Solution for Problem C3

- a) (3 points) The \bar{p} is composed of three antiquarks chosen from \bar{u} (charge -2/3) and \bar{d} (charge 1/3). The \bar{p} has charge -1, and so can be only $\bar{u}\bar{u}\bar{d}$. The Σ^+ has an s quark (charge -1/3) and charge +1, so the other two quarks must be u's (with charge 2/3). The Σ^+ is suu. The ρ^- is composed of a quark and antiquark, and has charge -1. It must be $\bar{u}d$.
- b) (4 points) The π and ρ mesons are low mass states, so their orbital angular momenta must be S wave (primarily). Given their spins, the quarks in the π meson are in a 1S_0 state, and the quarks in the ρ meson are in a 3S_1 state.
- c) (3 points) The members of an isospin multiplet differ only by the substitution of u for d quarks, and $vice\ versa$. An isospin 1 multiplet can be constructed only if there are two such quarks. The third quark is the c quark. Given that the c has charge 2/3, the members of the isotriplet have charge $2\ (cuu)$, $1\ (cud)$ and $0\ (cdd)$.