Rutgers - Physics Graduate Qualifying Exam
Quantum Mechanics: January 12, 2007

QA

Consider the wave function in one dimension
$(z) = Cexp—alal | (1)

where ¢ is a positive real number. Normalize it, and then calculate p%y¥(z). Does your answer give the
correct sign for < p? >7

Solution: QA

To make -
| dslp@p =1 | )
-0 .
c = +/a.
d*y(z)
2 — 32
Pule) =~ )
Now the first derivative of exp —alz] is discontinuous at z = 0. Therefore,
PP(@) 5 g | ’
a3 =@ exp —2ad(z). o (4)
Thus
p*Y(z) = —h%? + 22a%/%5(x). - (5)
If one leaves out the d-function, one gets
< p® >= -h%? < 0. (6)
This is clearly wrong. Since p is hermitian,
<p’>=lply > > >0 (7)

for any |4y >. Including the é-function gives, however,

< p® >= —h%® + 2h%2 = +h%a% > 0. ' (8)




QB

A particle of mass, M, is confined by the potential

V(z) = oo, z <0
Viz) = =7 z > 0.

Find its energy eigenvalues.

Solution: QB

If V(z) were 22 everywhere, the answer is well known:
E, = hw(n + 5), 9

where w = +/k/m = /2/m and n = 0,1,2,3... Now the Schrodinger equation is local, so these wave
functions, ¥n (z) will work for > 0. However, we must impose the boundary condition ¥, (z) = 0 since
V = oo for z < 0, just as for an infinite well. So only odd wave functions, Yn(—z) = —tn(x) will work ab
¢ = 0. An odd wave function will have an odd number, n, of nodes, so the answer is hw(n + 1/2) with n
odd, i.e.

2

m

3
En =M/ —=(20' +3), | (10)

with n’ =0,1,2,3....



QC1

Consider free particles

moving on a 1-dimensional ring of length L.

(a) Write down the energy levels and show each level (exceptE = 0) is doubly degenerate.

(b) Given a hamiltonian Hy and an energy level E that is n times degenerate, n > 1. Adding to Hp a
small perturbation H;, describe how to carry out perturbation theory for the level E.

(c) Add a perturbation
H =-Ve®/¥ a«L
Calculate the perturbed energy spectrum to first order and plot your results.

(d) Under what conditions is first order perturbation theory valid?
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QC2

(a) Show that for the one-dimensional harmonic oscillator

(Oleikm!0> - e~k2(01m2{0)/2

(b) Calculate (0]6(z — a)|0).

(c) What is the physical meaning of the quantity you calaculated. Discuss the cases a = 0 and a = oo.
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QD1

Consider the one dimensional particle of mass m in the potential U(z) such that U(z) — 0 as |z| — oo.

o (a) Write down the stationary Schrotdinger equation in momentum representation.

e (b) Specialize the above mentioned equation for
Uz) =—a (6(z—L)+6(z+ L)) . (11)
Here 6(z) is the Dirac -function and o and L are some dimensionful positive constants.

e (c) Using the Schroddinger equation in momentum representation find the energy spectrum of bound
states for (11) and the corresponding normalized wavefunctions.

e (d) The model (11) can be thought as a toy, one dimensional, model for the ion HJ , where the particle
m plays a role of electron interacting with heavy “protons” located at x = &L. The interaction (11)
induces an effective force acting between the “protons”. Calculate this force in the limit of large
inter-proton separation.

Useful integrals (z > 0)

1+41¢2

2
/ g Sos7(tz) (tz)
(1+12)2

/ gt Sotta) _

1+ t2)

/ P (tz) I

14 (1+22)e% ) (12)

N

e I

(1 — (1 +22) e“2‘”>

Solution: QD1

(a) In the momentum representation the kinetic energy 1" = p%/(2m) is an operator of multiplication

tu) = 2w,

while the potential energy U is an integral operator

U(p) = [_ ” dp' U(p,p) () -

Here the kernel is given by

1

. ipz
o dx U(z) e

Ulp,p)=U-7), Uk =

The stationary Schroddinger equation (A ¥ = EV) in momentum representation has a form of integral
equation :

p2 (s ] - " ,
-2-7;;‘I’(p)—%—/;oode(P—P)‘I’(P):E‘I’(P)- (13)



(b) For the potential (11) the kernel U reads explicitly as follows
~ Q &0 _ip o ipl  _ipL.
Ulp) = —5= dz (8(z+L)+8(x—L)) e ™ =———(er +e ),
2mh J_wo

and Eq.(13) takes the form

2

P o ipL L\ ‘ ‘
%‘y(p)—ﬁ(c+eﬁ+0-e )=B ). - (14)
where
o ipL
Cx =/ dp e¥ % ¥(p) - (15)
-0 o i

(c) Introduce the dimensionless quantities

2
&2=“2mLk E, g= mal

As follows from Eq.(14)

(p) = 2 (Cye™ +0e ) (%%)21+ . % : (16)
Substituting (16) in (15), and using the integrals (see (12))
o o0 L2l
P /oo@f—%f? I i e 0
one finds
Cy =2 (Cp+e™C), co=L (™0 +C) . o (17)
Homogeneous linear system (17) has a non-trivial solution if
det ( %’%;215 %%8:2: ) =1-Z@ re)|[1-10- )| =0,
or
lye=C  1_em=l (18)
, g g .

Equations (18) define the bound states energy spectrum. The first one has a real root k. = k4 (g) for any
g > 0 (see Fig.). It corresponds to the ground state energy:

hZ
" omL?

E,= K3(9) < 0.

In this case Cy = C- (see Egs. (17)) and the wavefunction is an even function of p:

ipL |
T (p) = Ay \/f _f:_o_s_(.’PE.)__ , (19)

RO+ kL

where Ay is a (dimensionless) normalization constant.



g>1/2 g<1/2

.................................................................................

For g > % the second equation in (18) possesses the root k_ = k- (g) (see Fig.). It corresponds to an exited

states with the energy
2

0 = 2 .
> E 572 - (g9) > E+
In this case C = —C_ and the wavefunction is an odd function of p.
[L  sin(l) '
T _(p)=A_ |~ ——B1—.

The constants A+ in (19), (20) are determined by the normalization conditions
o0 .
[ mamp=1. (21)
—00

Using (12), one finds

3
2
2k

Ap = —
724/l (1 + 2k ) e 202

(d) Egs.(18) can be solved iteratively for g > 1. In particular

ke=g (1+e )+ O(g%e™9) .

An effective potential energy U:(:ﬁ) (r) of the inter-proton interaction coincides with Ey, therefore
2 ' 2
m _.mar h
U (r)m -2 (142675 ) with r=2L> — .
2h mo

It leads to an (exponentially) small force acting between the “protons™:

dUieﬁ) m2a® _mar
Be=-—gm~F 50 ¥

The force F corresponding to the ground state, is an attractive force. The force F_. corresponding to the
exited bound state, is a repulsive force.



QD2 |

A fast neutron at energy 1 MeV collides with an unexited Hydrogen atom. The atom was initially at rest.
After the collision, the atom has been detected as moving at angle 0 to the impact direction (see Fig.).
Find a probability that the atom remained in the ground state.

n « .
E=1MeV ‘

Solution: QD2 ;
Let ap and R be the Bohr radius and the proton radius respectively. Also, 7 (vn = v2mpE) be the
incident velocity of the neutron. ;

Since R/ap ~ 1074, the collision time T ~ R/vy, is much less then the electron period T ~ 137ap /c.
Indeed,
T 1 R ¢ 6 € g  [mnC _6 4
—~— — — ~ 107" —~ 10 I 1070 V1000~ 1077 KT
7, 137 ap vn U E
Therefore we can assume that the electron wavefunction remains unchanged during the collision process.
In the inertial reference frame where the atom is at rest after the collision, the initial electron wavefunction
reads as follows:

Ui (7) = P55 T Uo(7) | (22)
where o :
Yo(F) ~e7e ,

and 7, is the outgoing velocity of atom. In writing of Eq.(22) we use the transformation law, U (F) =
i 77 /() for the wavefunction under the Galilean boost 7= 7 + ¥t.! A probability to find the atom
at the ground state after the collision is given by

2r 2r
3o (T . T 0 9 —i= 7 imeral cosf
P = [d3F e R Ve eﬂszfo drr?e =8 [5 d(—cosf) e F

— 2T — 2
J&37e 8 Joodrr2e &5 Jo d(—cosd)
a fooo drr (e——%’l(l—iz/) - e—%’-(l-{-iu))
div fs drr? e w

[ dzze™

?2%5 [(1 —1iz/)2 T —}-liy)?]

X [ S ————————

[ dz 22 e7®
2 1 . MeQBVg
A3 X 30 TR VS Ton

1This transformation law can be obtained by decomposing the wavefunction ¥’(7") into plan waves ¢ TF" . The transfor-
mation laws for the plane wave follows from the relation P=7F +me.T. ~



The outgoing velocity ¥, can be found using the energy-momentum conservation law. For pure ellastic
collision one has 2

oma B =2 =02+ (v))%, vn=uvgcosf+v,cos(f'), vasind=uv,sin(d") .

Then Vg = v/ 2mn E cosf and, finally,

P= : = 1
(I+ & £ cos?6)? (1+10. x cos?6)*’
with 9 2
E="T1" o108V, Ey=oty=1366V, —Cm054x107°,
2 2mea’ ' Mn ‘

2We neglect here the mass difference between H and n.



