B4) A quantum mechanical plane rotator consists of two rigidly connected particles of mass m rotating in the x-y plane about their center of mass, as shown below. The rod of length d connecting the particles has negligible mass.

- a) (3 points) Write down the system's Hamiltonian in terms of m, d, and the angle ϕ .
- b) (3 points) Suppose the initial state of the rotator is given by

$$\psi(\phi, t = 0) = A\cos^2\phi,$$

where A is a constant. Consider a single measurement of the angular momentum L_z in this state.

- What are the possible values of L_z observed in that measurement?
- What are the probabilities for each value?
- What is the expectation value of L_z^2 in this state?
- What is the expectation value of the total energy of the rotator in this state?
- c) (2 points) Find $\psi(\phi, t)$ for t > 0, given the initial state in Part b). What is the angular frequency, ω_1 , of the periodic time dependence of $\psi(\phi, t)$?
- d) (1 point) Suppose that at t=0, the distance between the particles of the plane rotator collapses suddenly to d/2. What is the new Hamiltonian for t>0? Solve for $\psi(\phi,t)$ for t>0. Answer the questions of part b) above for this new state.
- e) (1 point) What is the new angular frequency, ω_2 , for t > 0?