Solution for Problem C1

a) (5 points) The energy of a nucleon is

$$E = \left(n_x + \frac{1}{2}\right)\hbar\omega_x + \left(n_y + \frac{1}{2}\right)\hbar\omega_y + \left(n_z + \frac{1}{2}\right)\hbar\omega_z = \left(N + \frac{5}{2}\right)\hbar\omega_z$$

where $N=2n_x+2n_y+n_z$. The degeneracy of a shell is determined by the number of ways an integer N can be partitioned as $2n_x+2n_y+n_z$. We enumerate these, remembering that the number of ways must be multiplied by 2 to account for the two spin orientations that can be accommodated in each spatial state. Finally, we must sum the states to determine the magic numbers of nucleons.

N	n_x	n_y	n_z	partitions	states	magic no.
0	0	0	0	1	2	2
1	0	0	1	1	2	4
2	0 1 0	0 0 1	2 0 0	3	6	10
3	0 1 0	0 0 1	3 1 1	3	6	16
4	0 1 1 0 2 0	0 1 0 1 0 2	4 0 2 2 0 0	6	12	28

b) (3 points) Each proton contributes additively to the charged quadrupole moment. For example

$$\langle z^2 \rangle = \sum_{n_z = 0} \langle \psi_{n_z} | z^2 | \psi_{n_z} \rangle,$$