C2) Consider the decay

$$\Lambda^0 \to n + \pi^0$$

followed by

$$\pi^0 \to 2\gamma$$
.

- a) (2 points) Identify the type of interaction that causes each of these decays.
- b) (2 points) Which of the following quantum numbers are conserved and which are not conserved in each process?
 - \bullet electric charge Q
 - izospin component T_z
 - \bullet baryon number B
 - \bullet Strangeness S
- c) (3 points) Given the rest masses $M_{\Lambda}, M_n, M_{\pi}$ of the three particles involved in the first process, find the energies of the decay products n, π^0 in the rest frame of the Λ^0 .
- d) (3 points) The two γ 's from the decay of π^0 are observed to have equal energies in the rest frame of Λ^0 . Find the angle between the two γ 's in this frame, in terms of the masses of the particles involved.