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Einstein distribution function, Eq. 1.6.22. The chemical potential isp=0.
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For low temperatures, the upper Jimit of the integral diverges, and the 3
integral converges to 8 constant, independent of 8. Therefore the humber of
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For high temperatures, Z remains small within the range of integration and

the distribution function can be expanded into a Taylor geries. The inf
can be performed, yielding . .
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Note that the coefficient in front of the temperature dependent term cC
tains an “averaged” sound velocity, but the average is different at low and:
high temperatures. Ifwetakethet.hmesoundvelociﬁeshobe approxim
equal, the expressions are further simplified to N o (T/6p)® at low T,a

"N o« (T/6p) 8t high T'. Here 6p = Fickp/ke is the Debye temperature.
thiSparticul'arcaset.heresultsofthenumericalin jon of Equation 1L

is shown in Figure IL6.2.
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It is nseful at low energies to do a partial wave analysis to understand the
two-nucleon system.
a) [3 points] Write down the allowed quantum mechanical states of two nucleons,
using the spectroscopic notation 2°+11; for J =0,1,and 2. Usel=s,p, ... For
each state, specify also the parity (+ or -), and isospin T’ (0 or 1) allowed.

See Table 1.

Table 1: Two-nucleon states.

LI1S[J[n=-1F] T (L+S+T odd) [ Z*1L,
01010 -+ 1 1Sy
01111 + 0 55,
11071 - 0 tp
11110 - 1 3P,
11171 - 1 3P,
11112 - 1 3P,
21012 -+ 1 ng
2111411 + 0 3D,
211142 + 0 3D,
21113 + 0 3D4

The deuteron is a proton-neutron system bound by 2.225 MeV, and it is the
only bound system of two nucleons. In a non-relativistic, nucleons-only model,
you can determine the allowed ground state wave function configurations from
the knowledge that it is spin 1, and that isobaric analogue states - states of
different nuclei with the same isospin T but different 7', - have almost the same
mass.

b) [1 points] Which of the above configurations are in the deuteron ground state?

There are J states in the Table with J = 1. The T =1 3P| state is not
allowed, since there then would be bound nn and pp systems as well. The 35,
and 3D; states have the same cbservable quantum numbers, as both are J =1,
T =0, and + parity, while the ' P, is negative parity. The ground state is indeed
positive parity, and is a mizture of the *Sy and 3D states.
¢) [2 points] The information above should also allow you to determine the most
likely configuration for the just-unbound deuteron excited state. What is it?

The excited state should have just-unbound nn and pp analogs; it should
be a T = 1 system. In the continuum, we expect that lower orbital angular
momentum reflects lower momentum and lower energy. Thus, the unbound
excited state is the 1Sy system.

d) [2 points] If one allows non-nucleonic degrees of freedom in the deuteron,
additional configurations are possible. Is there a AN component to the deuteron
wave function? A AA component? Explain.

The deuteron is T = 0. There is no way to make a total T = 0 state from
aT=3/2A and a T = 1/2 nucleon. AA states can however couple to T =0,
and are allowed.



e) [2 points] The deuteron density is calculated to be different between its m =
+1 and m = 0 sub-states, as indicated in the figure above. Even without
knowing the radial densities, simple arguments about Y;}’s should allow you
to associate the left/right sides of the figure above with m = £1 and m = 0.
Explain which side is which m projection.

There is no ¢ dependence so the z azis goes up to the left / down to the
right. Y ’s with m = 0 are mazimum in the zy plane, while Y} ’s with m not 0
put more strength near the z azis. Thus the left side is m = %1, and the right
side is m = 0.
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Particle Problem Solution Jan 2005

(2) The total spin 3/2 spin wave function is symretric in the three parti- o/
cles (for example {17, and the spatial wave function is also symmetric. The £~ .é(_( e ST
three particles mentioned coutain three identical quarks ( uuu, ddd, or sss). If flevd .
there were no color degree of freedom the overall wave function would therefore
be symmetric under exchange of any two of three identical spin 1/2 particles
(Fermions) instead of anti-symmetric as required by the Pauli principle. Adding, # he Gu= Ko
a color degree of freedom solves this problem smce/flg_;o—l:r‘ginglet (colorless) o Je =<
wave function is antisymmetric under exchange of any two quarks. // ’m, ey €

o /a/‘ o) auﬁl
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(b) Each flavor i quark-antiquark pair gives a contribution to the cross section
proportional to 3Q?, with Q; the charge of the quark because of the coupling to
the intermediate virtual photon, and the factor of 3){:‘01;1 the 2 different coiors
possible for each flavor. The analogous factor for muon pair production is just
e2. The ratio R at an energy E is then simply

2
R — 32;’Q1

ez’

where the sum is over all flavors which can be produced at that energy. Below
the charm threshold these are u, d, and s with Q. = 2/3e, Qa = —1/3e,
Q. = —1/3e , giving R = 2. Just above the charm threshold (and thus belg;
the bottom threshold) we have to add the charm contribution with Q. = 2/3dto
the sum, increasing R to 10/3. Roughly this behavior is seen in experiments.
by 3 (ﬂ-z-’)j’ — 4 +o
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A neutrino of energy E scatters from a proton at rest, and a muon is detected
at an angle 6 relative to the incident neutrino, with energy E’. You may assume
E, E' >> m,, m,. A leading-order Feynman diagram showing the process is
below.

e a) [3 points] Label all the particles in the eight lines in the diagram. (If
you do not understand the “blob”, it indicates the three particles to its
right are constituents of the particle to its left.)

The plot is now labelled. If one takes seriously that time runs left to right,
only a W+ boson is labelled as the line is sloped. Otherwise a W~ is
acceptable. The neutrino is a muon neutrino, as muon implies negative
charge.

e b) [2 points] Assume the neutrino has initial momentum k and final mo-
mentum k’. Give the energy-momentum four vector of the transferred
particle, ¢ = (w, §), and evaluate ¢*.

Neglecting the masses, w =k —k', and §= E—k, soqg=(k—K, k—k).
Then ¢* = w? — & = —2kk' + 2k - k' = —2kk'(1 — cosf). An alternate
form is ¢* = —4kk'sin?(6/2)

e c) [2 points] What is the invariant mass squared W? = E? — p? of the
undetected recoil system?
Since W is the invariant mass, it is given by W? = p'? where p' =p+g¢
is the sum of the initial state proton and transfered q four vectors. Thus
W2 =(M+w, §?= M2+ 2Mw+w? -G = M2 +2Mw+q?. Of course,
g% can be replaced from part b) above.

e d) [3 points] If E = 10 GeV, § = 10°, and £’ = 6 GeV, how many pions
could be produced? You may use 0.94 (0.14) GeV for the proton (pion)
mass.



w =4 GeV, andyg? =4%10%6xsin’(5) = 18.23 GeV?. Then W% = 0.94° +
9%0.94%) + 18.23 = 10.23 GeV? and W = 3.20 GeV. This is 2.26 GeV more
than the proton mass, enough energy for 2.26/0.14 = 16 pions.



Written Qual Jan 2005
Solution to C6

(a) (4 points) For hydrostatic equilibrium the pressure must increase with
depth rapidly enough to support the weight of each spherical shell of the star.
This requires

dP/dr = —poGM(r)/7?,

where M(r) = (4/3)nr3py is the mass inside the radius r. Integrating this
relation, and using P(R) = 0 gives the pressure at the center of the star

P(0) = {3/87)GM?2/R*.

(3 points) The ideal gas law can be written P = nkT, where nis the number
of particles per unit volume and k is the Boltzmann constant. Since the electron
is much lighter than the proton there are 2 particles for every mass m, and
therefore n = 2pg/myp, so the temperature at the center of the star is

T = m,P(0)/(2kpo) = GMmy,/(4kR).

(b) (3 points) Putting in the numbers for the sun one finds
P(0) = 1.34 x 10"*N/m?

and
T(0) =5.77 x 10°K

AstroPT.tex January 7, 2005



