Solution for Problem A4

a) (2 points) The velocity of the pendulum mass perpendicular to the string is 6. The
velocity along the string is £. Thus
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b) (2 points) The exact potential energy is mgf(1 — cos 6), which is chosen to be zero when
the mass is undiscplaced. The small angle approximation is cosf =1 — 62/2. Thus
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¢) (2 points) The Lagrangianis L =T — V. We find 8L/06 = mé26 and OL/00 = —mglh.
Thus the equation of motion is
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The last term drops out when / = 0. The remaining terms give the equation of motion of
a pendulum with fixed string length. The frequency of oscillation is w = /g /L.
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d) (4 points)

where E =T+ V.
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The second derivative can be reorganized to read
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The first brace vanishes by the equation of motion, and the second terms can be re-
expressed as
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