Solution for Problem A1

a) (5 points) The vector potential may be found from the integral (see, for instance, Marion and Heald, Classical Electromagnetic Radiation, Chapter 8):

$$\vec{A}(\vec{x},t) = \frac{1}{c} \int_{V} dV' \int dt' \frac{\vec{J}(\vec{x}',t')}{|\vec{x}-\vec{x}'|} \delta[t' + (|\vec{x}-\vec{x}'|-ct)/c]. \tag{1}$$

The current density may be written with a complex time dependence (taking the real part at the end of the calculation):

$$\vec{J}(\vec{x},t) = I_o \hat{z} \cos\left(\frac{2\pi z}{\lambda}\right) \delta(x) \delta(y) e^{i\omega t}$$
(2)

Substituting (2) into (1) and integrating over x' and y', we obtain

$$\vec{A}(\vec{x},t) \approx \frac{I_o \hat{z}}{cr} \int_{-\lambda/4}^{\lambda/4} dz' \cos\left(\frac{2\pi z'}{\lambda}\right) e^{i\omega(t-(1/c)\sqrt{x^2+y^2+(z-z')^2})},\tag{3}$$

where we have used the assumption that we are in the radiation zone, so that

$$|\vec{x} - \vec{x'}| \approx r.$$

Expanding the square root in (3) to order z'/r, we find

$$\vec{A}(\vec{x},t) \approx \frac{I_o \hat{z}}{cr} e^{i(\omega t - kr)} \int_{-\lambda/4}^{\lambda/4} dz' \cos\left(\frac{2\pi z'}{\lambda}\right) e^{i(2\pi z z')/(\lambda r)}.$$
 (4)

Letting $z = r \cos \theta$ and performing the integral in (4) (write cos as sum of exponentials), we get

$$\vec{A}(\vec{x},t) \approx \frac{I_o \hat{z}}{cr} \frac{\lambda}{2\pi} \left[\frac{\sin((\pi/2)(1+\cos\theta))}{1+\cos\theta} + \frac{\sin((\pi/2)(1-\cos\theta))}{1-\cos\theta} \right] e^{i(\omega t - kr)}.$$
 (5)

b) (3 points) The electric field \vec{E} in the radiation zone may be found directly from

$$\vec{E} = -\frac{1}{c} \frac{\partial \vec{A}}{\partial t} = -i \frac{\omega}{c} \vec{A}$$

using (5). The magnetic induction \vec{B} in the radiation zone is given by

$$\vec{B} = -\frac{1}{c}\vec{n} \times \frac{\partial \vec{A}}{\partial t}$$
$$= -ik(\vec{n} \times \vec{A}).$$