Mechanics Problem 1: Easiest

An air molecule is roughly spherical with a radius R, of about 2 x 107" meter. The
number of such molecules per unit volume is about n=3 x 10% /m’ .

a) On the average, how far does an air molecule travel between collisions with other
such molecules?

b) How does this compare with the average separation between molecules?

Solution:

a) This is equivalent to a single molecule of radius 2R.;; moving through a collection of
stationary point particles that represent the centers of the other atoms. In time T, the
molecule has moved a distance vr, and has swept out a cylindrical volume V =
n(zRair)ZVt—*—G\ir, where cs:ﬁ(2Rai,,)2 . Within this volume are nV=novt point atoms with
which the moving atom has collided. Thus, the average distance between collisions is:
L=vt/novt=1/nc

o=4mRy” = 5 x 107" meter?

and L=7x 10 m.

b) The average separation of each molecule is about 0= 3x10"m. Thus, the typical
molecule goes about 20 times the average molecular separation between collisions.
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Mechanics Problem 2: Easy

A thin uniform rod of mass m and length L, with its bottom end resting on a frictionless
table, is released from rest at an angle 6, to the vertical. Find the force exerted by the
table upon the stick at an infinitesimally small time after its release.

Solution:

Since there is no friction, the forces acting on the stick are the normal force N, and
gravity mg. Within an infinitesimal time of the release of the stick, the equations of
motion are:

N-mg=mpy

1, NLsing, = 1/12mL* ¢

where v is the vertical coordinate of the center of mass and 1/12 mL? is the moment of
inertia about a horizontal axis through the center of mass of the rod.

Since y= % L cosf

Y = -1/2L(® Zcosh+ O sing)=-%L © sind,, since initially © =0 and 6=0,,
Hence,

N=mg+my

=mg — % mL O sinf,

=mg — 3N sin’ 6,

or

N = mg/(1 + 3sin’6,)
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Solution 1.2. Suppose the rocket is moving in the positive z-direction,
and the dust cloud starts at z = 0. Because the collisions between
the rocket and dust particles are inelastic, energy is not conserved,
However, we must conserve momentum at all times. If m(z) and v(z)
are the mass and velocity of the rocket at point z, then for all &

m(z)v(z) = movo. (10.6)
In particular, for a small displacement éz,
m(z)v(z) = m(z + §z)v(z + 6z). (10.7)

As the rocket travels from the edge of the cloud to a point z, it sweeps
the dust out of a region of volume Az, so its mass at position z is

m(z) = mo + Apz. (10.8)

Expanding equation (10.7) gives us

m(z)v(z) = (m(z) + Apéz) (v(a:) + %5$ + 0(5332)) . (10.9)

Neglecting terms of second and higher order in bz,

' d
{Apv(a:) + m(sc)gz-} =0, (10.10)
or, using (10.8), d
P v
—— Ap:cdm + ‘;’* = 0. (10.11)

Integrating this equation and using the initial condition v(z = 0) = vy,
we find that

u

T _ TigVg

di  mo+ Apz’ (10.12)
Integrating again and using the condition that z(t = 0) = 0, it is easy
to show that, for ¢ > 0,

v =

Mo 2772,0’00t m,g
t = e e— .
2(1) T \} A, T A (10.13)
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Solution 1.10. In plane-polar coordinates, the Lagrangian for a par-
ticle moving in a central potential V(r) is

L= %m(# +r26%) - V(r), (10.89)

where m is the mass of the particle. The potential is given in the
question as

E 1

V(r) = - + -2—b7'2. (10.90)
The §-component of Lagrange’s equation is
%% = mr?f§ = constant = L. (10.91)

The hamiltonian of our system is then

P 2 P2
H= 5t 53 +V(r)= 5+ Ves(r), (10.92)
with p, = m7 and
12
Veﬁ(r) =5t V(r). (10.93)

The term 12/2mr? is referred to as an “angular momentum barrier.”
Solving the equations of motion for this hamiltonian is equivalent to
solving Lagrange’s equations for the Lagrangian:

1,
L= é-mrz — Veg(r)- (10.94)

This is a completely general result for the motion of a particle in a

central potential and could easily have been our starting point in this
problem (e.g., Goldstein, Chapter 3).

It may seem unnecessarily long-winded to go through this proce-
dure, but note that the sign of the angular momentum barrier in (10.94)
is opposite to what we would have gotten if we had naively replaced 4
with {/mr? in the Lagrangian (10.89). This is due to the fact that the
Lagrangian is a function of the time derivative of the position, and not
of the canonical momentum.

The equation of motion from (10.94) is

E




. d
mr = —— ef(r)- (10.95)

If the particle is in a circular orbit at r — To we require that the force
on it at that radius should vanish,

(10.96)
T=7rg
Using our expression for Veﬁ (10.93), we derive an expression relating
the angular momentum [ to the radius of the orbit rg:
[z k
37— — — bro = 0. (10.97)

2
mry  1é

We are interested in perturbations about this circular orbit. Provided
the perturbation remains small, we can expand Veﬁ(r) about 7p,

Veff(r) = Veglro) +(r —ro)V,g(ro) + —;—('r —70)*Vp(ro) +---. (10.98)

If we use this expansion in the Lagrangian (10.94) together with the
condition (10.96), we find

1, 1 )
L = —2—mr - 5(7’ - 7’0) Véfﬁ(?‘g), (1099)

where we have dropped a constant term. This is just the Lagrangian
for a simple harmonic oscillator, describing a particle undergoing radial
oscillations with frequency

1
w? =

= —V/a(ro). (10.100)

Differentiating Veg(r) twice gives us

32 2k ) |
- + b = mw?. (10.101)

We can eliminate  between equations (10.101) and (10.97) to give the

frequency of radial oscillations:

1/2
wz( k +§-13) : (10.102)

mri  m

To find the rate of precession of the perihelion, we need to know
the period of the orbit. From the definition of angular momentum l

equation (10.91), we have an equation for the orbital angular velocity
Wi,

_ds
W) = — =

di mr2’

(10.103)



Let us write r(t) = ro + €(t), where €(t) is sinusoidal with frequency w

hg 3

and average value zero. We substitute 7(¢) into equation (10.103) and
expand in €(t):

dd 1 2¢

B_ (% o). |

= (1- =+ 0 (10.104)
To zeroth order in the small quantities brg /k and €/ro, the period of the
orbit T is the same as the period of oscillations T3 = 27 /w. Therefore
we can average € over 1; rather than 7, and still get zero, to within
terms of second order, which we are neglecting. The average angular

velocity is therefore
2m [ k b

N .U S LR 10.10

“i Ty,  mr? mrd + m’ (10.105)
where we have made use of (10.97).

Now consider one complete period of the radial oscillation. This

takes place in time T; = 27 /w. In this time the particle travels along
1ts orbit through an angle of

\/k/mro + b/m

6 =orl —
d /k/mrn + 4b/m
3brd)
~ 21 ( 2k°) . (10.106)

In other words, the particle does not quite orbit through 27 before
the radial oscillation is completed. Each time around the perihelion
precesses backwards through an angle

b3

66 = 37r-]-c-‘l, (10.107)

and it gets around in time T, so the precession rate is

60 3rbrd \/k/mr§ + 4b/m
N T2 N k 2

oy =2 (10.108)

b) When r is large enough that F, = —br, we see that the force is like
that of a linear spring. In this case the planar motion of the orbit can
be resolved into simple harmonic motion in each of its three cartesian
components. Thus the orbits will in general be ellipses; however, in
each case the sun will be at the center of the ellipse rather than at one
of the foci (as is the case for Newtonian gravity).



