Rutgers - Physics Graduate Qua.lifying Exam
Thermodynamics & Qtatistical Mechanics: January 12, 2007

TA
The operation of a gasoline engine is (roughly) similar to the Otto cycle (Figure):
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A — B Gas compressed adiabatically

B — C Gas heated isochorically (constant volume; corresponds to combustion of gasoline)

C — D Gas expanded adiabatically (power stroke)

D — A Gas cooled isochorically.

Compute the efficiency of the Otto cycle for an ideal gas (with temperature—independent heat capacities)
as a function of the compression ratio Va/Vp, and the heat capacity per particle Cvy.

Solution: TA

From the standard thermodynamic relation
dU =T dS— P dV,
we note that the work done by the engine during one cycle is

Wit = WA—aB‘FWC—aD

= / PdV + / Pdv, (1)
) A—B Cc—D '
and the energy absorbed by the engine is
| Qin = WB-C (2)
= / TdS.
B—C

(The heat lost by the engine between D and A is wasted energy.) The efficiency we wish to find is defined
in terms of these quantities by :

€= Wtot
Qin
Using the two ideal gas relations PV = NkT and CvdT = dU, equation (13.42) can be recast as
dT dv

ds = Cv—i; + Nk—{/-—;,
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where k is the Boltzmann constant. We integrate this to find the entropy:

S =CylnT + NkInV + constant.

Solving this for the temperature, we find
T = aeS/va—-Nk/Cv’ . (3)

where o is a constant with the appropriate dimensions. We can now find the work done by the system

between A and B. Since we are compressing the gas, we are actually doing work on the system and W45
is negative:

VB
Wi = Pdv (4)
Va
Va
= —~NK ZdV
Ve 14

v,
= —aNk / # o52/Cv -G+ NEOV) gy
Vi

B

= —qa (VJ;N’C/CV - V;Nk/cv> 52/ Oy

We get a similar expression (with opposite sign) for Weop - Putting these together, we find that the total
work done in one cycle is

W = aCy (V197 — v NHIOW) (5100 — /o) o)

The heat of combustion can be found similarly:

Sy
Qp—c = / T dS (6)
Sa
S .
= « / v VHOv eSIOvds | (7)
Sa :
_ aCVVI;Nk/Cv (esl/CV _ eSz/Cv) . (8)

From equation (13.45) we can now find the efficiency of the engine,

VA —'k/ Ccy i
=1-(2
(7)) ©
where we have written éV = Cy/N. We note that in the special case of a monatomic ideal gyas, for which
cy = 3k/2, we have
Va -2/3
=1—-\{== . ‘
(VB) (10)




B

Two identical perfect gases with the same pressure P and the same number of particles N, but with differ-
ent temperatures T1 and Ty, are confined in two vessels, of volume Vi and Vs, which are then connected.
Find the change in entropy after the system has reached equilibrium.

Solution: TB

Since the final entropy does not depend on how the final state is reached it will be calculated as if it were
reached isobarically. This is possible because the final pressure is Py = P. Then, for each side separately,

T dS = CpdT,

Hence

T T
AS, = Cplog 5,,1 and ASs = Cplog ':i’i
i 2

But Ty = (11 + Ty)/2 and Cp = (5/2)Nk. Therefore

TT2

Tlff‘ |
= b5Nklog NiiD (11)

which vanishes if Ty = T, as it should.
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TC1

Consider a system of N particles with only 3 possible energy levels separated by € (let the energies be 0,
¢, 2¢ and 3¢ ). The system occupies a fixed volume V and is in thermal equilibrium with a reservoir at
temperature T'. Ignore interactions between particles and assume that Boltzmann statistics applies.

(a) What is the partition function for a single particle in the system?
(b) What is the average energy per particle?

(c) What is probability that the 2¢ level is occupied in the high temperature limit, kgT' > e? Explain
your answer on physical grounds.

(d) What is the average energy per particle in the high temperature limit, kT > €7

(e) Find the heat capacity of the system, Cv, analyze the low-T (kpT < ¢) and high-T (kgT > ¢)
limits, and sketch Cv as a function of 7'. Explain your answer on physical grounds.
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TC2

- (a)

(b)

(¢)

The black body radiation flls a cavity of volume V. The radiation energy is:

4
UV, T) = ~—§—VT4 ' (12)
The radiation pressure is: .
o
P=—T" 1
30 (13)

[0 = 5.7 % 10-8W/(m? - K*)]. Consider an isentropic (quasi-static and adiabatic) process of the
cavity expansion. The radiation pressure performs work during the expansion and the temperature
of radiation will drop. Find how T and V are related for this process.

Assume that the cosmic microwave background radiation (CMBR) was decoupled from the matter
when both were at 3000 K. Currently, the CMBR temperature is 2.7 K. What was the radius of
the universe at the moment of decoupling, compared to now? Consider the process of expansion as
isentropic.

Estimate by an order of magnitude the number of CMBR photons hitting the earth per second per
square meter [i.e. photons/(s- m?2)]? '

You might need the following integral:

oo 1:2
ds=~ 2.4
/0 =1 3 (14)
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TD1

Consider a system of two particles, each of which can be in any one of three quantum states of energies 0,
e, and 5e, respectively. The system is in thermal equilibrium at a temperature T = (kﬁ)"l.

(a) Write an expression for the partition function and the entropy of the system, assuming that the
particles are distinguishable and obey Maxwell-Boltzmann statistics. ‘

(b) Write an expression for the partition function and the entropy of the system, assuming that the
particles obey Bose-Einstein statistics.

(c) Write an expression for the partition function and the entropy of the system, assuming that the
particles obey Fermi-Dirac statistics.
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TD2

Consider a non-relativistic ideal gas of N free particles of mass m confined to a cubical box of side L and
volume V = L . '

(a) What is the energy of the quantum states of the particles en(V) as a function of the volume V7

(b) What is the pressure of this quantum mechanical ideal gas in equilibrium as a function of E/V, where
E is the total energy of the gas particles?

(c) What would be the pressure as a function of E/V of a gas of photons in this same volume?

(d) Calculate the pressure as a function of E/V of an ideal gas of N particles, using semiclassical kinetic
theory, i.e. the pressure due to molecular impacts with the walls of the cube. How does this result
compare to that of part (b) above?
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