
DAY TWO

In this exam you will have to answer four questions in Thermal Physics and
four in Quantum Mechanics. Read the instructions carefully since in some
cases, but not all, you will have a choice of questions. Each question should
be answered in a separate bluebook with the question label (example: TB2)
printed clearly on the front along with your code number.

Part T: Thermal Physics

Everyone should answer question TA1 below. (8 pts)

TA1

A container is divided into two compartments by a partition. The larger
compartment contains 4 moles of N2 gas at absolute temperature T and
pressure P. The smaller compartment contains 1 mole of 02 gas at the same
T and P. The partition is subsequently removed, and the gases mix and come
into equilibrium. The gases obey the ideal gas law.

(a) [ 2 points] What will be the final T and P after equilibrium is reached?
What are the partial pressures of 02 and N2 after the partition is removed?

(b) [ 3 points] What will be the change in Gibbs free energy function G in
terms of RT, where R is the gas constant?

(c) [ 3 points] What will be the change in entropy S in terms of R?

TA1 Solution

(a) For ideal gases the initial volumes are related by VN2
= 4VO2

, and the
final temperature must equal the initial temperature. The nitrogen expands
by a factor of 5/4, the oxygen by a factor of 5, so that the final partial pres-
sures are 4/5 P and 1/5 P, respectively. The final total pressure is therefore
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identical to the initial pressure.

(b) Since the temperature does not change, for each constituent dG = V dP =
nRTdP/P and integrating ∆G = nRT (Pf/Pi). The total change in G
is therefore the sum of these expressions for the two constiuents: ∆G =
RT ln(1/5) + 4RT ln(4/5) = RT ln(44/55) = −2.502RT .

(c) Since G = U − TS + PV and U, T, and PV for each constituent do not
change, ∆S = −∆G/T = 2.502R.

Answer one of the 2 questions TB1 or TB2. (12 pts)

TB1

The diameter of a helium atom is 2.6 × 10−8cm. For helium gas at temper-
ature 300◦K and pressure 105N/m2

(a) [ 4 points] What is the mean free path of the He atoms?

(b) [ 4 points] What is the average time between collisions?

If the container of helium is surrounded by a vacuum and the wall of this
container has a tiny leak of area 10−10cm2,

(c) [ 4 points] how many helium atoms leak out in one hour?

kB = 1.38 × 10−23J/K

Mproton = 1.66 × 10−27kg

TB1 Solution

(a) The mean free path is ` = 1/(nσ) = 1/(nπd2), where, assuming an ideal
gas, n = P/(kT ) is the number of He atoms per volume and σ = πd2 is the
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collision cross section. For T= 300◦K and P = 105N/m2 n = 2.42× 1025/m3

and ` = 1/(2.42 × 1025/m3π(2.6 × 10−10m)2) = 1.94 × 10−7m.

(b) The average time between collisions is this distance divided be the average
speed of the atoms: τ = `/v̄ where from the Maxwell distribution the average

speed is given by v̄ = 0.92
√

3kT/m = 0.92
√

3(1.38 × 10−23J/K)(300K)/(4(1.66× 10−27kg)) =

1367m/s, so τ = 1.94 × 10−7m/1.37 × 103m/s = 1.42 × 10−10s.

(c) The outward flux of particles is φ = nv̄/4 = 8.2 × 1027/(m2s) so the
number of particles escaping is nesc = φAt = 8.2× 1027z/(m2s)× 10−14m2 ×
3600s = 3 × 1017 atoms .

TB2

(a) [ 3 points] Show that the change in entropy ds of a system can be written
as

dS =
1

T

(

∂U

∂T

)

V

dT +
1

T

[(

∂U

∂V

)

T

+ P

]

dV.

(b) [ 3 points] Show that

(

∂U

∂V

)

T

= T

(

∂P

∂T

)

V

− P.

(c) [ 3 points] Use this expression to evaluate
(

∂U
∂V

)

T
for an ideal gas.

(d) [ 3 points] Evaluate
(

∂U
∂V

)

T
for a van der Waals gas where (P+a(N

V
)2)(V −

Nb) = NkT , with a and b constant parameters .

TB2 Solution
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(a) From dU = TdS−PdV and dU = (∂U/∂T )V dT + (∂U/∂V )TdV one has
S = (1/T )(∂U/∂T )V dT + (1/T )((∂U/∂V )T + P )dV .

(b) Comparing this result to dS = (∂S/∂V )TdV + (∂S/∂T )V dT one finds
(∂S/∂T )V = (1/T )(∂U/∂T )V and (∂S/∂V )T = (1/T )((∂U/∂V )T +P ). Then
taking derivatives with respect to the “other” variable, and using the fact
that these second derivatives are independent of order, one finds (1/T ( ∂2V

∂T∂V
=

−(1/T 2)(∂U
∂V

+ p) + (1/T )( ∂2U
∂V ∂T

+ ∂P
∂T

), giving (∂U/∂V )T = T (∂P/∂T )V − P

(c) For an ideal gas PV = NkT and the two terms on the right hand side
cancel, so (∂U/∂V )T = 0.

(d) For a van der Waals gas (∂P/∂T )V = Nk/(V −Nb) and after a cancel-
lation (∂U/∂V )T = a(N/V )2, a positive number proportional to the square
of the number density.

Answer one of the 2 questions TC1 or TC2. (16 pts)

TC1

Consider a system whose energy levels are equally spaced at 0, ε, 2ε, 3ε, . . .,
with each level 3-fold degenerate.

(a) [ 8 points] Write down all possible macrostates for a system of 6 distin-
guishable non-interacting particles and total energy E = 6ε.

(b) [ 4 points] Find the total number of macrostates.

(c) [ 4 points] Find the thermodynamic probability of each macrostate.

TC1 Solution
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(a) The macro states can be labelled by a set of positive integers summing
to 6. For example 4+1+1 means that one particle is in the n=4 level, two
in the n=1 level, and the other three in the n=0 ground state. The different
macro states are thus 6, 5+1, 4+2, 3+3, 3+2+1, 2+2+2, 4+1+1, 3+1+1+1,
2+2+1+1, 2+1+1+1+1, and 1+1+1+1+1+1+1.

(b) There are 11 states listed in (a).

(c) Since each level is g =3 -fold degenerate, and N = 6, the number of
microstates for the macrostate with Ni particles in the ith energy level is

W = N !
6
∏

i=1

gNi

i /
6
∏

i=1

Ni! = 6!36/
6
∏

i=1

Ni!.

For the 4+1+1 macro-state, then W = 6!36/(1!2!3!) = 60 × 36. It is easy to
see that all W’s will have the factor 36, and these will cancel in the end. The
numbers W/36 for the macro-states listed, and in the same order as above,
are 6, 30, 30, 15, 120, 20, 60, 60, 90, 30, 1. The sum of all these numbers is
462.

(d) The thermodynamic probability of a macrostate is W/(36462). for the
4+1+1 macrostate, for example, this is 60/462 = 0.1299.

TC2

(a) [4 points] Derive an expression for the canonical partition function of N
non-interacting, non-relativistic indistinguishable and spinless particles in a
volume V.

(b) [4 points] Obtain an expression for the chemical potential for part (a).
Use
N ! ≈ NNe−N .

(c) [4 points] Obtain an expression for the entropy of such a system.
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(d) [4 points] How are these results changed if the particles each had spin s?

TC2 Solution

(a) The canonical partition function ZN = ZN
1 /N ! where Z1 = (V/h3)

∫

d3pe−p2/(2mkBT ) =
V/λ3

T , with λT ≡ h/(2πmKBT )1/2.

(b) FN = −kBT lnZN = −kBT ln((V/λ3
T )N/N !). Using the given approxima-

tion for N! this reduces to FN = −NkBT ln(V e/(λTN)). The chemical poten-
tial is then µ = ∂FN/∂N = −kBT ln(V e/(λTN))+kBT = −kBT ln(V/(λTN)).
Note that this is equivalent to N = (V/h3)

∫

d3pe(µ−E)/(kBT ).

(c) S = −(∂FN/∂T )V,N = NkB(ln(V e/(λ3
TN))+3/2) = NkB ln(V e5/2/(λ3

TN)).

(d) If the particles have spin s, each momentum state has a degeneracy of
(2s+1). This means that Z1 → Z1,s = (2s + 1)Z1 and thus that ZN →
ZN,s = (2s + 1)NZN . This has the consequences that FN → FN,s = FN −
kBTN ln(2s+1), µ→ µs = µ−kBT ln(2s+1), and S → Ss = S+kBN ln(2s+
1). Not that the change in µ is exactly that required to cancel a multiplicative
factor of (2s+ 1) which must be added to the expression for N given at the
end of the solution to part (b).

Answer one of the 2 questions TD1 or TD2.(20 pts)

TD1

One kilogram of water is heated by an electrical resistor from 20◦C to 99◦C
at constant (atmospheric) pressure. Assume the heat capacity is constant in
this temperature range. Estimate:
(a) [5 points] The change in internal energy of the water.
(b) [5 points] The entropy change of the water.
(c) [5 points] The factor by which the number of accessible quantum states
of the water is increased.
(d) [5 points] The maximum mechanical work achievable by using this water
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as heat reservoir to run an engine whose heat sink is at 20◦C.

TD1 Solution

(a) The change in internal energy of the water is

∆U = M c∆T = 1000 × 1 × 79 = 7.9

× 104 cal.

(b) The change in entropy is
∆S =

∫ Mc
T

dT = M c ln T2

T1
= 239 cal/K.

(c) From Boltzmann’s relation S = k ln Ω, we get
Ω2

Ω1
= exp

(

∆S
k

)

= exp(7 × 1025).

(d) As work is done heat leaves the water and its temperature decreases.
Taking this into account one finds that the maximum mechanical work avail-
able is

Wmax =
∫ T2

T1

(

1 − T1

T

)

McdT = Mc(T2 − T1) − T1Mc ln
T2

T1

= 9 × 103cal.

TD2

In our three-dimensional universe, the following are well-known results from
statistical mechanics and thermodynamics:

(a) [7 points] The energy density of black body radiation depends on the
temperature as T α, where α = 4.

(b) [7 points] In the Debye model of a solid, the specific heat at low temper-
atures depends on the temperature as T β, where β = 3.
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(c) [6 points] The ratio of the specific heat at constant pressure to the specific
heat at constant volume for a monatomic ideal gas is γ = 5/3.

Derive the analogous results (i.e., what are γ, α and β) in a universe with n
spatial dimensions.

TD2 Solution

(a) The energy of black body radiation is

E = 2
∫ ∫

dnpdnq

(2πh̄)n

h̄w

ehw/2πkT − 1
=

2V

(2πh̄)n

∫

dnp
h̄w

ehw/2πkT − 1
.

For the radiation we have p = h̄ω/c, so

E

V
= 2

(

k

2πh̄c

)n

k
∫

dnx
x

ex − 1
.T n+1,

where x = h̄ ω/kT. Hence α = n + 1.

(b) The Debye Model regards solid as an isotropic continuous medium with
partition function

Z(T, V ) = exp

[

−h̄
nN
∑

i=1

ωi/2kT

]

nN
∐

j=1

[1 − exp(−h̄ωj/kT )]−1.

The Helmholtz free energy is

F = −kT ln Z =
h̄

2

nN
∑

i=1

ωi + kT
nN
∑

i=1

ln[1 − exp(−h̄ωi/kT )].

When N is very large,

nN
∑

i=1

→ n2N

ωn
D

∫ ωD

0
ωn−1dω,
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where ωD is the Debye frequency. So we have

F =
n2N

2(n+ 1)
h̄ωD + (kT )n+1 n2N

(h̄ωD)n

∫ xD

0
xn−1 ln[− exp(−x)]dx,

where xD = h̄ωD/kT → ∞ at low temperatures. Hence

cv = −T
(

∂2F

∂T 2

)

∞T n,

i.e., β = n .

(c) The theorem of equipartition of energy gives the constant volume specific
heat of a molecule as cv = 1

2
kı where ı is the number of degrees of freedom of

the molecule. For a monatomic molecule in a space of n dimensions, ı = n.
With cp = cv + k, we get

γ =
cp
cv

=
(n + 2)

n
.

Part Q: Quantum Mechanics

Everyone should answer question QA1 below. (8 pts)

QA1

1 To investigate the properties of a sample of material, you decide to scatter
neutrons that have a 1-nm wavelength.
For these neutrons find

(a) [2 points] the kinetic energy (in eV),

(b) [2 points] the wave vector (in m−1),

(c) [2 points] the speed (give β = v/c), and
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(d) [2 points] the momentum (in eV/c) .

It might be helpful to recall that h̄c = 197 MeV·fm. (Approximate answers
found without a calculator are acceptable.)

QA1 Solution

This problem is a straightforward application of the relations k = 2π/λ,

p = h̄k, T = p2/2m, v = p/m =
√

2T/m, and ν = v/λ, combined with the
ability to put in appropriate factors of h̄ and c to convert between systems
of units. The only tricky aspect is that the relationship E = hν might be
thoughtlessly applied to derive the frequency; it applies only when β = 1.

(a) The neutron mass is about 1.67×10−27 kg → 940 MeV, so the neutron is
non-relativistic, and its kinetic energy is T = p2/2m = 1.3×10−22 kg·m2/s2

→ 8.2×10−4 eV.

(b) The wave vector is given by k = 2π/λ = 6.3×109 m−1 → 1.24×103 eV.

(c) The neutron speed is given by v = p/m, so β = v/c = pc/mc2 = 4.0 ×
102m/s = 1.32 × 10−6 .

(d) The momentum is given by p = h̄k = 6.6×10−25 kg·m/s → 1.24×103

eV/c.

Answer one of the 2 questions QB1 or QB2. (12 pts)

QB1

A particle of mass m is in the ground state of an infinite potential well of
width a (U = 0 for 0 < x < a and U = ∞ otherwise). Suddenly the right
wall of the well moves to a point b > a.

(a) [8 points] Determine the probability for a particle to remain in the ground
state.

(b) [4 points] How does the answer change if the wall moved to its new po-
sition very slowly (adiabatically)?
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You may find useful the indefinite integral
∫

dx sin(αx) sin(βx) = [α sin(βx) cos(αx) − β sin(αx) cos(βx)]/(β2 − α2).

QB1. Solution

(a) When the wall suddenly moves to the new position, the particle remains
in the old ground state. The probability to find it in the new ground state is

Psudden = |〈a|b〉|2

where |l〉 stands for the ground state of a particle in the infinite potential
well of width l. Using

〈x|l〉 =

√

2

l
sin

πx

l

we obtain

Psudden =
4ab3

π2(a2 − b2)2
sin2 πa

b
.

(b) If the wall moves to its new position infinitely slowly, the particle

stays in the ground state at all times, i.e.

Padiabatic = 1

QB2

[12 points] A particle is in the ground state of an infinite square well, V (x)
= ∞ for |x| > a, but V (x) = 0 for |x| ≤ a. This simple potential is modified
by the small perturbing potential V1(x) = V0 for |x| > b, but V1(x) = 0 for
|x| ≤ b, with b < a. Estimate the change in energy ∆E of the ground state
due to this perturbation. Verify that your formula for ∆E is correct in the
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limits b→ 0 and b→ a.

QB2. Solution

To do this problem, it helps to recall the indefinite integral

∫

dθ cos2 θ =
sin 2θ

4
+
θ

2
,

which is found using integration by parts and subsequently the replacement
sin2 θ = 1 − cos2 θ in the integral.

The ground state of the infinite square well potential is just the sinusoid
curve ψ0(x) = c0 cos(πx/2a), with the normalization c0. The coefficient c0 is
determined from

1 =
∫ a

−a
dx c20 cos2(πx/2a).

Let θ = πx/2a and the limits are −π/2 to π/2. The integral becomes

1 =
2a

π
c20

[

sin 2θ

4
+
θ

2

]π/2

−π/2

,

giving the normalization coefficient c0 = 1√
a
.

Perturbation theory tells us that the change in energy is the expectation
value of the perturbation,

∆E =
∫

dx ψ0(x)V1(x)ψ0(x).

Putting in the wave function and using the symmetry about x = 0 yields

∆E =
2V0

a

∫ a

b
dx cos2(πx/2a).

Thus,

∆E =
2V0

a

2a

π

[

sin 2θ

4
+
θ

2

]π/2

πb/2a

∆E

V0

=

[

1 − sin(bπ/a)

π
− b

a

]
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The intuitive limits of ∆E/V0 → 1 as b → 0, and ∆E → 0 as b → a, are
easily verified from the expression above.

Answer one of the 2 questions QC1 or QC2. (16 pts)

QC1

(a) [4 points] A one dimensional potential with a large narrow peak at
position x0 can be approximated by the delta function potential V (x) =
αδ(x − x0). How do the wave function ψ(x) and its first derivative dψ/dx
change as one crosses the singular point x0 ?

(b) [8 points] Suppose a particle of mass m moves in the one dimensional
potential V (x) = αδ(x) + αδ(x − a) . Use the conditions you found in (a)
to find an equation for the wave numbers k for which a plane wave incident
from the left will not be reflected from this potential.

(c) [4 points] In the large α limit find the smallest value of k for which there
is no reflection, and discuss the corresponding wave function.

QC1. Solution

(a) Using

ψ′(x0 + ε) − ψ′(x0 − ε) =
∫ x0+ε

x0−ε
ψ′′(x)dx

and the Schrödinger equation it is easy to show that

ψ(x0 + 0) = ψ(x0 − 0)
ψ′(x0 + 0) − ψ′(x0 − 0) = 2mα

h̄2 ψ(x0)
,

the continuity of the wave function following becaus its derivative is every-
where finite.

(b) The wave function is eikx, Aeikx + Be−ikx, and Ceikx in regions x < 0,
0 < x < a, and a < x, respectively. This corresponds to having particles
incident from the left and no reflected particles. Using the results in (a)

13



at x0 = 0 and x0 = a, one obtains four equations for A, B, C, and k.
Energies E for which there is no reflection are determined by the following
transcendental equation:

tan ka = −kh̄
2

αm
E =

h̄2k2

2m

(c) In the large α limit tan ka must vanish, and the smallest value of k for
which this holds is k = π/a. The corresponding wave function is proportional
to sin πx/a), which is just that for the infinite square well. This follows
because as α increases the potential barriers become impenetrable.

QC2

Consider a particle of mass m in two dimensions in a potential U(ρ) = −α/ρ,
where α > 0.

(a) [6 points] Assume the wave function can be written Ψ(ρ, φ) = ρβu(ρ)f(φ).
Find the possible forms for f(φ) and show that the exponent β can be chosen
so that u(ρ) satisfies a one-dimensional Schrödinger equation closely related
to that for a hydrogen atom.

(b) [6 points] Find the discrete part of the energy spectrum.

(c) [4 points] What is the degree of degeneracy of each energy level?

QC2. Solution

(a) The Laplacian for cylindrical symmetry is

∇2 =
1

ρ

∂

∂ρ
(ρ
∂

∂ρ
) +

1

ρ2

∂2

∂φ2
.

The angular dependence is given by the usual f(φ) = exp(iMφ)/
√

2π , where
M must be an integer so that f has the required 2π periodicity. The first ρ
derivative term cancels provided one chooses β = −1/2, and then the Schrö
dinger equation reduces to the radial equation

− h̄2

2m

d2u

dρ2
+

h̄2

2m
(M2 − 1/4)u/ρ2 − α

ρ
u = Eu.
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This has exactly the form of the radial equation for the hydrogen atom except
that there the centrifugal potential term is proportional to `(` + 1), instead
of M2 − 1/4, and of course there the wave function is proportional to u/r,
not u/

√
ρ.

(b) Thus the results for the hydrogen atom can be used provided one replaces
` by |M | − 1/2. The wave functions can be labelled by M and a radial
quantum number nρ, and the energy eigenvalues are given by

Enρ,M = −EH/(nρ + |M | + 1/2)2,

where EH = mα2/(2h̄2) is the magnitude of the hydrogen ground state en-
ergy. These energy levels are thus −4EH/(2n + 1)2, where n = nρ + |M | =
0, 1, 2, . . ..

(c) Except for the ground state, these energy levels are all degenerate since
different choices for nρ and M can produce the same n. It is easy to see that
the degeneracy is 2n + 1 since for a given n one can have nρ = 0, M = ±n,
nρ = 1, M = ±(n− 1), up to nρ = n, M = 0.

Answer one of the 2 questions QD1 or QD2. (20 pts)

QD1

(a) [12 points] Find the stationary states and the corresponding energies E
for a charged spinless particle of mass m and charge e in constant uniform
magnetic and electric fields that are perpendicular to each other. For defi-
niteness assume the electric field E is in the +x direction with the magnetic
field H in the +z direction. You can express your answer in terms of the
eigenstates ψn(ω, x) of a one-dimensional harmonic oscillator of frequency ω.
You should find ω in terms of e, m, and the field strengths. The complete
wave function should depend upon the oscillator index n and two other pa-
rameters.

(b) [8 points] Find the average velocity of the particle in terms of n and the
other parameters.
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QD1. Solution

Choose the z- and the x-axis along the magnetic, H, and electric, E, fields,
respectively. Write the vector potential as (Landau’s gauge)

Ax = 0 Ay = Hx Az = 0

The Hamiltonian reads

Ĥ =
p̂2

x

2m
+

1

2m

(

p̂y −
eH

c
x
)2

+
p̂2

z

2m
− eEx

where e is the charge. Since operators p̂y and p̂z commute with the Hamil-
tonian and with each other, the eigenstates can be chosen as

ΨEpypz
=

exp(ipyy + ipzz)

2πh̄
φ(x)

where E is the energy. The Schrödinger equation becomes

φ′′(x) +
2m

h̄2

[

E − p2
z

2m
+ eEx− 1

2m

(

py −
eHx

c

)2
]

φ(x) = 0

Completing the square in x, one obtains the Schrödinger equation for 1d har-
monic oscillator that has a frequency ωH = |e|H/mc and whose equilibrium
is shifted to x0 = cpy/eH +mc2E/eH2.

Therefore,

Ψnpypz
= exp(ipyy+ipzz)

2πh̄
ψn(ωH , x− x0)

Enpypz
= h̄ωH

(

n + 1
2

)

− cEpy

H
− mc2E2

2H2 + p2
z

2m
n = 0, 1, . . .

The average velocity is

vx = 0 vz =
∂Enpypz

∂pz
=
pz

m
vy =

∂Enpypz

∂py
= −E

H
c.

One can also obtain the expression for vy = (〈py − (eH/c)x〉)/m by noting
that the average value of x is just x0 and taking the expression above for
x0. Note the drift in the -y direction with the speed Ec/H. This is just the
motion for which the classical forces on the particle cancel, as in a velocity
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selector.

QD2

Two perfectly spherical balls of radius r are positioned with one directly
above the other, separated by a distance d, with d >> r. The lower ball is
fixed in place. The top ball is released, and due to the gravitational force F
= mg drops and bounces elastically from the lower ball. Estimate the maxi-
mum number of times it can bounce from the lower ball before it misses. In
particular:

(a) [8 points] Estimate the minimum horizontal offset between the centers of
the balls at the time of the first bounce. (Consider only the position of the
upper ball here; ignore quantum mechanical uncertainties to the position of
the ball fixed in place, and to the sphericity of the balls.)

(b) [6 points] The collision imparts a small horizontal momentum to the
upper ball. Estimate by what factor the horizontal offset and horizontal
component of momentum grow with each successive collision.

(c) [6 points] Using mball = 0.1 kg, r = 4 cm, d = 1 m, g ≈ 10 m/s2, and h̄
≈ 10−26 J·s, estimate the maximum number of bounces.

QD2. Solution

8a) The uncertainty principle limits the horizontal alignment of the balls to

(∆s)2 = (∆x)2 + (∆px t/m)2,

with the time it takes the ball to drop given by t =
√

2d/g. Using the

uncertainty principle we replace ∆px → h̄/∆x. We minimize ∆s by setting

the derivative equal to 0, to obtain (∆x)2 =
√

2d
g

h̄
m
. Thus, (∆s)2 = 2 h̄

m

√

2d
g
.

8b) Since r << d, we can use small angle approximations. The upper ball
falls close to vertically, and its speed on impact is approximately given by
vv =

√
2gd. Assume - we confirm this below - that it is a good approximation
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on each bounce that the sideways offset of the upper ball is due almost
entirely to the sideways velocity imparted by the previous collision. Then,
collision n occurs at an offset of sn. The angle from vertical between the
centers of the balls is given by θ = sn/2r. After the collision, the ball bounces
off at an angle of 2θ from vertical, with a sideways velocity vxn/vv = sn/r
leading to vxn =

√
2gd(sn/r). Collision n + 1 takes place at an offset of

2tvxn, where 2t is the time between collisions, 2t = 2
√

2d/g. Thus, sn+1 =

2
√

2d/g
√

2gd(sn/r) = (4d/r)sn. Similarly, the sideways velocity is increased

by a factor of 4d/r. Since r << d, 4d/r >> 1, and the assumption holds.

8c) Using the results from parts a) and b), the nth bounce is the last bounce
if

(

2
h̄

m

√

2d

g

)1/2

(4d/r)n ≥ r.

Putting in numbers, 4d/r = 100, and
(

2 h̄
m

√

2d
g

)1/2 ≈ 3×10−17, so we require

102n ≥ 1.3 × 1015. Thus, n = 8 is an upper limit on the number of bounces.
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