, therefore slj ±=  which gives j = 5/2 

and j = 3/2, so the orbital spits into two levels 5d 5/2 and 5d 3/2.  Each level can 
accommodate 2j + 1 electrons, so there are 6 electrons in the 5d 5/2 level and 4 
electrons in the 5d 3/2 level. 

 
(c) For Eu3+, we consider the total spin and total angular momentum of the electrons, 

so S = 3, L = 3, so 0=−= SLJ (less than half-filled). Thus, Eu3+ is expected to 

have a moment of 0 µB. For Tb3+, S = 3, L = 3, so 6=+= SLJ  (more than half-

filled). Thus, Tb3+ is expected to have a moment of 12µB. (Using BJJg µ)1( + , 
rather than BgJµ , should be O.K. too) 

 
 
 



SOLUTION QB

Taking into account

Ĥ =
p̂2

2m
− F0r,

we find
dĜ

dt
=

∂Ĝ

∂t
+

i

~
[Ĥ, Ĝ] = −F0 − i

~
[F0r, p̂] = 0,

so that the average
〈Ĝ〉 = 〈p̂〉 − F0t = const.

This is a natural quantum mechanical generalization of the statement of classical mechanics
that for a particle moving in a uniform field the vector p0 = p(t) − F0t is an integral of
motion (since the velocity v(t) = v(0) + F0t/m) and is equal to particle’s momentum at
t = 0.
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Solution QM-C1 
 
 
2. (a) From the Hamiltonian,  

2
2 21 1ˆ ˆ

2 2 2
PH m x a a
m

ω ω +⎛ ⎞= + = +⎜ ⎟
⎝ ⎠

h  

, where 
1ˆ
2
1ˆ
2

a

a

ξ
ξ

ξ
ξ

+

⎛ ⎞∂
= +⎜ ⎟∂⎝ ⎠

⎛ ⎞∂
= −⎜ ⎟∂⎝ ⎠

 and 2 2m xωξ ≡
h

. 

 
The ground state can be calculated from the condition, 0ˆ 0aϕ = : 
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(b) When ω  
1
2
ω , the new ground state is 
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Therefore, the probability that the particle is still in the ground state of the new oscillator is 
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Solution QM-C2

(i) The equation of motion for the two-component wave function for t > 0
(we have  = 1

2 ω) is,

1
2
gµBσxHψ = i~∂tψ, (1)

or

(
0 −iω0

−iω0 0

)(
a
b

)
=

(
∂ta
∂tb

)
(2)

where ω0 = gµBσxH/2~
We find: a = cos ω0t, b = −i sin ω0t.
(ii) 〈Jx〉 = 0, 〈Jy〉 = − 1

2 sin(2ω0t), 〈Jz〉 = 1
2 cos(2ω0t).

(iii) T > ω−1
0 .



SOLUTION QM-D1

Recall that operators â and â† act in a space of states of the form (here and below summation
over n in all equations is from n = 0 to n = ∞)

|Ψ〉 =
∑

cn|n〉 = c0|0〉+ c1|1〉+ . . . ,

where |n〉 stands for the n-particle (quanta) state. Further, recall that

â|n〉 =
√

n|n− 1〉, â†|n〉 =
√

n + 1|n + 1〉.

Eigenstates |α〉 =
∑

cn|n〉 and eigenvalues α of the bosonic annihilation operator â are
determined by the eigenvalue equation â|α〉 = α|α〉. Since

â|α〉 =
∑

cn

√
n|n− 1〉 =

∑
cn+1

√
n + 1|n〉,

the eigenvalue equation takes the form

∑(
cn+1

√
n + 1− αcn

)
|n〉 = 0.

Therefore, taking into account the independence of states |n〉, we obtain

cn+1 =
α√

n + 1
cn =

α√
n + 1

α√
n

cn−1 = · · · = αn+1

√
(n + 1)!

c0.

We see that eigenvalues of â are arbitrary complex numbers, while the eigenstates can
be normalized to one. The normalization condition yields

〈α|α〉 =
∑

n

|cn|2 = |c0|2
∑

n

|α|2n

n!
= 1, i.e. |c0|2 = e−|α|

2

.

Thus, the particle number distribution is given by

wn = |cn|2 = exp(−|α|2) |α|
2n

n!
,

which is a Poisson distribution with 〈n〉 = |α|2.
The eigenvalue problem for the bosonic creation operator â†|β〉 = β|β〉 does not have

solutions, since the component with the lowest particle number in any state β|β〉 is absent
in â†|β〉.
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QM – D2,   Solutions 
 
For this spherically symmetric potential, the Schrödinger equation:    
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for l = 0 and the specified potential reduces to: 
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(a)  Now, we have the trial wave function and can calculate its derivatives: 
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and, integrating by parts we have:  
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To employ the variational principle, we wish to find   RR
RHR

E =)(β   (Note: angular 

integrals cancel.)  Writing  RHRERR =)(β   we have 
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Which reduces to: 
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(b) For a bound state, must have E < 0  Find condition for E(β) = 0.  From above expression 
for E(β) , and seeking a solution for β > 0, we see that E(β) = 0 when: 
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(c)  Minimum of energy for this trial wave function is given for β which solves:   
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  which, for 0≠β  requires solving:  
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