- A4) Consider a simple pendulum executing small oscillations. The string is shortened an amount $\Delta \ell$ very slowly so that the change in amplitude from one oscillation to the next is negligible.
- a) (2 points) Express the kinetic energy of the pendulum in terms of the angle of deflection, θ , the length of the string ℓ and $\dot{\theta}$ and $\dot{\ell}$.
- b) (2 points) Express the potential energy in terms of the same variables. Make the usual approximation that applies when $\theta << 1$ radian.
- c) (2 points) Find the Lagrangian of the pendulum, and from that its equation of motion. Check that your answer agrees with the expected one when $\dot{\ell}=0$.

Under these conditions the expression $\omega^p E$ remains constant as the length of the string is changed. Here ω is the angular frequency of oscillation, E is the total energy of the pendulum, and p is a constant to be determined.

d) (4 points) Determine p by computing $d(\omega^p E)/dt$ and using it to show that $\omega^p E$ does not change over one cycle of oscillation, provided p is appropriately chosen.

Thus, if $\dot{\ell}$ is so small that ℓ can be regarded as constant over an oscillation, $\omega^p E$ becomes an *adiabatic invariant* of the pendulum's motion. This adiabatic invariant can be used to relate the amplitude of oscillation after the string length is changed to that before.