where the sum is over occupied proton states. For each state we have
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where the virial theorem has been used to show (Vz) = E/2 for the harmonic oscillator
p(?tential. Thus, for a specific state,
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The two protons in the first shell contribute (1/ 2)h/w, each, and the two protons in the
second shell contribute (5/2)h/w, each. The expectation of the quadrupole operator is
thus 6A/w, when all contributions are summed.

c) (2 points) The potential is not spherically symmetric, so [L2, V] # 0, and the energy
eigenstates are not eigestates of L2. However, the potential is invariant under rotations
about the z axis. Thus [L., V] = 0, and the energy eigenstates are eigenstates of L.



