Solution for Problem AT

“a) (5 points) The vector potential may be found from the integral (see, for instance, Marion
~ and Heald, Classical Electromagnetic Radiation, Chapter 8):
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The current density may be written with a complex time dependence (taking the real part
at. the end of the calculation):
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Substituting (2) into (1) and integrating over z’ and 3/, we obtain
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where we have used the assumption that we are in the radiation zone, so that
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Expanding the square root in (3) to order z’/r, we find
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Letting z = r cos ¢ and performing the integral in (4) (write cos as sum of exponentials),
we get
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b) (3 points) The electric field E in the radiation zone may be found directly from
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using (5). The magnetic induction B in the radiation zone is given by



