Solution QM -A:

(a) Atomic configuration of Eu: 1s?2s°2p®3s?2p°®4s°3d°4p°®5s24d*°5p®6s°4f .

(b) The 5d level has | = 3 and s = %. We have, therefore j=1+s which gives j =5/2

and j = 3/2, so the orbital spits into two levels 5d *? and 5d*2. Each level can
accommodate 2j + 1 electrons, so there are 6 electrons in the 5d °? level and 4
electrons in the 5d ¥ level.

(c) For Eu**, we consider the total spin and total angular momentum of the electrons,
s0S=3,L=3,50 J =|L—S|=0(less than half-filled). Thus, Eu*" is expected to

have a moment of 0 zs. For Th*, $=3,L=3,50 J =|L+S| =6 (more than half-

filled). Thus, Th* is expected to have a moment of 12s. (Using g+/J (J +1) z5,
rather than gJu;, should be O.K. too)



SOLUTION QB

Taking into account
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we find . .
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dt at h[ 7G] 0 h[ Orvp] Oa

so that the average R
(G) = (p) — Fot = const.

This is a natural quantum mechanical generalization of the statement of classical mechanics
that for a particle moving in a uniform field the vector py = p(t) — Fot is an integral of
motion (since the velocity v(t) = v(0) + Fot/m) and is equal to particle’s momentum at
t=0.



Solution QM-C1

2. (a) From the Hamiltonian,
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The ground state can be calculated from the condition, g, =0
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For normalization,
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(b) When w= — @, the new ground stateis ¢ , =| —— | €
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Therefore, the probability that the particle is still in the ground state of the new oscillator is
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Solution QM-C2

(i) The equation of motion for the two-component wave function for ¢ > 0
(we have j = 1 w) is,

1 .
igNBO—wa = ihdy, (1)

(i 76") ()= () 8

where wg = gupo, H/2h

We find: a = coswgt, b= —isinwgt.

(ii) (Jo) =0, (J,) = —3 sin(2wot), (J.) = 3 cos(2wpt).
(iil) T > wy *.

or



SOLUTION QM-D1

Recall that operators @ and a' act in a space of states of the form (here and below summation
over n in all equations is from n = 0 to n = 00)

W) = ch’n> = ¢col0) +1[1) +...,
where |n) stands for the n-particle (quanta) state. Further, recall that
aln) =+v/nln —1), a'ln) = vVn+1n+1).

Eigenstates |a) = > ¢,|n) and eigenvalues « of the bosonic annihilation operator a are
determined by the eigenvalue equation aa) = aa). Since

ila) = cnviln—1) =3 cori Vi £ 1jn),

the eigenvalue equation takes the form
Z <Cn+1\/n +1-— ozcn> In) = 0.

Therefore, taking into account the independence of states |n), we obtain

O/H_l

(0% (0% (67
Cn o Cn: —Cn_ — e e . — —C .
T nrl " Varivn NCE

We see that eigenvalues of a are arbitrary complex numbers, while the eigenstates can
be normalized to one. The normalization condition yields

2n
(afa) = leal? =lco* Y —‘O‘“ =1, ie |cf> = e 1P,
n:
n n

Thus, the particle number distribution is given by

2 N
wn = |en|” = exp(—|a )Ta
which is a Poisson distribution with (n) = |a|?.

The eigenvalue problem for the bosonic creation operator a'|3) = 3|8) does not have
solutions, since the component with the lowest particle number in any state (3|3) is absent

in af|3).



OM -D2, Solutions

For this spherically symmetric potential, the Schrddinger equation:

hz
—%vzy/ +Vy =Ey

for I = 0 and the specified potential reduces to:
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(&) Now, we have the trial wave function and can calculate its derivatives:
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and, integrating by parts we have:
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J‘eTr zdr_ﬁ and J‘e r rdr_ﬁ and, by extension, !e rdr:(Zﬂ;l
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To employ the variational principle, we wish to find E(ﬂ) = % (Note: angular

a

integrals cancel.) Writing <R‘ R>E(ﬂ) = <R‘H ‘ R> we have
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Which reduces to:
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(b) For a bound state, must have E < 0 - Find condition for E(f) = 0. From above expression
for E(f) , and seeking a solution for £> 0, we see that E(/) = 0 when:

n’ Y n?
2ma2 = (Zﬂ :ﬁ)z or, equivalently, —8mV a2 (Z,B"'l)z = ﬂ Rewrite this as
h2
A(Zﬂ +1)2 = /8 where A= . This gives the quadratic equation:
8mV,a*

4B* +4B+1=£= 4" +(4—%)B+1=0. Find the roots of this quadratic:
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for real solutions, need (4—%)2 -16>0 so

2 2
f <;=>Vo2= f

(A=) -420=>4+424=528= A= o T ma’

(c) Minimum of energy for this trial wave function is given for g which solves:

OE g AN, B 8V, p°-2
aI(B,B) =0 > ma€ - (2131’?_)2 + (22@-1)3 =0 which, for ﬂ;t 0 requires solving:
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