The differential path length is ds = dz /1 + (y.)2 + (22)2, and the differential time interval
is dT = dsn(zx,y, z)/c. In this formulation,
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The formulation above fails if the path proves to be re-entrant in z, in which case y and/or
z would not be a unique function of z. A symmetric formulation that avoids this problem
expresses all three coordinates as functions of a parameter g, which varies from 0 to 1, say,
as the light propagates from A to B. In this case,
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¢) (3 points) Fermat’s principle requires T' to be stationary under variations in the ray
path. The integrals in part b) are of the generic form
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Under a variation z(w) — z(w) + dz(w),
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after integration by parts. Requiring this to vanish for arbitrary éz(w) leads to Euler’s
partial differential equations, the fundamental equations of the calculus of variations:

with analogous equations for the other coordinates.

For the case of parametrization by x in part b), this leads to two differential equations:
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and a similar equation for the z component. For the case of parametrization by g, we get
three differential equations:
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and similar equations for the y and z components. Note that the unit vector t tangent
to the trajectory has components (Zg; Yg; 2q)/ V(@g)? + (yg)? + (2¢)*. The three equations
can be written concisely as ’
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Finally, since ds = dgv/(zq)? + (Yg)? + (24)%, if we use path length as the parameter, the
chain rules gives the most elegant formulation of the three PDE for the ray trajectory:
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[However, parametrization by path length introduces a constraint,
1 = (dz/ds)? + (dy/ds)? + (dz/ds)?, which is not present for other parametrizations, and
which may limit the usefulness of the “elegant” formulation.)



