C2) Consider the decay $$\Lambda^0 \to n + \pi^0$$ followed by $$\pi^0 \to 2\gamma$$. - a) (2 points) Identify the type of interaction that causes each of these decays. - b) (2 points) Which of the following quantum numbers are conserved and which are not conserved in each process? - \bullet electric charge Q - izospin component T_z - \bullet baryon number B - \bullet Strangeness S - c) (3 points) Given the rest masses $M_{\Lambda}, M_n, M_{\pi}$ of the three particles involved in the first process, find the energies of the decay products n, π^0 in the rest frame of the Λ^0 . - d) (3 points) The two γ 's from the decay of π^0 are observed to have equal energies in the rest frame of Λ^0 . Find the angle between the two γ 's in this frame, in terms of the masses of the particles involved.