
B2) Consider points A and B which lie on two sides of a plane boundary separating regions of uniform index of refraction n_A and n_B , as shown.

A light ray travels between A and B. The ray will consist of straight line sements in the two media, but the segments in regions n_A and n_B will travel in different directions owing to refraction at the interface.

- a) (5 points) Show that the actual path taken by the ray is the one that takes the least time for passage from A to B. The statement that light rays follow the path of least time of propagation is known as Fermat's Principle.
- b) (2 points) Write an expression for the time of transit between points A and B when the medium is inhomogeneous, and n is a differentiable function of position: n(x, y, z). [You will need to parametrize the path in some way.]
- c) (3 points) Use Fermat's principle and your expression in b) to derive the differential equations that determine the trajectory of the light ray passing between two points, like A and B.