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Introduction To Chern-Simons Theories
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Abstract: These are lecture notes for a series of talks at the 2019 TASI school. They

contain introductory material to the general subject of Chern-Simons theory. They are
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“This whole book is but a draught nay, but the draught of a draught.” - Herman Melville

1. Introduction: The Grand Overview

Chern-Simons theory is a quantum gauge theory involving a rather subtle action principle.

It leads to quantum field theory in which many, many, natural questions can be explicitly

answered. The usual difficulties of quantum field theory are exchanged for subtle questions

in topology, but the latter turn out to be fairly accessible. It is thus very computable but

highly nontrivial example of a quantum field theory. Moreover, it has proven to have an

astonishingly wide variety of applications, from condensed matter physics, through string

theory, and pure mathematics.

The story goes back, on the mathematical side to the work of S.S. Chern and J. Simons

and, on the physics side it goes back (at least) to an observation that three-dimensional ♣say what problem

they were

addressing ♣Yang-Mills theory admits an interesting gauge invariant deformation of its action [15, 14].

In 1988 Witten wrote a foundational paper on the subject [67]. This paper answered

a major question posed by Michael Atiyah: “What is the physical interpretation of the

Jones polynomial?” In the process Witten gave some important new insight into some

constructions of conformal field theory, especially rational CFT, that were undergoing

vigorous development at the time. (See, for examples, [6, 41, 42, 43, 60, 61, 62] and all the

many many competitors of Moore and Seiberg ....)
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Witten’s paper was a major breakthrough - worthy of a Fields medal - and, together

with the physical interpretation of Donaldson invariants (answering another of Michael

Atiyah’s questions) it gave a strong impetus to the development of the subject of topological

field theory. 1 In some sense three-dimensional CS was the first and most important

example of a topological quantum field theory. 2

At some level, the story line is very simple:

Consider a gauge theory for a Lie group G. Locally the gauge field A - is a 1-form

valued in the Lie algebra g that transforms under gauge transformations like 3

d+Ag := g−1(d+A)g (1.1)

so that F := dA+A2 transforms like F → g−1Fg. Then, suppose that ℘ is a conjugation

invariant polynomial on the Lie algebra of order two so that we can make the 4-form ℘(F ).

A typical example is to introduce a trace on the a simple Lie algebra and write

℘(F ) = trF 2 (1.2)

Then ℘(F ) is gauge invariant and you can check that, formally, it is a total derivative:

trF 2 = d

(
trAdA+

2

3
A3

)
= dcs(A) (1.3)

and more generally ℘(F ) = dcs℘(A). Now consider a three-dimensional manifold M3

together with an orientation o(M3). You can then define an action principal for a gauge

theory path integral: ∫
A/G

e
i
∫
M3

cs℘(A)
(1.4)

Here the integral is over the space of inequivalent gauge fields, commonly denoted A/G.

Using Appendix **** you compute that

cs(Ag) = cs(A) + cs(g−1dg)− d(trAdgg−1) (1.5)

Restricting to the case that M3 has no boundary, for quantized choices of ℘ (e.g. with a

properly normalized trace on a simple Lie algebra)
∫
cs(g−1dg) will be 2π times an integer

so that the exponentiated action exp[i
∫
M3

cs(A)] is gauge invariant, that is, is a well-defined

function on A/G.

The equations of motion follow from

δcs(A) = 2tr (δAF )− d(trAδA) (1.6)

1Albert Schwarz had previously studied topological field theories for Abelian gauge theories in [54]. In

an announcement at a conference in [1988 ?? Odessa ?? CHECK!!!] he independently suggested that

Wilson line observables might be related to the Jones polynomial.
2Four-manifold enthusiasts will argue that Donaldson-Witten theory is the first and most important

example of a TQFT.
3Note that in our conventions we have chosen a right-action of the group of gauge transformations on

gauge fields: (Ag1)g2 = Ag1g2 .
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The equations of motion therefore state that the fieldstrength vanishes: F = 0. Such gauge

fields are called flat gauge fields. They can nevertheless be very interesting and nontrivial.

No metric is used in forming the action principal. Naively, one might expect the path

integral to be a topological invariant of M3. Moreover, you can introduce topological

Wilson line defects: Choose an oriented closed curve γ ⊂M3 and a representation R of the

Lie group and construct the gauge invariant function of A:

W (R, γ) = TrRPexp

∮
γ
A (1.7)

We can then formally consider the correlators

〈
∏
α

W (Rα, γα)〉 =

∫
A/G

e
i
∫
M3

cs℘(A)
∏
α

W (Rα, γα) (1.8)

and formally this should be a topological invariant of the configuration of labeled loops in

M3.

All of the above is sort of true. It is true in spirit, but overlooks a lot of important

sublteties. For example, regularization questions spoil the topological invariance and in-

troduce extra (”framing”) data to define the Wilson loop observables. In these lectures we

will try to explain some of the above claims more carefully and in more detail.

The net result is the following: One can define a three-dimensional topological field

theory that depends on the data:

1. A compact group G. The structure of the general compact Lie group is described in

Appendix J.1.

2. A choice of “level.” Roughly, the level is a measure of 1/~. More precisely, the “level”

lives in a certain finitely-generated Abelian group associated to G. (Technically, it is

a “nondegenerate element of H4(BG;Z).”)

3. The data needed to obtain topological invariants are: An orientation and 2-framing

of M3 together with ribbons in M3 labeled by representations of G.

This, of course, is only the data needed to make sense of partition functions on closed

three-manifolds. The theory extends to give mathematical objects for 2- , 1-, and 0-

dimensional manifolds.

Chern-Simons theory has been immensely popular and influential in both physics and

mathematics. As one (superficial) measure, a cursory literature search on ”Chern-Simons”

turns up thousands of scholarly papers. 4

The theory has had numerous applications and can be generalized in a large number

of ways. A few of them are:

1. It is a paradigmatic example of an(extended) TQFT.

4On May 8, 2019: MathSciNet: 5521; e-Print ArXiv: 5395; scholar.google.com: 45700.
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2. It therefore allows for the construction of important topological invariants (“quantum

invariants”) of 3-manifolds and links in 3-manifolds. (These must carry some extra

structure to be defined, as we will see.)

3. The connection between 2d rational conformal field theory and 3d topological Chern-

Simons theory is a kind of “holographic correspondence,” and was, historically, one

of the first examples of holography.

4. There are numerous further applications to more modern versions of holography as

in the AdS/CFT correspondence. (For example, in the theory of singletons.)

5. Physically, 3d CS turns out to be very relevant to describing certain topological prop-

erties of the FQHE. This motivated a much more general application of topological

field theory ideas to phases of matter with particles with nontrivial statistics [52].

6. There is a developing story for Chern-Simons theory for noncompact groups. These

have numerous applications to supersymmetric gauge theories, knot polynomials,

BPS invariants,...

7. One of the most striking examples of noncompact Chern-Simons is in formulating

various versions of three-dimensional quantum gravity.

8. Chern-Simons theory has been used to address the problem of putting chiral fermions

on the lattice.

9. Chern-Simons theories are relevant to describing the spacetime physics of topological

string theory.

10. Some versions of string field theory are of Chern-Simons form.

These lectures are meant to be very pedagogical and very basic. I am definitely not

talking to the experts (usually).

1.1 Assumed Prerequisites

1. Quantum mechanics.

2. Basic knowledge of differential forms: Definition. Exterior derivative. Integration on

manifolds and Stokes’ theorem.

3. Some elementary quantum field theory, but not much.

4. Simple notions from topology: Homotopy groups. Bundles. Cohomology groups.

Connections on bundles.

5. Some basic notions from group theory. Exact sequence. Projective representations.

The basic concepts of group actions on manifolds.

6. Some knowledge of symplectic geometry would be useful, but is not essential.
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Some sources for mathematical background:

Differential forms, bundles, homology, homotopy and cohomology :

1. R. Bott and L. Tu, Differential Forms in Algebraic Topology, [12]

2. M. Nakahara, Geometry, Topology and Physics, Second Edition (Graduate Student

Series in Physics) , [51]

3. Lectures 1-4 by J. Morgan in [50]

Some standard, and not-so-standard things from group theory and linear algebra that

might be freely used in these lectures are explained in my online lecture notes for a group

theory course I recently gave. See, especially, [48] and [49].

2. Chern-Simons Theories For Abelian Gauge Fields

2.1 Topological Terms Matter

We consider the quantum mechanics of a charged particle confined to a ring that surrounds

a solenoid. This is a good pedagogical toy example that illustrates some of the subtle effects

associated with the θ-term in QCD and QED and in topological insulators. This is a very

standard example. We are giving a slightly condensed version of the discussion of sections

11.3.1-11.3.2, pages 140-158 of [48]

2.1.1 Charged Particle On A Circle Surrounding A Solenoid: Hamiltonian

Quantization

Consider a particle of mass m confined to a ring of radius r in the xy plane. The position

of the particle is described by an angle φ, so we identify φ ∼ φ+ 2π, and the action is

S =

∫
1

2
mr2φ̇2 =

∫
1

2
Iφ̇2 (2.1)

with I = mr2 the moment of inertia.

Let us also suppose that our particle has electric charge e and that the ring is threaded

by a solenoid with magnetic field B, so the particle moves in a zero B field, but there is a

nonzero gauge potential 5

A =
B

2π
dφ (2.2)

The action is therefore:

S =

∫
1

2
Iφ̇2dt+

∮
eA

=

∫
1

2
Iφ̇2dt+

eB

2π
φ̇dt

(2.3)

5For readers not familiar with differential form notation this means, in cylindrical coordinates that

Az = 0, Ar = 0 and Aφ = B/2π.
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Figure 1: Spectrum of a particle on a circle as a function of B = eB/2π. The upper left shows

the low-lying spectrum for B = 0. It is symmetric under m → −m. The upper right shows the

spectrum for B = 0.2. There is no symmetry in the spectrum. The lower figure shows the spectrum

for B = 1/2. There is again a symmetry, but under m→ 2B −m = 1−m. In general there will be

no symmetry unless 2B ∈ Z. If 2B ∈ Z the spectrum is symmetric under m→ 2B −m.

The second term is an example of a “topological term” or a “θ-term.” Classically, the

second term does not affect physical predictions, since it is a total derivative. However,

quantum mechanically, it will have an important effect on physical predictions.

We are going to analyze the symmetries of this system and compare their realization

in the classical and quantum theories.

We begin by analyzing the classical symmetries. Because the θ-term does not affect

the classical dynamics the classical system has O(2) symmetry. We can rotate: R(α) :

eiφ → eiαeiφ, or, if you prefer, translate φ → φ + α (always bearing in mind that α and φ

are only defined modulo addition of an integral multiple of 2π). If we think of the circle

in the x− y plane centered on the origin, with the solenoid along the z-axis then we could

also take

R(α) =

(
cosα sinα

− sinα cosα

)
(2.4)

as usual.

Also we can make a “parity” or “charge conjugation” transformation P : φ → −φ.

The second term in the Lagrangian is not invariant but this “doesn’t matter” because it is

a total derivative. Put differently: φ→ −φ is a symmetry of the equations of motion.
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Note that these group elements in O(2) satisfy

R(α)R(β) = R(α+ β)

P 2 = 1

PR(α)P = R(−α)

(2.5)

and indeed, as we have seen, O(2) is a semidirect product:

O(2) = SO(2) o Z2 (2.6)

with ω : 〈P 〉 ∼= Z2 → Aut(SO(2)) ∼= Z2 acting by taking the nontrivial element of Z2 to

the outer automorphism that sends R(α)→ R(−α).

Viewing the system as a field theory.

We have introduced this system as describing the quantum mechanics of a particle.

However, it is important to note that it can also be viewed as a special case of a quantum

field theory. In general, in a field theory we have a spacetime M and the fields φ are

functions on M valued in some target space X . (So the term “target space” means nothing

more or less than the codomain of the fields.) In our case we have M = R, interpreted as

the real line of time while X is the circle. So our fields are maps

eiφ : M → S1 (2.7)

where M is the real line of time, or perhaps a time interval. Later we will also take M to be

the circle. The space of fields is Map[M → X ]. Since M is the one-dimensional manifold of

time we refer to this as a “0+1 dimensional field theory. We have been referring to φ→ −φ
as “parity” because that is the appropriate term in the context of the quantum mechanics

of a particle constrained to a circle in the plane. However, if we take the point of view that

we are discussing a 0 + 1 dimensional “field theory” then it would be better to refer to the

operation as “charge conjugation” because it complex conjugates the U(1)-valued field eiφ.

In addition there are (in the field theory interpretation) “worldvolume symmetries”

of time translation invariance and time reversal. These form the group R o Z2. We will

put those aside. (Note that time reversal is not a symmetry of the second term in the

Lagrangian but is a symmetry of the space of solutions of the equations of motion.)

Symmetries In The Quantum Theory.

Now let us consider the quantum mechanics with the “θ-term” added to the La-

grangian. Our goal is to see how that term affects the quantum theory.

We will first analyze the quantum mechanics in the Hamiltonian approach. See the

remark below for some remarks on the path integral approach. The conjugate momentum

is

L = Iφ̇+
eB

2π
(2.8)

We denote it by L because it can be thought of as angular momentum.

Note that the coupling to the flat gauge field has altered the usual relation of angular

momentum and velocity. Now we obtain the Hamiltonian from the Legendre transform:∫
Lφ̇dt− S =

∫
1

2I
(L− eB

2π
)2dt (2.9)
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Upon quantization 6 L→ −i~ ∂
∂φ , so the Hamiltonian is

HB :=
~2

2I

(
−i

∂

∂φ
− B

)2

(2.10)

where B := eB
2π~ .

The eigenfunctions of the Hamiltonian HB are just

Ψm(φ) =
1√
2π
eimφ m ∈ Z (2.11)

They give energy eigenstates states with energy

Em =
~2

2I
(m− B)2 (2.12)

There is just one energy eigenstate for each m ∈ Z.

Remarks:

1. The action (2.31) makes good sense for φ valued in the real line or for φ ∼ φ + 2π,

valued in the circle. Making this choice is important in the choice of what theory

we are describing. Where - in the above analysis - did we make the choice that the

target space is a circle? 7

2. Taking φ ∼ φ + 2π, even though the θ-term is a total derivative it has a nontrivial

effect on the quantum physics as we can see since B has shifted the spectrum of the

quantum Hamiltonian in a physically observable fashion: This is how we see that

topological terms matter.

3. Note that when 2B is even the energy eigenspaces are two-fold degenerate, except

for the ground state at m = B. On the other hand, when 2B is odd all the energy

eigenspaces are two-fold degenerate, including the ground state. If 2B is not an

integer all the energy eigenspaces are one-dimensional. See Figure 1.

4. The total spectrum is periodic in B, and shifting B → B+1 is equivalent to m→ m+1.

To be more precise, we can define a unitary operator on the Hilbert space by its action

on a complete basis:

UΨm = Ψm+1 (2.13)

and

UHBU
−1 = HB+1 (2.14)

6One could add a constant here. It would introduce a second parameter into the quantization story, but

it is redundant with B.
7Answer : If we took the case where φ is valued in R and not the circle then there would be no quantization

on m and the spectrum of the Hamiltonian would be continuous. In this case the Chern-Simons term would

not affect the physics in the quantum mechanical version as well.
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5. The quantum mechanics problem (2.31) and the spectrum (2.12) arise in the discus-

sion of the “Coulomb blockade” in physics of quantum dots. See Yoshimasa Mu-

rayama, Mesoscopic Systems, Section 10.10.

6. Relations to higher dimensional field theories and string theory. The θ-term we have

added as a very interesting analog in 1+1 dimensional field theory, where it is known

as a coupling to the B-field. It can also be obtained from a Kaluza-Klein reduction

of 1 + 1 dimensional Maxwell theory:

S =
1

e2

∫
F ∗ F +

∫
θ

2π
F (2.15)

In 1 + 1 dimensional theory we can choose A0 = 0 gauge and gauge away the x1

dependence so that on S1 × R the only gauge invariant quantity is

eiφ(t) = ei
∮
S1 A = ei

∮
S1 A1dx1

(2.16)

With this in mind we can say

θ = 2πB (2.17)

Remark: More generally, in 1 + 1 dimensional Yang-Mills theory on S1 × R we

can always go to A0 = 0 gauge and then the only gauge invariant observable is the

conjugacy class of the holonomy around the circle.

The theta term also has a close analog in 3 + 1-dimensional gauge theory. In the case

of 3 + 1 dimensional Maxwell theory we can write

S =

∫
d4x

1

4e2
FµνF

µν +

∫
θ

(2π)2
F ∧ F (2.18)

In fact, in the effective theory of electromagnetism in the presence of an insulator a

very similar action arises with a θ term. If a parity- and/or time-reversal symmetry is

present then θ is zero or π, corresponding to our case 2B ∈ Z. The difference between

a normal and a topological insulator is then, literally, the difference between 2B being

even (normal) and odd (topological), respectively. Finally, in the 3+1-dimensional

Yang-Mills theories that describe the standard model of weak and strong interactions

one can add an analogous θ-term. One of the great unsolved mysteries about nature

is why the (effective) theta angle for the strong interactions in the standard model is

unmeasurably small.

Now, if we consider how the O(2) symmetry is realized in the quantum theory we find

a surprise:

1. The classical theory has an O(2) symmetry.
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2. In the quantum theory when 2B = θ/π is not an integer the symmetry is broken to

SO(2).

3. In the quantum theory, when 2B = θ/π is an even integer the theory still has O(2)

symmetry.

4. In the quantum theory, when 2B = θ/π is an odd integer, the classical O(2) relations

no longer hold, but the covering group Pin+(2) is a symmetry.

We stress that the particle on the ring is NOT a spin one-half!! Having said that, if

we define an angular momentum L so that H = L2

2I then indeed when B is half-integral the

angular momentum has half-integral eigenvalues, as one expects for a spin representation.

So, what we are finding is that the half flux quantum is inducing a half-integral spin of

the system so that the classical O(2) symmetry of the classical system is implemented as a

Pin+(2) symmetry in the quantum theory. This is an intriguing phenomenon appearing in

quantum symmetries with nontrivial gauge fields and Chern-Simons terms: The statistics

and spins of particles can be shifted from their classical values, often in ways that involve

curious fractions.

2.1.2 Charged Particle On A Circle Surrounding A Solenoid: Path Integrals

It turns out to be very instructive to compute the Euclidean time propagator in this

theory in two ways. Thus, we consider the quantity 〈φ2|e−βH |φ1〉. On the one hand, we

have completely diagonalized the Hamiltonian, so inserting a complete set of states we

immediately find:

〈φ2|e−βHB |φ1〉 =
1

2π

∑
m∈Z

e−
β
2I

(m−B)2+im(φ1−φ2) (2.19)

On the other hand, using the Wick rotation of the Feynman path integral representation

of the propagator we also have an expression in terms of a path integral:

〈φ2|e−βH |φ1〉 = Z(φ2, φ1|β) :=

∫
[dφ(t)]

φ(β)=φ2

φ(0)=φ1
e−

1
~
∫ β
0

1
2
Iφ̇2dt−i

∫
Bφ̇dt (2.20)

Note that in the rotation to Euclidean signature the topological term is still imaginary.

One must be careful to get the sign of the imaginary term, and it matters.

Viewed as a field theory, this is a free field theory and the path integral can be done

exactly by semiclassical techniques:

The equation of motion is simply φ̈ = 0. Again, the θ-term has not changed it.

Thus, the classical solutions to the equations of motion with boundary conditions φ(0) =

φ1, φ(β) = φ2 are:

φcl(t) = φ1 +

(
φ2 − φ1 + 2πw

β

)
t w ∈ Z (2.21)

or more to the point:

eiφcl(t) = e
i
(

(1− t
β

)φ1+ t
β
φ2

)
+ 2πitw

β (2.22)
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These are solutions of the Euclidean equations of motion, and are known as “instantons”

for historical reasons. Notice that because of the compact nature of the spacetime on which

we define our 0 + 1 dimensional field theory there are infinitely many solutions labeled by

w ∈ Z. There are two circles in the game: The spacetime of this 0 + 1-dimensional field

theory is the Euclidean time circle. Then the target space of the field theory is also a circle.

The quantum field eiφ(t) is a map M → X . M , which is spacetime is S1 and X , which is the

target space is also X . Recall that π1(S1) ∼= Z. There can be topologically inequivalent

field configurations. That is the space of maps Map(M → X ) has different connected

components. The different topological sectors are uniquely labelled by the winding number

of the map (2.22). In the path integral we sum over all field configurations so we should

sum over all these instanton configurations.

A straightforward computation (details in the online lecture notes [48]) shows that the

path integral expression is exactly given by

Z(φ2, φ1|β) =

√
I

2πβ

∑
w∈Z

e
− 2π2I

β
(w+

φ2−φ1
2π

)2−2πiB(w+
φ2−φ1

2π
)

(2.23)

Now compare (2.19) with (2.23). These expressions look very different! One involves a

sum of exponentials with β in the numerator and the other with β in the demoninator. One

is well-suited to discussing the asymptotic behavior for β →∞ (low temperature) and the

other for β → 0 (high temperature), respectively. Nevertheless, we have computed the same

physical quantity, just using two different methods. So they must be the same. But the

mathematical identity that says they are the same appears somewhat miraculous. We now

explain how to verify the two expressions are indeed identical using a direct mathematical

argument.

We introduce the Riemann theta function

ϑ[
θ

φ
](z|τ) :=

∑
n∈Z

eiπτ(n+θ)2+2πi(n+θ)(z+φ) (2.24)

The Riemann theta function is an absolutely convergent analytic function of τ in the upper

half-plane. It is also an entire function of z. Using the Poisson summation formula one

verifies the crucial modular transformation law:

ϑ[
θ

φ
](
−z
τ
|−1

τ
) = (−iτ)1/2e2πiθφeiπz

2/τϑ[
−φ
θ

](z|τ) (2.25)

One can easily check that the above formulae for the Euclidean propagator are related

by the modular transformation for the Riemann theta function.

We will find theta functions and their modular properties will play an important role

in what follows.

Exercise

Suppose 2B is an odd integer.
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a.) Show that as β →∞ we have

〈φ2|e−
βH
~ |φ1〉 ∼ 2e

i
2

(φ1−φ2) cos

(
φ1 − φ2

2

)
e−βEground + · · · (2.26)

b.) Note that this expression is not invariant under φ→ −φ. But in Pin+(2) there is

an element P which corresponds to φ → −φ. How is this compatible with our argument

that Pin+(2) is a valid symmetry of the quantum theory? 8

2.1.3 Gauging The Global SO(2) Symmetry And Chern-Simons Terms

When a theory has a symmetry one can implement a procedure called “gauging the sym-

metry.” This is a two-step process:

1. Make the symmetry local and couple to a gauge field.

2. Integrate over the gauge fields.

It is not necessary to proceed to step (2) after completing step (1). In this case, we say

that we are coupling to nondynamical external gauge fields. It makes perfectly good sense

to introduce nondynamical, external gauge fields for a symmetry. We do this all the time

in quantum mechanics courses where we couple our quantum system to an electromagnetic

field, but do not try to quantize the electromagnetic field.

For the more mathematically sophisticated reader the two-step process can be summa-

rized as saying that given a field theory with a symmetry group G we can make the theory

G-equivariant by changing the bordism category of the domain of definition:

1. Identify the symmetry group with the structure group of a principal bundle and we

change the geometric domain of the field theory to bundles with connection.

2. Sum over isomorphism classes of principal bundles and integrate over the connections.

We will explain all this a bit more in section ****.

In the present simple case we can “gauge” the global SO(2) symmetry φ→ φ+α that

is present for all values of B. 9

So in our simple example we make the shift symmetry local, that is, we attempt to

make

φ(t)→ φ(t) + α(t) (2.27)

into a symmetry where α(t) is not a constant but an “arbitrary” function of time. Now,

of course the action ∼
∫
φ̇2 is not invariant under such transformations. We introduce a

gauge field A
(e)
t dt where the superscript e - for “external” - reminds us that this is NOT

8Answer : See [48].
9It is then interesting to see how the external gauge field tells us about the charge conjugation symmetry.

For a discussion of this see Appendix D of D. Gaiotto, A. Kapustin, Z. Komargodski and N. Seiberg, “Theta,

Time Reversal, and Temperature,” https://arxiv.org/pdf/1703.00501.pdf

– 16 –



the gauge field of electromagnetism. (That field has already produced our theta term.)

Rather, it is a new field in our system: A gauge field for the rotation symmetry.

The gauged action is

S =

∫
1

2
I(φ̇+A

(e)
t )2dt+

∮
B(φ̇+A

(e)
t )dt (2.28)

This is gauge invariant with gauge transformations:

φ→ φ+ α(t)

A
(e)
t → A

(e)
t − ∂tα(t)

(2.29)

or, better

eiφ(t) → eiφ(t)eiα(t)

A
(e)
t → A

(e)
t + ie−iα(t)∂te

iα(t)
(2.30)

This is better because when working on topologically nontrivial spacetimes, such as the

Euclidean time circle, it is eiα(t) which should be single-valued.

In the absence of the external gauge field A
(e)
t we found that B was periodic modulo

an integer. We can restore a kind of periodicity in B by adding a Chern-Simons term to

the action. In Euclidean space the new action is:

e−S = e−
∫

1
2
I(φ̇+A

(e)
t )2dt−i

∮
B(φ̇+A

(e)
t )dteik

∫
A

(e)
t dt (2.31)

We have restored the invariance by hand so that the new theory with (B, k) is equivalent

to the theory with (B + 1, k + 1). But now we must worry about the gauge invariance of

the new term. Here is a key point:

It is not necessary for the action to be invariant. All that is necessary for a well-defined

path integral is that the exponentiated action must be invariant.

We will invoke this observation several more times, when we quantize the coefficients

of other Chern-Simons terms in actions, as well as when we discuss the WZ term in 2D

CFT. We will call it the multi-valued action principle: The action S can be multivalued,

so long as eiS is single-valued.

Therefore, we study gauge invariance of

eik
∮
A

(e)
t dt (2.32)

Now we must decide which 1-manifold we are working on.

On an interval [t1, t2] the expression

exp[i

∫ t2

t1

A
(e)
t (t′)dt′] (2.33)
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is not gauge invariant. Rather:

exp[i

∫ t2

t1

A
(e)
t (t′)dt′]→ e−iα(t2) exp[i

∫ t2

t1

A
(e)
t (t′)dt′]eiα(t1) (2.34)

Therefore, on the real line exp[i
∫
RA

(e)
t (t′)dt′] is gauge invariant if we choose boundary

conditions so that α(t) vanishes as t→ ±∞.

Similarly, on the circle, if α(t) is single valued then

exp[i

∮
S1

A
(e)
t (t′)dt′] (2.35)

is gauge invariant. However, for the circle, the true gauge parameter is g(t) = eiα(t) for a

U(1) gauge group. Therefore, α(t) = 2πwt/β with w ∈ Z is a valid gauge transformation

but under such gauge transformations:

exp[ik

∮
S1

A
(e)
t (t′)dt′]→ e2πiwk exp[ik

∮
S1

A
(e)
t (t′)dt′] (2.36)

and therefore, if we are going to allow our theory to make sense on a circle then k should

be quantized to be an integer. In general: t 7→ eiα(t) defines a map S1
time → U(1). But

π1(U(1), ∗) ∼= Z is characterized by winding number. We say that eiα(t) defines a large

gauge transformation when this winding number is nonzero.

Gauge invariance of the “Chern-Simons term” under large gauge transformations im-

plies that the coupling is quantized: k ∈ Z.

For reasons related to the implementation of charge conjugation symmetry it turns out

to be desirable to extend the definition to k which is half-integral. There is a way to make

sense of the half-integer quantized Chern-Simons term by viewing the 0 + 1 dimensional

theory as the boundary of a well-defined 1 + 1 dimensional theory. By Stokes’ theorem we

have:

exp[ik

∮
S1

A
(e)
t dt] = exp[ik

∫
Σ
F (e)] (2.37)

where F (e) = dA(e). The RHS makes sense even if k is not an integer, but now the

expression depends on details of the gauge field in the “bulk” of the 1 + 1 dimensional

spacetime Σ.

A very analogous phenomenon is observed in real condensed matter systems where the

boundary theory of a 3+1 dimensional topological insulator is described by a Chern-Simons

theory with half-integral level. (That is, half the level allowed by naive gauge invariance.)

Exercise Puzzle

Resolve the following paradox:

We first argued that, if k /∈ Z then the LHS of (2.37) is not invariant under large

gauge transformations. Then we proceeded to define the LHS by the expression on the

RHS which is manifestly gauge invariant.
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How can these two statements be compatible? 10

2.2 U(1) Chern-Simons Theory In 3 Dimensions

2.2.1 Some U(1) Gauge Theory Preliminaries

We are going to need to be very careful about normalizations and periodicities throughout

these notes, so we spell out our normalizations for U(1) gauge theory.

We begin with a gauge theory on some spacetime M based on an Abelian Lie group

U(1) or R. Locally, the gauge field is a real 1-form denoted A = Aµdx
µ. We stress that,

while F = dA is a globally well-defined 2-form, in general A is not a globally well-defined

one-form so F might well be a non-exact closed 2-form.

Put more formally, A is the local one-form representation of a connection on a principal

U(1) bundle or complex line bundle over M . In our normalization the covariant derivative

is locally D = d+ iA and changes on patch overlaps Uα ∩ Uβ as Dα = g−1
αβDβgαβ.

Remark: An important convention. Although it is not the best normalization from the

mathematician’s viewpoint, here we will take (the locally defined one form) A to be a real

1-form when the gauge group is G = U(1). When G = U(1)d we continue to take it to be a

d-tuple AI of locally-defined 1-forms. However, when working with the general nonabelian

Lie group we take A to be a one-form valued in the Lie algebra g. Now, since we are

dealing with compact Lie groups, if G is a matrix group then g will be a subalgebra of a

Lie algebra of anti-hermitian matrices. With that convention the covariant derivative is

DA = d+A.

As mentioned above, because A is only locally defined, the 2-form F , while globally

defined, need not be exact. Our gauge field is normalized so that F/2π has integral periods,

that is, the integrals around closed 2-cycles are always integers:∫
Σ2

F ∈ 2πZ (2.38)

for any closed oriented 2-cycle Σ2 ⊂ M . Moreover, if the gauge group is G = U(1) there

will always exist manifolds M , line bundles L → M , with 2-cycles Σ2 ⊂ M so that the

integer
∫

Σ2

F
2π is exactly one. Thus this is the optimal normalization. If the gauge group

is, instead G = R, the periods of F will always be zero. That is, F will always be exact,

and A can be taken to be a globally well-defined 1-form.

With the above conventions the gauge transformations are such that the covariant

derivative D = d+ iA transforms by D → g−1Dg where

g : M → U(1) (2.39)

10Answer : The gauge transformation eiα(t) must extend to a continuous map Σ→ U(1). If Σ is a smooth

manifold whose only boundary is S1, as we have tacitly assumed in writing equation (2.37), then such maps

always restrict to small gauge transformations on the bounding S1.
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is a gauge transformation. If we can take a logarithm and take g = eiε for a globally

well-defined function

ε : M → R (2.40)

then

A→ A− dε (2.41)

we will call these “small gauge transformations.” If the gauge group is R all gauge trans-

formations are of this form. On the other hand, if the gauge group is U(1) then there

will be maps g : M → U(1) which do not admit a global logarithm. A simple test is

whether the one-form ω = −ig−1dg has nonzero periods or not. If g(x) cannot be writ-

ten as g(x) = eiε(x) for a globally well-defined function ε(x) we say that g(x) is a “large

gauge transformation.” In particular, if π1(M,x0) is nontrivial there will be large gauge

transformations. In this case the gauge transformations are better thought of as shifts

A→ A+ ω ω ∈ Ω1
2πZ(M) (2.42)

where Ω1
2πZ(M) is the space of all (suitably differentiable) closed one-forms whose periods

are all in 2πZ.

In addition, when M is noncompact or has a nonempty boundary then we need to

discuss boundary conditions on gauge fields and the gauge group. We will be considering

different kinds of boundary conditions so we return to this later.

2.2.2 From θ-term To Chern-Simons

Now, since F = dA we observe that the topological density in four-dimensions can be

written as:

F ∧ F = d (AdA) (2.43)

If we consider a 4d path integral with ∂M4 = M3 (where M3 might or might not be

connected) then we are asked to consider∫
M3

AdA (2.44)

as a term in the action.

At first (2.44) looks unpromising as a term in the action for a gauge theory: The term

involves an explicit factor of A and hence is not obviously gauge invariant. On the other

hand, F ∧ F is gauge invariant so the change of AdA must be d-closed. We can hope it is

d-exact and that a change by total derivatives “doesn’t matter.”

So, let us compute:

1. Under small gauge transformations (2.41) we have

A ∧ F → A ∧ F + d (εF ) (2.45)

This is indeed a total derivative, just as we had hoped. If we neglect boundary

contributions (which, in general, we cannot do) then gauge invariance is assured. In

any case, this is a good start.
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2. Under large gauge transformations (2.42) we have

A ∧ F → A ∧ F + ω ∧ F (2.46)

Now, any 1-form with quantized periods must necessarily be a closed 1-form, but in

general it need not be globally exact, so ω ∧ F need not be globally exact. Along

with the issues of boundary terms we will need to deal with this problem.

Quantization Of κ

We are considering a possible Chern-Simons term in the action of a U(1) gauge theory

on an oriented 3 manifold M3 and we normalize the coupling constant as:

exp[i
κ

2π

∫
M3

A ∧ F ] (2.47)

For the moment we take M3 to have no boundary. Even in that case, as we have just

discussed the action is not gauge invariant. In the path integral we do not integrate over

A - the space of all gauge fields (i.e. all connections on a fixed principal bundle) - but over

A/CG - the space of all gauge-equivalence classes of gauge fields. Here G is the group of

gauge transformations. Via a Fadeev-Popov or BRST type procedure we can push down

a natural measure [dA] on A to one on A/G, but then when we weight this measure with

eiS that factor must be a well-defined and single-valued function on the space A/G.

When we see an explicit gauge field in an action all the alarm bells should go off in

your head: The theory probably does not make sense. Chern-Simons dodges the problem

because of the multi-valued action principle mentioned above. This principle applies be-

cause the path integral of the theory is an integral over A/G, the space of gauge equivalence

classes of gauge fields, and all we need is a (formally) well-defined measure [dA]eiS on this

space.

Let us return to (2.46). Then, as we just noted, the Chern-Simons action
∫
M3

AdA is

not gauge invariant. The change in the exponentiated action under (2.46) is a multiplicative

factor:

e
2πi κ

4π2

∫
M3

A∧dA → e
2πi κ

4π2

∫
M3

A∧dA · e2πiκ
∫
M3

ω
2π
∧ F

2π (2.48)

Thus if the factor

e
2πiκ

∫
M3

ω
2π
∧ F

2π (2.49)

is always one for all gauge transformations ω ∈ Ω1
2πZ(M3) and all gauge fields then we are

assured gauge invariance of the path integral measure. But, once again, this is all we really

need for a well-defined path integral, and hence a well-defined theory. (At least, when M3

has no boundary.)

By assumption we take ω ∈ Ω1
2πZ(M3) to be an arbitrary closed 1-form with 2πZ

periods. Now, a theorem in topology [12, 51] assures us that, if the gauge group is U(1),

then the form F/2π has arbitrary integral periods.

Therefore, the path integral measure will be well-defined iff κ ∈ Z.

Remarks
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1. A crucial point is that the dimensionless coupling constant k in (2.51) and (2.52) is

quantized. It is sometimes claimed that this is not the case in Chern-Simons with

Abelian gauge group. That is the case if one considers G = R, or rather relatively

trivial three-manifolds (like M3 = R3) that are simply connected. But, if the gauge

group is U(1) and we consider topologically interesting situations it must, in fact, be

quantized.

2. We should mention here that there is an important refinement of this quantization

story. For some purposes in physics (e.g. in the fractional quantum Hall effect) we

need to take κ to be a half-integer. If we just blindly set κ = 1/2 then

exp[i
1

4π

∫
M3

AF ] (2.50)

is not gauge invariant: For perhaps the simplest example take M3 = T 3 with F/2π =

dσ1dσ2 and make a gauge transformation with ω = 2πdσ3. Here σi ∼ σi + 1 are

coordinate on the torus. Nevertheless, one can define expressions like (2.50) in a

gauge invariant way provided one adds data in defining the theory. Namely, if one

chooses a “spin structure” on M3 then it is possible to define a gauge invariant

measure in the path integral. The price one pays is that the action and the theory

then depend on the choice of spin structure, albeit in a computable way. We will

return to this important point in detail in section 2.5 below.

2.2.3 3D Maxwell-Chern-Simons For U(1)

Fields And Action

Let us begin with the “Maxwell-Chern-Simons” U(1) gauge theory in three dimensions.

Thus, let M3 be an oriented Riemannian three-manifold. Then the contribution of the

action to the path integral is via a factor eiS where:

S =

∫
M3

−1

8π2e2
dA ∧ ∗dA+

κ

2π
A ∧ dA (2.51)

Here we are working on a Lorentzian signature (−,+,+) 3-manifold and the Lorentzian

metric induces the Hodge star ∗. We choose our local coordinates so that the orientation,

thought of as a globally non-vanishing 3-form is vol = dx0 ∧ dx1 ∧ dx2.

In the Euclidean theory the contribution of the action to the path integral is a factor

e−S with

SE =

∫
M3

−1

8π2e2
dA ∧ ∗dA− i

κ

2π
A ∧ dA (2.52)

Remark: Note that, in contrast with the standard Maxwell term, the Chern-Simons term

requires a choice of orientation. Orientation-reversing diffeomorphisms, such as parity-

reversal, will change the sign of the Chern-Simons action. Moreover, note that the contri-

bution of the Chern-Simons term to the measure of the path integral is a phase both in

Euclidean and Minkowskian signatures.
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Plane Waves And Local Degrees Of Freedom

The equation of motion in Lorentzian signature is

d ∗ F −mF = 0 (2.53)

where we define m := 4πke2, with units of mass. Consider the theory in Minkowski space

M3 = M1,2. To analyze local degrees of freedom we consider plane wave solutions:

A = εi(~p)e
ip·x + c.c. (2.54)

where p · x = p0t+ p1x
1 + p2x

2. Then (2.53) becomes:

(p1p2 + imp0)ε1 + (p2
0 − p2

1)ε2 = 0

(p2
0 − p2

2)ε1 + (p1p2 − imp0)ε2 = 0

(p1p0 + imp2)ε1 + (p0p2 − imp1)ε2 = 0

(2.55)

There are nonzero solutions for εi iff

p2
0(p2

0 − p2
1 − p2

2 −m2) = 0 (2.56)

There are two branches of solutions.

1. If p0 6= 0 then define ω(~p) := +
√
~p2 +m2. For p0 = ±ω(~p) the gauge is completely

fixed, and εi is determined up to an overall multiplicative constant:

ε±1 (~p) = mp1 + ip0p2

ε±2 (~p) = mp2 − ip0p1

(2.57)

Note that εi = ε+i = (ε−i )∗. Since the two polarizations are related we have the degree

of freedom of a single massive scalar of mass |m|. This is the main result of [15, 14].

It generalizes the well-known equivalence of a U(1) gauge field in 3d to a compact

scalar field. ♣SHOULD I

EXPLAIN THE

DUALITY

BETWEEN A U(1)

GAUGE FIELD

AND A COMPACT

SCALAR FIELD ?

♣

2. Another branch of solutions to the equations of motion has p0 = 0. In this case,

p1ε2 − p2ε1 = 0, that is, F = 0 and we have a flat gauge field. This gives the

topological sector of the theory. We can detect that sector on M1,2 with nonlocal

operators line Wilson lines in topologically nontrivial situations, or in other physical

situations where the topology is nontrivial.

Long-Distance/Strong-Coupling Limit: The Topological Sector

The coupling e2 has dimensions of mass. Under a conformal rescaling gµν → Ω2gµν
of the 3-dimensional metric the first term in the action scales as Ω−1, while the second is

invariant. Note two things:

1. The long distance limit is obtained by taking a fixed metric gµν on M3 and scaling

Ω→∞.
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2. In that limit, at least formally, the first term vanishes and only the second term

remains: We have a Chern-Simons theory.

3. Scaling gµν → Ω2gµν is equivalent to scaling e2 → Ωe2. So the long-distance limit is

the same as the strong coupling limit.

When e2 →∞ the mass m→∞ and the propagator goes to zero killing all Feynman

diagrams and all local correlations. So the correlation functions of local gauge invariant

observables like

〈Fµ1ν1(p1)Fµ2ν2(p2) · · ·Fµnνn(pn)〉 (2.58)

all will vanish. Another way of thinking of this is that, when the insertion points p1, . . . , pn
as very distant, by inserting a complete set of states and using the fact that these are states

of a massive scalar field we see that the correlator must vanish like

Maxi 6=je
−const.|m|·‖pi−pj‖ (2.59)

But this does not make the theory trivial in this limit. If R is a finite-dimensional

representation of the gauge group U(1) and γ ⊂M3 is a closed oriented loop then we can

define the classical observable

W (R, γ) := TrR exp

(
i

∮
γ
A

)
(2.60)

Of course, for U(1) every finite dimensional representation is fully reducible to a sum of

one-dimensional irreducibles and the irreducible representations are ρn(z) = zn for n ∈ Z
so WLOG we can consider the classical Wilson lines

W (n, γ) := exp

(
in

∮
γ
A

)
(2.61)

♣r is a poor choice

of notation since it

looks like a radius.

♣
Before we take e2 → ∞ the correlation functions of these Wilson lines in the path

integral will depend strongly on the curve γ in spacetime, as well as the proximity of all

its points to local operators such as Fµν(p). However, the e2 →∞ limit of the correlators

of (2.61) will only depend on γ up to “isotopy.” That means they will only depend on

γ up to continuous deformation of γ insider M3 minus the location of other operators.

In particular, one cannot deform one curve γ through another curve γ′. To deduce these

things we now proceed to the quantization of the “pure” Chern-Simons term where we

formally take the limit e2 →∞ in the action (2.52).

2.2.4 The Formal Path Integral Of The U(1) Chern-Simons Theory

We now consider the Chern-Simons theory with path integral measure defined by the

Chern-Simons term on its own. That is, we aim to make sense of the path integrals:∫
A/G

[dA]e
2πi κ

4π2

∫
M3

A∧dA∏
α

W (nα, γα) (2.62)

where the integral is, formally, over the space A/G of gauge equivalence classes of connec-

tions on a fixed line bundle over M3.

A few immediate comments:
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1. This is a free field theory with a quadratic action. The path integral can be rigorously

defined and everything should be completely solvable. There is no excuse.

2. The coupling constant κ plays the role of 1/~.

3. It is useful to note the classical equation of motion when we couple to a source J . If

we regard J as a 2-form then

κ

2π

∫
AdA+

∫
A ∧ J (2.63)

gives equation of motion

F = −π
κ
J (2.64)

4. The action
∫
M3

A ∧ dA does not make reference to any spacetime metric. This sug-

gests that the theory is a “topological field theory” where all transition functions,

amplitudes, correlation functions etc. are independent of distances. (We will give a

more formal and mathematical definition later.)

5. One should be cautious about jumping to this conclusion because after all, one needs

to define a measure, and when defining the correlation functions of operators some

regularization might be required. Indeed, quantum mechanically, there will be some

very mild metric dependence, but it is easily described and isolated, and in essence

this will turn out to be a true topological field theory. See sections 2.2.17 and 3.2.1

below

6. As an example of the kind of quantum subtleties we will find, the definition of the

Wilson line observables W (n, γ), will depend on extra data known as a “framing”

and in fact they are observables associated to ribbons, not curves. See section 2.2.16.

2.2.5 First Steps To The Hilbert Space Of States

The next several sections, up to, but not including section 2.2.14 below will be concerned

with the following problem: Suppose M3 = Σ2×R, where Σ2 is a closed topological surface.

There should be a (Hilbert) space of quantum states associated with Σ2. Since the theory

depends on orientation of M3 and such an orientation is determined by an orientation o(Σ2)

we expect our space to depend on Σ2, o(Σ2) and, of course, κ. We will denote it by

H(Σ2, o(Σ2), κ) (2.65)

Remark: Later when we introduce a complex structure J on Σ2 we can write H(Σ2, J, κ)

and this will be the fiber of a bundle of Hilbert spaces over the moduli space of complex

structures on Σ2.

The first observation we should make about the action∫
M3

A ∧ dA =

∫
M3

d3xεµνλAµ∂νAλ (2.66)
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is that it is first order in “time.” If we choose local coordinates (x0, x1, x2) with x0 serving

as a time then we can write A = A0dx
0 +As where As involves only “spatial components”

and

A ∧ dA = Asdx
0∂0As −A0Fs (2.67)

where Fs is the spatial component.

With this in mind we will focus on Hamiltonian quantization - breaking Lorentz sym-

metry by choosing a time. So we consider our 3-manifold to be of the form

M3 = Σ2 × R (2.68)

where Σ2 is a two-dimensional oriented surface. We can write ♣Notation question:

Σ2 oriented surface.

Later use (Σ2, J)

for surface with a

complex structure,

i.e. Riemann

surface?? ♣

∫
M3

A ∧ dA = −
∫
dx0

(∫
Σ2

As∂0As

)
−
∫
dx0

(∫
Σ2

A0Fs

)
(2.69)

Now, the action is first order in time derivatives. This is quite significant.

In general an action first order in time derivatives looks like

S =

∫
dtλi(φ)

dφi

dt
(2.70)

We should view the action as an action for trajectories in a phase space P. A phase space

is the same thing as a symplectic manifold. See Appendix A for a summary of some

definitions and facts from symplectic geometry. Note that the variation of the action is

δS =

∫
dt(∂iλj − ∂jλi)δφi

dφj

dt
(2.71)

and if the action is nondegenerate we can read off the symplectic form

ω = (∂iλj − ∂jλi)δφi ∧ δφj (2.72)

Put differently, if we write (locally) ω = dλ for some one-form λ then the action for a

trajectory along a path γ in phase space is

S =

∫
γ
λ−

∫
dtH(γ(t)) (2.73)

Locally, in Darboux coordinates we can write λ = pidq
i and hence our action is

S =

∫
pi
dqi

dt
dt−

∫
Hdt =

∫
pq̇dt−

∫
H(p(t), q(t))dt (2.74)

What we conclude from this is that

We should view the space A(P → Σ) of gauge fields on Σ (connections on P ) as a

phase space and the action is the action of a particle moving on a phase space subject to a

constraint.
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2.2.6 General Remarks On Quantization Of Phase Space And Hamiltonian Re-

duction

What Does It Mean To “Quantize A Phase Space?”

Suppose we are given a symplectic manifold P. So, it is a manifold with a closed

2-form ω = 1
2ωij(x)dxi ∧ dxj such that the antisymmetric matrix ωij(x) is invertible at all

points x on the manifold. We want to“quantize P.” Let us say precisely what we mean by

this:

First, we consider a family of symplectic forms ω(k) = kω so that we can discuss a

semiclassical limit. In our examples k will be an integer.

Want to assign a Hilbert space Hk and to suitable functions f : P → C corresponding

linear operators Q(k)(f) on Hk. We require that:

lim
k→∞

‖ Q(k)(f)Q(k)(g)−Q(k)(fg) ‖<∞ (2.75)

and

[Q(k)(f), Q(k)(g)] = − i

k
Q(k)({f, g}) +O(1/k2) (2.76)

where

{f, g} = ωij∂if∂jg (2.77)

are the Poisson brackets. Furthermore we want

(Q(k)(f))† = Q(k)(f∗) (2.78)

so that real functions correspond to self-adjoint operators.

How To Quantize Of Phase Space

There are many approaches to quantizing phase spaces. As far as we know, there is no

known general procedure. 11 However, if we are given more structure then there are some

general methods:

1. Schrödinger Quantization: Sometimes, there is a global separation of pi, q
i. As a

simple case P = T ∗M where M is a manifold. Then H = L2(M). States are nor-

malizable wavefunctions Ψ(qi) and pi = −i~∇qi are first order differential operators.

Up to operator ordering we can translate classical observables - i.e. functions on P –

into operators on H. 12

2. Sometimes the phase space has extra structures on it that allow quantization. One

good example is when P is also a Kähler manifold and there is a holomorphic line

bundle on L → P with a suitable connection. Then we can apply the method of

geometric quantization or Kähler quantization or Berezin-Toeplitz quantization. In

Appendix B we recall some essential points from the theory of geometric quantization

and coherent states.

11If we are content to work with formal series in 1/k the results of Fedosov, and Kontsevich, (see, especially

the physical interpretation of Kontsevich’s theorem by Cattaneo and Felder), do provide answers.
12In our application of the Schrödinger quantization there will be an important added subtlety that the

momenta themselves are periodic, so we will not be quantizing a phase space of the form T ∗M .
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These approaches are not universally applicable. Thanks to advances in the theory

of four-manifolds there are now plentiful examples of compact symplectic four-dimensional

manifolds which do not admit the structure of a Kähler manifold. Nevertheless, in the ex-

amples of symplectic spaces that we will encounter in these notes, the above two procedures

will suffice. In fact, we will mostly use the Kähler quantization approach.

Hamiltonian Reduction

See Appendix A for background on Hamiltonian reduction of symplectic spaces with

symplectic group action.

When we are quantizing a phase space with first order constraints generating a sym-

plectic Lie group action there are two ways to quantize:

1. First perform Hamiltonian reduction classically: Work out the space of fields with µ =

0 then work out the quotient µ−1(0)/G = P̄ then quantize the quotient. Somehow.

2. First quantize on big phase space “upstairs” and impose then impose the constraints

via operator constraints on the allowed states. In our case we quantize the space

of gauge fields using (2.87). Then we impose the Gauss law on the wavefunctionals

Ψ[A], by U(g)Ψ = Ψ for all g in the gauge group.

3. There are also mixed cases, where we impose constraints classically on some degrees of

freedom before quantization, but then we quantize the remaining degrees of freedom,

and then quantize. 13

It is not a priori obvious that one will obtain the same results from the different

procedures. One would certainly hope for this to be the case, and, thankfully, in Chern-

Simons theories things turn out well. ♣Give example

where the

procedures do not

commute? ♣
Application To Chern-Simons Theory

The symplectic form on that phase space is

ω =
κ

2π

∫
Σ
δAs ∧ δAs (2.79)

We record here the generalization to the nonabelian theory. Using a normalization of an

Ad-invariant trace on the Lie algebra g discussed in section 3.1 we have

ω =
k

4π

∫
Σ

tr (δAs ∧ δAs) (2.80)

So we go from nonabelian to U(1) by dropping tr and taking k = −2κ. To understand the

minus sign, recall that for G = U(1) we take A to be real but for general G we take A to

be Lie-algebra valued. This accounts for the relative sign between (2.79) and (3.37).

For many of you the notation δAs will be self-evident: It is a one-form on space and

simultaneously a one-form on the space of all gauge fields corresponding to a small variation

of connection.

13This applies to certain “Abelianization procedures” of the nonabelian theory. NEED TO CITE SOME

REFERENCES FOR THIS. Includes last section of [17].
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Remark: For mathematically-minded fussbudgets. Most physicists, when presented with

expressions like (2.79) just know what is the right thing to do, but for those who start

wondering about what a symbol like δA actually means, and “where it lives” the following

remarks might be useful. Given a principal bundle P →M the tangent space to the space

A = Conn(P →M) of all connections on P is canonically

TAA ∼= Ω1(M ; adP ) (2.81)

at every point A ∈ A. The space of connections is an affine space so it makes sense that

the tangent space “doesn’t depend” on the point A. To justify this note that if we have a

continuous family of connections d+A(t) then the difference at time t+ ε and t is

(d+A(t+ ε))− (d+A(t)) = A(t+ ε)−A(t) = εα+O(ε2) (2.82)

for ε → 0 where α is some globally-defined one-form in the adjoint representation. Now

suppose that γ(t) = d+A(t) is a path of connections so that the tangent vector is γ̇(0) = α.

Now, δA is the one-form such that

δA(γ̇(0)) = α (2.83)

When you see a differential form on A written in terms of δA, if you want the mathemati-

cally precise version, apply it to polyvector fields made from α1, α2, . . . and use (2.83) (and

some common sense) and you will get the kinds of formulae found in the math papers.

Another way of thinking about this is the following: If we imagine trivializing the bundle,

choosing local coordinates and choosing a basis ta for the Lie algebra g then we have local

“coordinates” Aaµ(x) on A where a, µ, x are “indices”. If you are uncomfortable with con-

tinuous indices like x then use lattice gauge theory to combine (x, µ) into a link variable.

Then we have locally defined differentials δAaµ(x) where δ means an exterior derivative in

the space of connections. So, (3.37) is shorthand for

ω|A =
κ

2π

∫
Σ
δAai (x) ∧ δAaj (x)dxi ∧ dxj (2.84)

where we choose ta to be an orthonormal basis for g in the nondegenerate form tr .

Written in local coordinates, the Poisson brackets implied by (2.79) are

{Ai(x), Aj(y)} =
π

κ
εijδ

(2)(x, y) (2.85)

Here δ(2)(x, y) is a Dirac delta function of weight one and we need to choose an orientation

on Σ2 to define εij . We choose local coordinates so that ε12 = 1. To get the normalization

right it helps to recall that if ω = dp ∧ dq then {p, q} = 1.

In the nonabelian case we have:

{Aai (x), Abj(y)} =
2π

k
εijδ

abδ(2)(x, y) (2.86)
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where A = Aai tadx
i and ta are an orthonormal basis with respect to the trace tr . where ♣Make sure this is

geometrically right -

section of correct

bundle on RHS.

Also ε is local gauge

parameter and also

tensor εij . ♣

x, y ∈ Σ2. Thus, in the most straightforward approach to quantization we would say

[Âi(x), Âj(y)] = − iπ

κ
εijδ

(2)(x, y) (2.87)

Moreover, there is a group action on the phase space: The group of spatial gauge

transformations. An infinitesimal gauge transformation by ε : M3 → R generates δA =

DAε = dε + [A, ε] Geometrically, there is a vector field V (ε) whose value on the one-form

δ on A is

V (ε)(δA) = DAε (2.88)

With the symplectic form (2.79) we can work out the corresponding moment map:

ι(V (ε))ω =
k

2π

∫
Σ

TrDAεδA

=
k

2π

∫
Σ

[d (tr εδA)− tr εDAδA]

= − k

2π

∫
Σ

tr (εDAδA) +
k

2π

∫
Σ
d (tr εδA)

(2.89)

In the case that ∂Σ2 = ∅ we have that

ι(V (ε))ω = δ

(
− k

2π

∫
Σ

TrεF

)
(2.90)

So: ♣NEED TO

CHECK SIGNS ♣
〈µ, ε〉 = − k

2π

∫
Σ2

tr (εF ) (2.91)

That is, for all points p ∈ Σ2,

{µ(ε), Ai(p)} = (−DAε)i(p) (2.92)

where we have written this in a way that will generalize to the nonabelian case.

Now recall that in Hamiltonian reduction we consider the quotient of the subspace

where µ = 0 by the symmetry group. In our case µ = 0 means we have a flat connection,

F = 0 and therefore the Hamiltonian reduction gives us the phase space

Mflat = {A ∈ A|F (A) = 0}/G (2.93)

Thus we arrive at a key result: The Hamiltonian reduction of the phase space is the

moduli space of flat gauge fields on Σ2.

Remarks:

1. In the simple U(1) case all this talk of Hamiltonian reduction is a bit of overkill: One

could just note that A0 functions as a Lagrange multiplier in the action and therefore

integration over A0 in the path integral gives a delta function δ(F12) localizing the

action on flat gauge fields.
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2. If we work with the Maxwell-Chern-Simons theory the story is quite different because

the action is second-order in time derivatives. The canonical conjugate of the gauge

field is the electric field, but there is a nontrivial line bundle with connection on phase

space. Some of this is explained in section 2.2.10. ♣NEED TO

EXPLAIN MORE

HERE! ♣
3. We will write down the explicit symplectic form on the finite-dimensional moduli

space of flat connections below. In the nonAbelian case, in contrast to the relatively

simple Poisson brackets (3.38), it is nontrivial to write down explicitly the symplectic

structure on the finite dimensional moduli space of flat connections. ♣This remark

probably goes in the

nonabelian section

and one should

discuss Goldman

brackets etc. ♣
2.2.7 The Space Of Flat Gauge Fields On A Surface

One more preliminary before we make a few remarks about moduli spaces of flat gauge

fields. Our conventions for path-ordered exponentials are in Appendix H. Note in partic- ♣They might need

to be changed:

Better to have

successive paths

lead to successive

right-

multiplications of

Pexp. ♣

ular that A is a locally defined form in g and is thus valued in anti-hermitian matrices.

We begin with a G gauge theory on any manifold X.

Quite generally, the holonomy of a flat gauge field for group G defines a map from

closed curves on X to G. If we choose a basepoint x0 for the curve so that γ(t) goes from

x0 to x0 then we define the holonomy:

Holx0(A; γ) := P exp

∮
γ
A (2.94)

where A is the flat gauge field. In general

Holx0(Ag; γ) := g−1(x0)Holx0(A; γ)g(x0) (2.95)

Therefore, if we make a gauge transformation, or change the trivialization of our bundle

near x0, then the holonomy function gets conjugated by an element g(x0) ∈ G. Therefore

only the conjugacy class is gauge invariant. Similarly, if x0, y0 are two points in the same

connected component of X and we have chosen a path then the holonomy function for

curves based at x0 is just a conjugate of the holonomy function for curves based at y0.

A key and useful general fact:

Theorem 1: The conjugacy class of the holonomy function is a complete gauge invariant

description of the gauge field in the following sense: A′ is gauge equivalent to A, i.e.

A′ = Ag = g−1Ag + g−1dg for some g ∈ G iff there exists a g0 ∈ G such that, for all based

loops γ ∈ Ωx0(X)

Holx0(A′; γ) = g−1
0 Holx0(A; γ)g0 (2.96)

Proof : A connection is, by definition, a parallel transport law. We will demonstrate that

all parallel transports are gauge equivalent. Choose a point x0 ∈ X. Let U(A(i), γx0,x0),

with i = 1, 2, be the parallel transport along a based closed loop γx0,x0 at x0. Then

U(A(1), γx0,x0) = h(x0)−1U(A(2), γx0,x0)h(x0) (2.97)
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for some h(x0) ∈ G that does not depend on the choice of closed loop γx0,x0 . By making a

suitable gauge transformation on A(2) we can put h(x0) = 1. This fixes the gauge (framing)

at x0. Now, for each x ∈ X choose a “fiducial path” γ̄x0,x from x0 to x and choose a local

framing at x. Then, trivially, there is a g(x) so that

U(A(1), γ̄x0,x) = U(A(2), γ̄x0,x)g(x) (2.98)

Now, if γ̃(x0, x) is any other path from x0 to x then γ̄x0,x ? γ̃
−1
x0,x is a closed path from x0

to x0, and so from (2.97) and (2.98) we learn that

U(A(1), γ̃x0,x) = U(A(2), γ̃x0,x)g(x) (2.99)

for any other path γ̃x0,x. So A(2) → (A(2))g is the gauge transformation that lines up all

parallel transports. It remains to check that g(x) is actually well-defined. Suppose we have

a family of fiducial paths γ̄x0,x(s) with x(0) = x(1) = x. We note that

γ̄x0,x(s=1) = γ̄x0,x(s=0) ? γ̄x0,x(s)(t = 1) (2.100)

where in the second factor on the RHS we have a closed path, parametrized by s, of the

endpoints of the fiducial paths (each of which is parametrized by t). But we know that

U(A(1), γ̄x0,x(s)(t = 1)) = g(x)−1U(A(2), γ̄x0,x(s)(t = 1))g(x) (2.101)

From this we learn that if we define a closed loop of fiducial paths we nevertheless have

the same gauge transformation g(x). ♠

Remarks

************************

For a fixed connection DA = d+A, denote holonomy function for closed curves based

at any point,

[Holx0(A, ·)] : Ωx0(X)→ C (2.102)

where C is the set of conjugacy classes of G.

DISCUSS WHEN THIS IS AND IS NOT A COMPLETE GAUGE INVARIANT.

ALSO: Consider the functions defined for R a finite-dimensional representation of G:

W (R) : A/G × Ωx0(X)→ C (2.103)

defined by

W (R)(A, γ) := TrRPexp

∮
γ
A (2.104)

Discuss when this separates points. That is, if W (R)(A′, γ) = W (R)(A, γ) for all R, γ then

A′ is a gauge transformation of A. Reference: [56]

*******************************************

Because the parallel transport composes nicely under composition of curves (again

see Appendix H for precise statements) and because the parallel transport around a small

closed curve is a series in curvatures and their covariant derivatives it follows that we have
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Theorem 2: If F (A) is a flat gauge field then the function

Holx0(A; ·) : Ωx0X → G (2.105)

only depends on γ up to homotopy and descends to a group homomorphism π1(X,x0)→ G.

Proof : Let γ(t; s) be a homotopy of γ0(t) to γ1(t) where 0 ≤ s ≤ 1. Then consider the

function of s given by Holx0(A, γ(·, s)). From properties of the path ordered exponential

we can derive:

d

ds
Holx0(A, γ(·, s)) =

∫ 1

0

(
P exp

∫ γ(t,s)

x0

Aµ
dxµ

dt
dt

)
dxµ

ds

dxν

dt
Fµν(γ(t, s))

(
P exp

∫ x0

γ(t,s)
Aµ

dxµ

dt
dt

)
(2.106)

If Fµν = 0 then this variation is zero so Holx0(A, γ) only depends on the homotopy class

of γ. It follows from the composition properties of the holonomy that, as a function on

π1(X,x0) for fixed A this is a group homomorphism ♠.

We conclude that, if we restrict to flat gauge fields then the holonomy map is a group

homomorphism π1(X,x0)→ G that captures all the gauge invariant information in the flat

gauge connection. Therefore, the moduli space of flat G connections on X is, always,

Mflat
∼= Hom(π1(X,x0), G)/G (2.107)

where on the RHS G acts on a homomorphism φ : π1 → G by conjugation:

(g · φ)([γ]) := g−1φ([γ])g (2.108)

Remarks:

1. Equation (2.107) also holds when G is disconnected. If G is finite we are talking about

finite covering spaces. Each G bundle has a unique connection, and it is necessarily

flat. (One way to see this is that the Lie algebra of G is the zero vector space and

the curvature of a connection is always valued in the Lie algebra.)

2. Note that we always have the trivial homomorphism φ([γ]) = 1G for all [γ]. Therefore,

the moduli space is always nonempty.

3. If π1 is a finitely generated group then one can presentMflat more explicitly as follows:

Choose generators γi, i = 1, . . . , N , and relations Ra, a = 1, . . . ,M , for π1(X,x0).

A homomorphism φ is characterized by the images φ(γi) = gi ∈ G. If G is finitely

generated then Hom(π1(X,x0), G) can be viewed as a subspace of GN . For we can

fix N generators (γ1, . . . , γN ) and our homomorphism is completely determined by

the images (g1, . . . , gN ) ∈ GN under φ. However, the equation φ(γi) = gi will only

define a consistent homomorphism if the images gi are consistent with the relations

Ra. Since φ is a homomorphism we must have φ(Ra) = 1G. On the other hand,
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since the Ra are words in the γi and φ is a homomorphism the image of Ra under

φ must be a corresponding word in the gi. This defines constraint equations on

the possible choices of gi. For matrix groups, they are polynomial equations on the

matrix elements of the gi. Thus, Hom(π1(X,x0), G) is an algebraic subspace of GN

defined by the relations. This subspace is then invariant under overall conjugation by

G. Note that, since it is an algebraic variety we can expect there will be singularities

in general.

4. When G is a positive dimensional Lie group we can, typically, deform the gi (con-

sistent with the relations), and so Mflat will be some positive dimensional space.

However, it will clearly be singular because of the quotient by the conjugation action

of G. These are singularities above and beyond the algebraic singularities of the pre-

vious remark. For example, the trivial homomorphism φ(γ) = 1G for all γ ∈ π1 is a

fixed point under the conjugation action of all of G. So, the space is always singular

at least at one point. And there will typically be other singularities from the quotient

by G at other homomorphisms where the centralizer jumps. The “moduli space” is

more properly understood as a “moduli stack” for exactly this reason.

5. One criterion for determining if we are working at a nonsingular point is to choose a

faithful representation ρ : G → GL(V ) of G. Then ρ ◦ φ makes V the carrier space

of a representation of π1(X,x0). If this representation is irreducible then φ will be a

stable point of Hom(π1(X,x0), G) and it should be a smooth point. ♣Clear for surface

groups. Be careful

about making too

general a statement.

♣

We can now specialize in two independent ways:

First, we takeX = Σ2 to be a two-dimensional surface, butG is not necessarily Abelian.

In this case the holonomy is completely determined by the holonomy on the generators of

π1(Σ2, x0), so, choosing αI , β
I cycles as in figure 2 with corresponding holonomies AI , BI

this space is quite explicitly:

{(AI , BI) ∈ G2g|
g∏
I=1

[AI , BI ] = 1G}/G (2.109)

If there are punctures x1, . . . , xn then we have holonomies Ci around the punctures and we

have

{(AI , BI) ∈ G2g|
g∏
I=1

[AI , BI ]

n∏
i=1

Ci = 1G}/G (2.110)

If G has positive dimension this space has dimension

dimMflat = (2g+n) dimG−dimG−dimG = (2g−2+n) dimG = −χ(Σ2) dimG (2.111)

Second, in the case thatG is Abelian, butX is general, the homomorphism π1(X,x0)→
G factors through a homomorphism from the homology: H1(X;Z)→ G. This follows from
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Figure 2: A choice of generators of π1(Σ2, x0) for the case of a genus two surface with three

punctures.

Stokes’ theorem: If γ − γ′ = ∂Σ then 14

exp[i

∮
γ
A]/ exp[i

∮
γ′
A] = exp[i

∫
Σ
F ] = 1 (2.112)

In fact, this argument shows that in the Abelian case, the holonomy only depends on the

homology class [γ] ∈ H1(Σ2;Z).

Now, taking G = U(1) and X = Σ2 we therefore have

Mflat = Hom(H1(Σ2;Z), U(1)) (2.113)

Now Σ2 has no torsion in its homology so we can safely say:

Hom(H1(Σ2;Z), U(1)) ∼= H1(Σ2;R)/H1(Σ2;Z) (2.114)

This can be understood more directly as follows: We can directly solve F = dA = 0.

First of all, this implies that the first Chern class, which is measured by
∫

Σ2
F/2π = 0.

14Recall our convention that for the special case when G is a torus group we consider A to be real.
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Figure 3: A standard choice of basis for the homology of a genus g surface (given its presentation

as the surface of a handlebody.

Therefore, we can think of A as a globally well-defined 1-form. Since dA = 0 it is a closed

one-form. But we must mod out by the shifts A → A + ω where ω ∈ Ω1
2πZ(Σ2). The

resulting space is just

Mflat = H1(Σ2;R)/H1(Σ2;Z) (2.115)

This is just a torus of dimension 2g. If we choose explicit generators AI , BI for the homology

(as, for example, in 3) then we have coordinates

eiθI = e
i
∮
AI

A
eiφI = e

i
∮
BI

A
(2.116)

In these coordinates we can write

A = θIαI + φIβI (2.117)

where αI , βI is a dual basis of degree one cohomology classes and

ω =
κ

π
δθI ∧ δφI (2.118)
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Remarks:

1. Dimension Formula. Alert readers will note that (2.111) can sometimes be negative.

Indeed, this is a virtual dimension formula. If the conjugation acts freely at a smooth

point of Hom(π1, G) then it truly gives the dimension of a manifold. However, if the

group action is ineffective then the true dimension is not given by the formula (if

we even have a manifold at all). For example, consider the case where Σ2 is S2

with no punctures. Then π1 is the group with one element and there is only one

homomorphism. The moduli stack is that stack pt//G and formally has negative

dimension. In the next sections we will study the torus with G = U(1). In this case,

the commutator equation in fact poses no constraint and conjugation acts trivially.

So, the true dimension is

2g dimG = 2× 1× 1 = 2 (2.119)

and the two formal subtractions −dimG − dimG contribute −2 to the virtual di-

mension, which is zero. In a sense, every point is “singular” since the division by the

conjugation action is trivial everywhere.

2. Intrinsic definition of the symplectic structure. We have seen from (2.93) that the

space of flat gauge fields on Σ2 is a Hamiltonian reduction of a symplectic space and

therefore the symplectic form is inherited from (2.79). It is rather straightforward to

write it down for the Abelian case, as we did above. It is more challenging to write

an explicit formula in the nonabelian case. This was done in [24, 25] and we give a

brief description here. Denote π := π1(Σ2, x0). Suppose we have a homomorphism

φ : π → G. By constructing a tangent vector v to the space of homomorphisms at φ

one easily sees that v should be considered as a group cocycle φ ∈ Z1(π; gAd(φ)). Here

we are using group cohomology with coefficients in a representation of π obtained by

taking ρ(γ) := Ad(φ(γ)) acting on g. In order to understand this, suppose we have a

family of homomorphisms φt : π → G defining a path through φ = φ0 at time t = 0.

Then, for every γ ∈ π we have a path of group elements in G: φt(γ) = gγ(t). Now,

define

v : π → g (2.120)

by

v(γ) := φ(γ)−1 d

dt
|0φt(γ) = gγ(0)−1 d

dt
|0gγ(t) (2.121)

Now we must impose the group homomorphism property:

φt(γ1)φt(γ2) = φt(γ1γ2) (2.122)

for all γ1, γ2 ∈ π. Taking a derivative at t = 0 and multiplying the equation on the

left by φ0(γ1γ2)−1 gives:

Ad(φ0(γ2))v(γ1)− v(γ1γ2) + v(γ2) = 0 (2.123)
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This is precisely the group cocycle condition for coefficients in g where g is thought

of as a π-representation via γ → Ad(φ(γ)). The space of such cocycles is denotes

Z1(π; gAd(φ)). On the other hand, if we make a family of homomorphisms

φt(γ) = g(t)−1φ(γ)g(t) (2.124)

with some family g(t) = e−tX where X ∈ g we clearly should mod out by such tangent

vectors since our space is obtained with a quotient by the conjugation action of G.

Again taking a derivative at t = 0 shows that such tangent vectors are

v(γ) = Ad(φ(γ))X −X (2.125)

This is precisely the definition of coboundaries B1(π; gAd(φ)). Thus, we conclude that

there is a natural isomorphism

T[φ]Mflat
∼= H1(π; gAd(φ)) (2.126)

Now, because Σ2 has a simply connected cover 15 we can identify the group coho-

mology with the singular cohomology Hk(π;M) ∼= Hk(Σ2;M). Indeed, if we have a

flat G bundle P → Σ2 then there is an adjoint bundle and the tangent space to the

space of flat G bundles is H1(Σ2; adP ). Using the trace form on g and multiply and

integrate we get a map

H1(π; gAd(φ))×H1(π; gAd(φ))→ R (2.127)

and this is Goldman’s description of the symplectic form. One useful way to describe

it is in terms of the Poisson brackets of the classical Wilson lines. In general, if

f : G→ R is an Ad-invariant function let df : G→ g be the function defined by

d

dt
|0f(getX) = tr (df(g)X) (2.128)

Then in [25] it is shown that if WR(γ,A) = TrRP exp
∮
γ A then one can write a

beautiful explicit formula for the Poisson brackets of these functions:

{WR([γ1], ·),WR([γ2], ·)} =
∑

p∈γ1∩γ2

ιp(γ1, γ2)tr (dWR(γ1(p), ·)dWR(γ2(p), ·)) (2.129)

In this formula we have chosen generic representatives γ1, γ2 for the homotopy class

that intersect transversally in a finite number of points. For p ∈ γ1 ∩ γ2 we denote

by γi(p) the representative of γi based at p. It is not obvious, but it is true that the

choice of representative used on the RHS does not matter.

The bracket (2.129) is very reasonable given the Poisson brackets on the gauge fields

in (3.38): The delta-function support means there can only be contributions from

the intersections. One can then do a simple local analysis to derive the formula. ♣SHOULD DO

THIS IN DETAIL!!

ESSENTIALLY

THIS IS WHAT IS

DONE IN

APPENDIX B OF

GMN2 ♣

15This is the uniformization theorem: For g = 0 it is simply connected, for g = 1 the cover is C, for > 1

it is the upper half-plane, or equivalently the disk. Technically, the condition we are using is that, so long

as Σ2 is not the sphere with no punctures, the surface is a K(π, 1) space.
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For the case where f(γ,A) = 2Reχfund(γ,A) for G = GL(n,R) or GL(n,C) this

simplifies to

{f(γ1, ·), f(γ2, ·)} =
∑

p∈γ1∩γ2

ιp(γ1, γ2)f(γ1(p) · γ2(p), ·) (2.130)

2.2.8 Quantization Of Flat Connections On The Torus: The Real Story

We now specialize to Σ2 = T 2, the two-dimensional torus.

Here we have one of the most basic and most easily accessible examples of a quantiza-

tion of a Chern-Simons theory. Therefore, we will cover it in excruciating detail.

We describe it as T 2 = R2/Z⊕ Z that is, we choose coordinates (σ1, σ2) with

σi ∼ σi + 1 i = 1, 2 (2.131)

There are two generators of π1 and we can take as representatives:

α : γ(t)(σ1(t), σ2(t)) = (t, 0) 0 ≤ t ≤ 1

β : γ(t)(σ1(t), σ2(t)) = (0, t) 0 ≤ t ≤ 1
(2.132)

The gauge equivalence class of the flat U(1) gauge field is described by the holonomies

around the α, β cycles:

U1 = Hol(α) = exp i

∮
α
A U2 = Hol(β) = exp i

∮
β
A (2.133)

We can define logarithms:

Ui = eiai ai ∈ R/2πZ (2.134)

Put differentialy, the most general flat U(1) gauge field on T 2 is

A = a1dσ
1 + a2dσ

2 (2.135)

where we must identify ai ∼ ai + 2πZ because of large gauge transformations. To get the

correctly normalized symplectic form we substitute into the action:

κ

2π

∫
T 2×R

AdA =
κ

2π

∫
dt(a1ȧ2 − a2ȧ1) (2.136)

so we recover a specialization of the general result **** above:

ω =
κ

π
da1 ∧ da2 (2.137)

Remarks

1. In our normalization the semiclassical number of states in the Hilbert space is given

by the symplectic volume of ω/(2k). In the present case that is:∫
Mflat

ω

2π
= 2κ (2.138)
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2. To quantize we will need to choose which coordinate on phase space is “position” and

which is a “momentum.” Clearly there is an ambiguity here. Classically we can make

symplectic transformations on the ai valued in Sp(2,R). Because of the periodicity

conditions on the ai we are only allowed to make transformations in Sp(2,Z). So we

take (
a1

a2

)
→ A

(
a1

a2

)
(2.139)

where

A =

(
α β

γ δ

)
∈ SL(2,Z) = Sp(2,Z) (2.140)

♣This remark now

redundant with

material in 2.2.12.

♣
3. These canonical transformations can also be identified with the action of large dif-

feomorphisms of the torus. The transformation (2.139)(2.140) is equivalent to(
σ̃1

σ̃2

)
=

(
δ −γ
−β α

)(
σ1

σ2

)
(2.141)

Clearly, this is a diffeomorphism of the torus. In fact, it is a nontrivial diffeomorphism

in the following sense:

In general, if X is a smooth manifold one can put a topology on the group of all diffeo-

morphisms of X. This is an infinite-dimensional (Banach) Lie group. The connected

component of the identity is a normal subgroup and the quotient Diff(X)/Diff0(X)

is often called the group of large diffeomorphisms. 16 In the case of the torus, using the

simple relation to the universal cover, one can show that Diff+(T 2)/Diff+
0 (T 2) ∼=

SL(2,Z).

4. We will discuss later how these canonical transformations/diffeomorphisms act on

the Hilbert space of the theory.

For the moment, let us choose a2 to be the coordinate, so the measure becomes

exp

(
i
κ

π

∫
dta1ȧ2

)
(2.142)

Easy enough: Upon quantization we must have

[â1, â2] = −i
π

κ
(2.143)

We describe the quantum states by normalizable wavefunctions ψ(a2) and momentum

pa2 =
κ

π
a1 (2.144)

But now we need to impose periodicity: First of all, ψ(a2) must be periodic under

a2 ∼ a2 + 2πn, n ∈ Z.

16More properly, a large diffeomorphism is an element of Diff(X) that passes to a nontrivial element of

the quotient.
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However, and this is very different from the quantization of a particle moving on a

circle, we also must have periodicity in a2.

Normally, periodicity in position space implies that momenta are quantized, so that

the De Broglie waves can fit in the periodic space. Therefore, we expect that periodicity

in momenta should quantize the positions.

Indeed, if we quantized with a1 as coordinate then

â2 = i
π

κ

∂

∂a1
(2.145)

so exp(−iκπαâ2) translates a1 → a1 + α and therefore, if we wish to have periodicity

a1 ∼ a1 + 2π then, returning to the Schrödinger picture with a2 as coordinate and states

as wavefunctions ψ(a2) we must have

e−i2κâ2ψ = ψ (2.146)

But, since we are in the Schrödinger representation with a2 as coordinate this implies

e−i2κa2ψ(a2) = ψ(a2) (2.147)

This implies that ψ can only have support on the values of a2 given by a2 = nπ
κ mod2πZ

so the different possibilities are n = 0, . . . , 2κ− 1mod2κ.

Conclude: Since both momentum and coordinate are periodic, the general wavefunc-

tion is of the form

ψ =

2κ−1∑
n=0

ψnδ
(
a2 −

nπ

κ

)
ψr ∈ C (2.148)

♣DOESN’T LOOK

VERY

NORMALIZABLE!

JUSTIFY ♣
We conclude that the Hilbert space of states on the torus H(T 2) is a complex Hilbert

space of dimension 2κ.

The problem is isomorphic to the quantization of a particle on a discrete approximation

to a ring: We think of the ring as U(1) and the “discrete approximation” as the embedding

of the cyclic group Z2κ.

2.2.9 Quantization Of Flat Connections On The Torus: The Coherent Story

In this section we endow the topological surface Σ2 with a complex structure J . Together

(Σ2, J) defines a Riemann surface.

We first consider the case where Σ2 is a torus, as in the previous section. The general

complex structure produces on the torus gives a Riemann surface which can be written as

an elliptic curve:

(Σ2, J) = Eτ = C/(Z⊕ τZ) (2.149)

where τ is a complex number and it must have a nonzero imaginary part so the quotient

is a nice manifold. The complex structure is determined by saying that

dζ = dσ1 + τdσ2 (2.150)

is a (1, 0) form. We need to choose an orientation on Σ2 and we choose dσ1 ∧ dσ2. Given ♣Find a bettter

font: Need a fancy

z here. ♣
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a complex structure there is a canonical orientation idζ ∧dζ̄. Working this out, we see that

we should choose Imτ > 0.

Math fact: τ, τ ′ define equivalent complex structures if

τ ′ =
aτ + b

cτ + d

(
a b

c d

)
∈ SL(2,Z) (2.151)

That is Eτ is isomorphic to Eτ ′ as a complex manifold iff(2.151) holds. Thus we have a

moduli space (“stack”) of complex structures

Mcplx(Σ2) ∼= H/SL(2,Z) (2.152)

***********************

Keyhole. Explain word ”stack” in terms of the two order 2,3 orbifold points.

***********************

The complex structure on Σ2 induces a complex structure on the space of flat gauge

fields:

A = a1dσ
1 + a2dσ

2

= aζdζ + aζ̄dζ̄

aζ =
a2 − τ̄ a1

τ − τ̄

aζ̄ = −a2 − τa1

τ − τ̄

(2.153)

The aζ and aζ̄ serve as (anti-)holomorphic coordinates on the moduli space of flat

connections.

It will actually be useful to define slightly modified coordinates:

ãζ̄ = (a2 − τa1)/2π

ãζ = (a2 − τ̄ a1)/2π
(2.154)

Because we want our wavefunctions to vary holomorphically with complex structure, and

not anti-holomorphically 17 we will take z = ãζ̄ . We normalize it so that it has periodicity

z ∼ z + n+mτ n,m ∈ Z (2.156)

Now the Poisson brackets are

{z, z̄} =
Imτ

2πi

1

κ
(2.157)

17The more conceptual reason for this is that the Cauchy-Riemann operator ∂̄A changes under variation

of complex structure by

∂̄A → ∂̄A + µ∂A (2.155)

where µ is a Beltrami differential: A form of type (−1, 1). The space of closed Beltrami differentials can be

canonically identified with the holomorphic tangent space to the space of complex structures on Σ2.
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and we have, using (2.79)

ω

2π
=

κ

(2π)2

∫
T 2

δAs ∧ δAs

=
κ

2π2
δa1 ∧ δa2

= iκ
dz ∧ dz̄

Imτ

= (2κ)
i

2π
∂∂̄K

(2.158)

where we define:

K = 2π
(Imz)2

Imτ
(2.159)

so that

∂∂̄K =
π

Imτ
dz ∧ dz̄ (2.160)

One way (out of many) to derive the wavefunctions is the following: Berezin-Toeplitz

quantization tells us to find a holomorphic line bundle Lκ → Eτ with an invariant Hermitian

metric

‖ s(z) ‖2= e−Kκ |s(z)|2 (2.161)

where, up to a Kähler transformation,

Kκ = (2κ)K = 4πκ
(Imz)2

Imτ
(2.162)

The inner product on the Hilbert space is

〈ψ1, ψ2〉 =

∫
Eτ

e−Kκψ∗1(z)ψ2(z)
ω

2π
(2.163)

where we use a local trivialization of the line bundle so that we think of ψ1(z), and ψ2(z)

as locally defined holomorphic functions. Equivalently: We pull back to the universal cover

and integrate over a fundamental domain in C for the action of Z + τZ by translation. ♣OVERALL

NORMALIZATION

OF THE INNER

PRODUCT ???? ♣
It is useful to consider a basic holomorphic line bundle Lθ → Eτ where we use the

metric with

Then we can take Lκ = L⊗2κ
θ .

How shall we describe holomorphic sections of Lθ? Well,

e−2π
(Imz)2

Imτ |ψ(z)|2 (2.164)

must be well-defined. So we can lift ψ(z) to an entire function on the universal cover,

namely, the complex z-plane and then we require invariance under z → z + a + bτ where

a, b ∈ Z. Now under z → z + a we must have ψ(z) transform at most by a phase, and

since it is holomorphic that phase must be 1. On the other hand, under z → z+ bτ a short

computation shows that

e−2π
(Im(z+bτ))2

Imτ = e−2π
(Imz)2

Imτ e2πib(z−z̄)+iπb2(τ−τ̄)

:= e−2π
(Imz)2

Imτ eb(z, τ)−1eb(z, τ)
−1

(2.165)
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where

eb(z, τ) = e−iπb2τ−2πibz (2.166)

Again, using holomorphy to eliminate a possible extra phase dependence we learn that the

lift of the section to the universal cover must be an entire function that is quasiperiodic

and satisfies the functional equation:

ψ(z + a+ bτ) = eb(z, τ)ψ(z) a, b ∈ Z (2.167)

We will set e1(z, τ) = e(z, τ). We can easily solve this functional equation: Invariance

under z → z + 1 means that ψ(z) must have a Fourier expansion:

ψ(z) =
∑
n∈Z

ψne
2πinz (2.168)

and then the transformation under z → z + τ implies

ψn+1 = eiπ(2n+1)τψn n ∈ Z (2.169)

and hence ψn = ψ0e
iπn2τ .

Thus, in this basic case there is a one-dimensional space of sections, and it is spanned

by the Riemann theta function:

θ(z, τ) =
∑
n∈Z

eiπn2τ+2πinz (2.170)

Although we have written θ(z, τ) as an entire function on the z-plane it can also be

viewed as a holomorphic section of a holomorphic line bundle. ♣Redundant? ♣

Then we define a complex line bundle associated to a principal U(1) bundle of Chern

class 1 by

L = (C× V )/(Z⊕ Z) (2.171)

where we think of V as the one-dimensional representation of U(1). The a pair (g1, g2) of

generators of Z⊕ Z act by

g1 : (z, ψ)→ (z + 1, ψ)

g2 : (z, ψ)→ (z + τ, e(z, τ)ψ)
(2.172)

If we take V` to be V ⊗`, the charge ` representation of U(1) then we have

L⊗` = (C× V`)/(Z⊕ Z) (2.173)

where now the generators act by

g1 : (z, ψ)→ (z + 1, ψ)

g2 : (z, ψ)→ (z + τ, e(z, τ)`ψ)
(2.174)

Consequently, holomorphic sections of L⊗` obey the identities:

ψ(z + 1) = ψ(z)

ψ(z + τ) = e−`πiτ−2`πizψ(z)
(2.175)
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When ` ≥ 0 there will be global holomorphic sections. When ` < 0 there are no global

holomorphic sections.

Now, as we said, in quantizing level κ U(1) Chern-Simons we have L2κ
θ as the relevant

holomorphic line bundle so if ψ(z) is a wavefunction then

〈ψ1, ψ2〉 =

∫
Eτ

e−4πik
(Imz)2

Imτ ψ∗1(z)ψ2(z)
ω

2π
(2.176)

The line bundle has c1(L2κ
θ ) = 2κc1(Lθ) = 2κ and there will be a 2κ-dimensional space of

holomorphic sections. A natural basis of sections is given by the level κ theta functions,

Θµ,κ. See Appendix D for more details about level κ theta functions.

Remark: Here we are assuming that κ > 0. If we flip the orientation of Σ2 that changes

the orientation of Mflat and then we would need to take κ < 0 to have nonzero sections.

In conclusion, when we choose the extra data of a complex structure J on Σ2 we can

construct a space of physical states H(Σ2, J) of the Chern-Simons theory. A basis for the

physical states on the torus, in holomorphic quantization, is

χµ,κ(z, τ) =
Θµ,κ(z, τ)

η(τ)
µ ∼ µ+ 2κ (2.177)

The factor of 1/η(τ) is not at all obvious at this point. We will discuss it below. It can be

obtained by:

1. Parallel transport over the moduli space of complex structures.

2. Normalizing the wavefunctional Ψ[A] in the quantization of the space of all gauge

fields (subject to the Gauss law).

Important Remark: In this way of quantizing we get a space of states H(Σ2, J) that

depends on the complex structure J on Σ2. But J is not part of the data of the problem!

In a topological field theory we need to “get rid of” the J dependence. We should view

H(Σ2, J) as a fiber of a vector bundle over Mcplx(Σ2). The statement that the space of

states is “independent of J” is implemented by the existence of a projectively flat connection

on this bundle. See below for more about that connection.

*************************************

SHOULD DISCUSS THE COVARIANT DERIVATIVE: CHERN-CONNECTION FOR

THE ABOVE HERMITIAN METRIC

*************************************

Generalization To Compact Riemann Surface Of Genus g

One advantage of the coherent state approach is that it is readily generalized to a

compact oriented surface Σ2 of genus g.
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Recall that the phase space can be identified with the 2g dimensional torus P =

H1(Σ;R)/H1(Σ;Z).

If we give Σ2 a complex structure, so that it becomes a Riemann surface then, as in

the torus case we described explicitly, Mflat inherits a complex structure with

T 1,0Mflat
∼= H0,1(Σ2) (2.178)

Thus, our torus, P ∼ (S1)2g is now a complex torus. The prequantum line bundle Lk →
Mflat becomes Lk = L⊗2k

θ where Lθ is again a standard holomorphic line bundle with a one-

dimensional space of holomorphic sections. This fits into a general story: (See Appendix

E for more details.)

1. Given a symplectic lattice with an integral symplectic form one can canonically form

a Heisenberg group as a U(1) extension of Λ⊗ R/Λ.

2. That Heisenberg group is a principal U(1) bundle over the torus Λ⊗ R/Λ.

3. To represent that Heisenberg group we need to choose a Lagrangian decomposition

of the lattice.

4. Moreover, if we in addition have a compatible complex structure then the complex

line bundle associated to the Heisenberg group by the defining representation of U(1)

is a holomorphic line bundle with canonical connection, whose curvature represents

c1(L).

5. The holomorphic section can be lifted to the universal cover Λ ⊗ R ∼= Cn and in

terms of the complex structure is an entire function. It is a quasi-periodic function

with factor of automorphy determined by the cocycle of the Heisenberg group. This

defines the basic theta function.

6. A basis of the holomorphic sections of L⊗2κ
θ are the level κ theta functions defined

relative to a Lagrangian splitting of Λ.

In our case, the symplectic lattice is just H1(Σ;Z) with the symplectic form provided

by the intersection form. (Remember: Σ is oriented.) Then a complex structure on Σ

induces a complex structure on H1(Σ;R) as mentioned above. The rest is just running the

machine.

In very concrete terms: Choose a basis of A,B cycles on Σ and dual 1-forms αI , β
I ,

I = 1, . . . , g. Then there is a basis of harmonic (0, 1) forms:

fI := αI + τIJβ
J I = 1, . . . , g (2.179)

while the harmonic (1, 0) forms are spanned by

f̄I := αI + τ̄IJβ
J I = 1, . . . , g (2.180)
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Here τIJ is an element of the Siegel upper half space. 18

Once one has the period matrix there is a straightforward definition of the level κ theta

functions given in (E.65). The Chern-Simons wavefunctions, as holomorphic functions on

the space of flat gauge fields on Σ, are linear combinations of these. It is a bit trickier to

include properly the dependence on complex structure in the Chern-Simons wavefunctions.

This gets us into sections of determinant line bundles over the moduli space of complex

structures. A basis for the space of physical wavefunctions is

χβ,κ(z, τ) =
Θβ,κ(z, τ)

Det∂̄
(2.181)

where Det∂̄ is the holomorphic section of the determinant line bundle DET(∂̄)→Mcplx. ♣THIS NEEDS

MUCH MORE

EXPLANATION. ♣In particular:

1. The complex dimension of the Hilbert space H(Σ) is (2κ)g. ♣Forward ref. to

section 2.2.12 here.

♣
2. It is straightforward to compute the action of the modular group on these.

3. The action of the modular group factors through Sp(2g;Z) and indeed there is an

action of the entire group Sp(2g;Z) because this is just the group of symplectic

automorphisms of the symplectic torus.

4. There is an analogue of the heat equation (??) for the higher genus theta functions.

2.2.10 Quantization Of Flat Connections On The Torus: Landau’s Story

We can also obtain the results in an interestingly different way using the nontopological

massive Chern-Simons theory described in section 2.2.3.

Here we are following [26]. This method is very useful for describing singleton degrees

of freedom in the AdS/CFT correspondence [26, 8], as well as describing certain topological

aspects of M5-branes and the M-theory C-field [45]. We have somewhat simplified the gen-

eral story here. For a completely general quantization of Maxwell-Chern-Simons theories

including their p-form generalization see section 6 of [20].

In the present theory, thanks to linearity the space of (not necessarily gauge inequiv-

alent) solutions of the equations of motion is a product

S = Sf × Snf (2.182)

where Sf is the space of flat solutions F = 0. These are the solutions of the topological

sector. We can decompose A = Af +Anf where Anf is orthogonal to the flat subspace in,

say, the Hodge metric. ♣CHANGE

NOTATION FROM

X TO Σ2. Also

k → κ in this

subsubsection!!! ♣

Let us work out the Hamiltonian formulation on a spacetime of the form X ×R, with

metric −dt2 + gijdx
idxj and orientation dtdx1dx2. The canonically conjugate momentum

as a vector-density is (ε12 = +1):

18In the most concrete terms, the Siegel upper half-space is the space of symmetric g×g complex matrices

whose imaginary part is positive definite.
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Πi =
1

e2

√
ggij(Ȧj − ∂jA0) + 2πkεijAj (2.183)

We find a Hamiltonian density

H =
e2

2
√
g
gijE

iEj +
1

2e2
F ∧ ∗2F (2.184)

where ∗2 is the Hodge star on X and

Ei := Πi − 2πkεijAj (2.185)

(We will also denote Ei = Π̃i.) The Gauss law is:

∂iΠ
i + 2πkεij∂iAj = 0 (2.186)

If we formulate the theory “upstairs” in A0 = 0 gauge then phase space has coordinates

(Πi, Ai) and symplectic form:

ω =

∫
X
δΠi ∧ δAi (2.187)

where δ is exterior derivative on the infinite dimensional phase space. Notice that when

(2.187) is restricted to the subspace of flat gauge fields we get second class constraints and

the phase space is the Chern-Simons symplectic form

ωf =

∫
X

2πkδA ∧ δA (2.188)

This is gauge invariant on the subspace F = 0 and one may then perform Hamiltonian

reduction.

*****************************************

THIS IS NOT QUITE RIGHT! CORRECT VERSION IS DESCRIBED IN [20]

*****************************************

It is instructive to reconsider the e2 → ∞ limit. Using (2.184), we see that if we

restrict to finite energy field configurations then we must set Ei = 0. Then, by the Gauss

law we must put F = 0. As we have said, restriction to this subspace imposes second class

constraints and we are restricting to the flat factor in phase space.

If we quantize on phase space and then impose the Gauss law we have wavefunctionals

Ψ[Ai], and we quantize using the symplectic form (2.187). Thus

Πi = −i δ

δAi
(2.189)

Since we can split A = Af +Anf and the Hamiltonian does not mix these, the Hilbert

space of the theory is naturally thought of as a product

H = Hf ⊗Hnf (2.190)

where Hf is the space of wavefunctions of flat potentials.

– 48 –



The Gauss law is:

Ψ(A+ ω) = e−2πik
∫
ω∧AΨ(A) (2.191)

This is valid also for large gauge transformations. 19 Here ω is a closed 1-form with

integral periods. Note that this does not affect the Anf variable.

We will determine the Hamiltonian for the singletons by considering the Euclidean

path integral of the theory on the solid torus, and then interpreting that path integral in

terms of Hamiltonian evolution in the radial direction.

Since our action is second order in derivatives, when formulating the path integral on

the solid torus we should specify all of AX on the boundary X. This is to be contrasted

with the Chern-Simons path integral which is a phase space path integral, and in which

we specify just one component of AX on the boundary X.

Let us consider the Euclidean partition function of the theory on a solid torus with

radius ρ: Yρ. We assume the torus has a metric that behaves asymptotically like dρ2 +

Ω2(ρ)gX . The path integral defines a state ΨYρ(A) defined by

ΨYρ(A) =

∫
dAY

vol (G(Y ))
e−
∫

1
2e2

dA∗dA+2πik
∫
AdA (2.192)

where G(Y ) is the gauge group on Yρ. We can understand the behavior for ρ → ∞
just from the above understanding of the spectrum.

We can view the evolution to large ρ as evolution in a Euclidean time direction. The

large ρ behavior projects onto the lowest energy states.

lim
ρ→∞

ΨYρ(A) = e−ρ2π|k|e2Ψ0 (2.193)

with Ψ0 in the space of ground states on the torus. The insertion of local operators

such as Wilson lines or other disturbances induces transitions between vectors within this

space of ground states.

Hilbert Space For Quantization Of The Flat Gauge Fields

We now consider quantization on T 2 ×R. Our wavefunction is Ψ(Af )⊗Ψ(Anf ). The

spectrum of the nonflat sector is clear, and we take the unique groundstate wavefunction

for this factor: It is the product of harmonic oscillator groundstates for the oscillators of

the massive scalar described by [15, 14]. In this section we drop this factor so we can focus

on the dependence on Af .

To simplify matters, we work on a torus X = T 2 with z = σ1 +τσ2 and metric Ω2|dz|2,

σi ∼ σi + 1. We fix the small gauge transformations by assuming Af is constant.

19This requires explanation. The proper mathematical formulation involves regarding Ψ as a section of

a line bundle over the space of gauge potentials A(X) on X. We then lift the group action, and find that

a lift only exists when c1(P ) = 0. There is a canonical trivialization of the line in this case, as well as a

canonical connection, and the wavefunction becomes a function. A similar discussion holds for the more

subtle case of the M-theory C-field [16].
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In complex coordinates A = Azdz +Az̄dz̄ we have

Π̃z = −i
(

∂

∂Az
− 4πkImτAz̄

)
Π̃z̄ = −i

(
∂

∂Az̄
+ 4πkImτAz

) (2.194)

so that the Hamiltonian density is:

H =
e2

4Imτ
(Π̃zΠ̃z̄ + Π̃z̄Π̃z) (2.195)

Note that these do not commute: [Π̃z, Π̃z̄] = −8πkImτ . The ground state energy

density is 2π|k|e2 and is infinitely degenerate, as in the standard Landau-level problem.

If k > 0 we have

Π̃z̄Ψ = 0⇒ Ψ = e−4πkImτAzAz̄ψ(Az) (2.196)

If k < 0 we have

Π̃zΨ = 0⇒ Ψ = e4πkImτAzAz̄ψ(Az̄) (2.197)

Where ψ are holomorphic. Indeed, if we take ψ = ψλ, where

ψλ(x) := eλx (2.198)

then the set of wavefunctions {Ψλ|λ ∈ C} is an overcomplete set spanning the lowest

Landau level.

The set of states spanned by (2.198) is infinite dimensional, but when we consider

gauge invariant wavefunctions on the torus the LLL becomes finite dimensional. We have

already enforced the invariance under small gauge transformations by choosing our flat

connections to be constants on the torus. We can impose the invariance under large gauge

transformations by averaging over large gauge transformations. Given any wavefunction

Ψ(A) the average:

Ψ̄(A) :=
∑
ω∈H1

Z

Ψ(A+ ω)e2πik
∫
ωA (2.199)

where H1
Z are the harmonic 1-forms with integral periods, transforms according to the

Gauss law (2.191).

If we consider the space of functions of Az spanned by the expressions of the form

(2.199) where we take functions in the LLL as our test function then, because the LLL

is an infinite-dimensional vector space, we might at first think that the vector space of

wavefunctions spanned by Ψ̄(A) is also infinite-dimensional. After all, λ in (2.198) can be

any complex number. However, applying the Poisson summation formula and a little bit

of algebra we find that (we assume k > 0 here):

Ψλ = e−4πkImτ(AzAz̄+A2
z)− λ2

16πkImτ

√
τ2

k

∑
0≤µ<2k

Θ−µ,k(−2iτ2Az,−τ̄)Θµ,k(
−λ

4πik
, τ) (2.200)
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This formula demonstrates that, as a function of Az, we only produce a finite-dimensional

space. Indeed, it can be shown (see [17, 26]) that a basis of normalized wavefunctions for

the sector of flat gauge fields is:

ψµ =
k3/4

η̄
e−4πkImτ(AzAz̄+A2

z)Θ−µ,k(−2iτ2Az,−τ̄) (2.201)

2.2.11 Quantization Of Flat Connections On The Torus: Heisenberg’s Story

In case you are uncertain of the result we just derived, let us consider the viewpoint from

that of Heisenberg groups.

Classically, the holonomies are described by Ui = exp[iai]. Quantum mechanically, we

get operators:

Ûi = exp[iâi] (2.202)

It follows from the commutator (2.143) that

Û1Û2 = e
2πi
2κ Û2Û1 (2.203)

In particular,

Û1Û2Û
−1
1 = e

2πi
2κ Û2 (2.204)

implying that U1 translates a2 by 2π/2κ, and similarly for U2 translating a1. Therefore we

also have the relations:

Û2κ
1 = Û2κ

2 = 1 (2.205)

The equations (2.204) and (2.205) define a finite nonabelian group called the finite

Heisenberg group. In general, for any integer N there is a Heisenberg group of order N3.

It fits in a (nonsplit) exact sequence

1→ ZN → HeisN → ZN ⊕ ZN → 0 (2.206)

and is a finite-group analog of the usual Heisenberg relations of quantum mechanics.

There is a standard theorem, the Stone-von Neumann theorem that says that, up to

isomorphism, there is a unique unitary irreducible representation of a Heisenberg group

where the scalars in U(1) act simply as multiplication by that scalar. The same is true for

all Heisenberg groups, and so HeisN has a unique irrep.

Clock And Shift Matrices

One standard way of presenting the Stone-von Neumann representation of the Heisen-

berg group HeisN is via the N ×N “clock” and “shift” matrices P and Q. To define these

introduce an N th root of unity, say ω = exp[2πi/N ]. Then

Pi,j = δi=j+1modN (2.207)

Qi,j = δi,jω
j (2.208)
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Note that PN = QN = 1 and no smaller power is equal to 1. Further note that 20

QP = ωPQ (2.209)

For N = 4 the matrices look like

P =


0 0 0 1

1 0 0 0

0 1 0 1

0 0 1 0

 Q =


ω 0 0 0

0 ω2 0 0

0 0 ω3 0

0 0 0 1

 (2.210)

with ω = e2πi/4. The group of matrices generated by P,Q is a finite subgroup of GL(N,C)

isomorphic to a finite Heisenberg group. One naturally encounters these quantizing a

quantum particle moving on the group U(1) but confined to the cyclic subgroup of order

N . ♣More details

about that? ♣

Remark: The operator algebra generated by P,Q is the full matrix algebraMatN×N (C).

That is, any linear transformation on the space of states can be expressed in terms of a

linear combination of products of PmQn. ♣Perhaps say more

about how this is

done with the finite

Fourier transform.

♣

Hilbert Space For Case Of General Compact Oriented Σ2

♣Might want to put

hats on these

operators Ŵ (n, γ)

for consistency with

above, and to

distinguish between

line defects inserted

in the path integral

and operators on

Hilbert space ♣

We can readily generalize the above discussion to a general compact oriented surface

Σ2: If γ ⊂ Σ2 is an oriented closed loop and Vn is a charge n representation of U(1), with

n ∈ Z then we can form the Wilson line operator W (n, γ) = exp[in
∮
γ A]. (See (2.61).)

Because the gauge field is flat this only depends on the homology class of γ (in the absence

of other operators). In particular, rather trivially

exp[in

∮
γ
A] = exp[i

∮
nγ
A] (2.211)

There are corresponding quantum operators. We can write them as:

Ŵ (n, γ) := exp[in

∮
γ
Â] (2.212)

Again, this operator only depends on the product, so we can simplify by just working with

an operator-valued function Ŵ (γ) of a single variable γ ∈ H1(Σ2;Z).

These operators depend on the orientation of γ and we have

Ŵ (−γ) = Ŵ (γ)† = Ŵ (γ)−1 (2.213)

20The fastest way to check that - and thereby to check that you have your conventions under control - is

to compute QPQ−1 because (Q−1PQ)ij = QiiPij(Qjj)
−1 = ωPij .
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Then the generalization of (2.204) uses the Baker-Campbell-Hausdorff formula and the

brackets of (2.87). The result is

Ŵ (γ1)Ŵ (γ2) = e
2πi
2κ
I(γ1,γ2)Ŵ (γ2)Ŵ (γ1) (2.214)

where

I(γ1, γ2) =
∑

p∈γ1∩γ2

ιp(γ1, γ2) (2.215)

is the oriented intersection number of γ1 and γ2.

Figure 4: Because intersection numbers are signed sums, with the sign determined by the orien-

tation to total intersection number is invariant under deformation, as shown in a simple case here.

Summing over the oriented intersections of transversally intersecting curves gives and invariant that

only depends on the homology classes of those curves.

To define the oriented intersection number we assume that γ1 and γ2 are in general

position so that there are a finite number of intersection points and they are all transversal.

Then, at each intersection point p ∈ γ1 ∩ γ2 the tangent vectors {γ̇1(p), γ̇2(p)} form an

ordered basis for TpΣ2. Therefore, they define an orientation o12(p) for the vector space

TpΣ2. On the other hand, we assume Σ2 has an orientation oΣ so we can compare o12(p)

with oΣ(p). We can define

ιp(γ1, γ2) :=

{
+1 o12(p) = oΣ2(p)

−1 o12(p) 6= oΣ2(p)
(2.216)

One can then show that (2.215) in fact only depends on the homology class of γ1 and

γ2. The basic idea is shown in Figure 4. The oriented intersection number makes the ♣Explain or cite

reference here. ♣
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Abelian group H1(Σ2;Z) into a symplectic lattice so we will often denote the intersection

by 〈γ1, γ2〉 := I(γ1, γ2).

Since the operators Ŵ (γ) are unitary, the operator algebra they generate is an algebra

known as the noncommutative torus algebra. See below for some general remarks. One ♣should we try to

justify that it is a

C* or W* algebra?

♣
can show that the operators satisfy the relations:

Ŵ (γ1)Ŵ (γ2) = e
πi
2κ
I(γ1,γ2)Ŵ (γ1 + γ2) (2.217)

(This does not follow immediately from the BCH formula. However, one can choose a basis

for H1(Σ2;Z) and define Ŵ (γ) for general γ in a suitable way to that (2.217) holds.)

Now, the center of the algebra of unitary operators satisfying (2.214) is generated by

W (n, γ)2κ so we can put these to one. Indeed, we have seen in the case of the torus that

we must put these to one. Therefore W (n, γ) only depends on n ∼ n+ 2κ and we have the

product rule:

Ŵ (n1, γ)Ŵ (n2, γ) = Ŵ (n1 + n2, γ) (2.218)

where addition is modulo 2κ.

Once again the general theory of Heisenberg groups becomes very helpful. We have a

nonsplit central extension

1→ Z/2κZ→ Heis(H1(Σ2;Z/2κZ))→ H1(Σ2;Z/2κZ)→ 1 (2.219)

where we consider the central group Z/2κZ ⊂ U(1) to be the group of (2κ)th roots of unity.

There is a unique (up to isomorphism) Stone-von Neumann representation and it can be

given explicitly by choosing a maximal Lagrangian decomposition

H1(Σ2;Z/2κZ) ∼= L1 ⊕ L2 (2.220)

Such a Lagrangian subspace amounts to a distinction between a-cycles and b-cycles as in

Figure 3. So we will denote: L1 = La and L2 = Lb:

H1(Σ2;Z/2κZ) ∼= La ⊕ Lb (2.221)

To give an explicit SvN representation we consider L2 functions on, say, the Lagrangian

subgroup La. As an Abelian group La is (noncanonically):

La ∼= Z2κ ⊕ · · · ⊕ Z2κ (2.222)

with g summands. The space of L2 functions on this finite group is therefore (2κ)g dimen-

sional. The representation is determined by using the rule (2.217). and then specifying the

action of W (γ) for γ restricted to the two Lagrangian subspaces:

Ŵ (γ)Ψ(γ0) = Ψ(γ0 + γ) γ ∈ La

Ŵ (γ)Ψ(γ0) = e2πi
〈γ,γ0〉

2κ Ψ(γ0) γ ∈ Lb
(2.223)

♣Again, should

have an appendix

on general SvN rep

for Heisenberg

groups ♣
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Remark: The noncommutative torus algebra. Suppose Λ is an integral symplectic

lattice. The noncommutative torus algebra, also known as the irrational rotation algebra

is the C∗-algebra generated by unitary operators Xγ satisfying

Xγ1Xγ2 = q〈γ1,γ2〉Xγ1+γ2 (2.224)

for some complex number q. This is a fascinating and nontrivial infinite-dimensional algebra

with an interesting representation theory. When q is not a root of unity it is a simple

algebra, but when q becomes a root of unity there is an infinite-dimensional center. If

qN = 1 then Xγ for 2γ ∈ NΛ is in the center. The quotient by this center is a finite-

dimensional Heisenberg algebra. In our example we should use the character on the center

which is just given by unity. ♣PUT THIS INTO

BROADER

CONTEXT: NON-

COMMUTATIVE

TORUS ALGEBRA

IS UBIQUITOUS.

♣
2.2.12 Symplectic Transformations, Large Diffeomorphisms, And Modular Trans-

formations

The spaces of physical states at genus g form projective representations of the symplectic

group Sp(2g,Z). Note that for g = 1 Sp(2,Z) = SL(2,Z).)

There are three distinct reasons for this:

1. Origin In Topological Field Theory: Since the Chern-Simons theory is (formally)

“topological” the (oriented!) diffeomorphism group of Σ2, denoted Diff+(Σ2) should

be a symmetry. So there should be a projective representation of this group on the

Hilbert space of states. Moreover, the diffeomorphisms “isotopic to the identity”

should act trivially, because they can be continuously deformed to the trivial dif-

feomorphism. 21 As usual, the connected component of the identity Diff+
0 (Σ2) is a

normal subgroup and the quotient

Γg := Diff+(Σ2)/Diff+
0 (Σ2) (2.225)

is known as the (oriented) mapping class group of the (oriented) surface. The infinite-

dimensional group of diffeomorphisms can be given a topology so that this is also the

group of connected components:

Γg ∼= π0(Diff+(Σ2)). (2.226)

2. Now, the mapping class group acts by pullback on the homology H1(Σ2;Z) preserving

the intersection form. There is a kernel of this action that defines an important normal

subgroup Ng / Γg.
22 The quotient group

Γg/Ng (2.227)
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acts symplectically on the lattice H1(Σ2;Z) and in fact, using Dehn twists and a set

of generators for Sp(2g;Z) one can verify that ♣REFER TO

APPENDIX FOR

GENERATORS ♣
Γg/Ng

∼= Sp(2g;Z) (2.228)

When g = 1 there are no separating curves so Ng = 1 and in this case Γ1
∼= Sp(2;Z) =

SL(2,Z). In the Abelian case the moduli space of flat connections is a symplectic

torus built from H1(Σ2;Z) and hence we expect the wavefunctions to transform in

projective representations of this group.

3. Symplectic Geometry Viewpoint. In Abelian Chern-Simons theory the phase space

Mflat is a symplectic torus. The group of symplectic automorphisms of the phase

space should act (perhaps with central extension) on the space of states obtained by

quantizing that torus. This recovers the expectation from the more general topolog-

ical field theory viewpoint.

4. Operator Algebra Viewpoint. From the operator algebra viewpoint, the Heisenberg

group is an extension of a symplectic lattice. The automorphisms of the symplectic

lattice will (under some circumstances) lift to be automorphisms of the Heisenberg

group. The automorphisms of the operator algebra that we are representing should

act (again, in general, projectively) on the Hilbert space of states. ♣THERE IS A

GREAT DEAL

MORE TO SAY

ABOUT THIS,

AND IT IS NOT IN

THE

LITERATURE. ♣Example: We study the example when Σ2 is genus one in detail. In this case, the large

diffeomorphisms can be shown to act on the coordinates (σ1, σ2) with fixed identifications

σ1,2 ∼ σ1,2 + 1 on the σi as:

f(σ1, σ2) = (δσ1 + βσ2, γσ1 + ασ2)modZ⊕ Z (2.229)

where

A =

(
α β

γ δ

)
∈ SL(2,Z) (2.230)

In this case the relation to SL(2,Z) can be seen directly since the transformation should

preserve the oriented lattice.

21One nice way of saying what such diffeomorphisms look like is the following: Two diffeomorphisms f, f ′

are isotopic if, for every closed curve ℘ ⊂ Σ2 the images f(℘) and f ′(℘) can be smoothly deformed into

each other.
22The group Ng is known as the Torelli group. To describe it recall the notion of a Dehn twist around

closed curve γ ⊂ Σ2. We cut out a small annulus around γ and then rotate one side of the annulus by 2π

holding the other side fixed. Then we glue the new annulus back in. [DRAW WHAT HAPPENS TO A
CURVE TRAVERSING THE ANNULUS.] A famous theorem of Max Dehn states that the mapping class

group is generated by the Dehn twists around closed curves. A simple example of an element in the Torelli

group is a Dehn twist around separating curves, that is, curves such that, if we cut along them then the

surface falls apart into more than one connected component. In fact, the Dehn twist around separating

curves and around “bounding pair maps” generate the Torelli group. This is known as the Birman-Powell

thoerem. See [27] for an exposition and a proof.
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Now, to learn how this acts on τ define the holomorphic coordinate:

ζ = σ1 + τσ2 (2.231)

For surfaces, a conformal class of a metric is equivalent to a holomorphic structure. So

consider the action on the metric ds2 = |dζ|2:

f∗(ds2) = |γτ + δ|2
∣∣∣∣dσ1 + τ̃ dσ2

∣∣∣∣2 (2.232)

so we have a Weyl scaling and a modular transformation on τ :

τ → τ̃ :=
ατ + β

γτ + δ
(2.233)

(Note: We could have dispensed with the conformal classes of metrics and just observed

that:

f∗(dζ) = (γτ + δ)(dσ1 + τ̃ dσ2) (2.234)

and some readers will prefer to think of it this way.)

Similarly, we can derive the action of the diffeomorphism on the flat gauge fields:

A→ Ã := f∗(A) (2.235)

Since A = a1dσ
1 + a2dσ

2 we get f∗(A) = ã1dσ
1 + ã2dσ

2 so that

z̃ :=
ã2 − τ̃ ã1

2π
=

z

γτ + δ
(2.236)

This derives the action of SL(2,Z) on (z, τ) found in Appendices C and D. (See, especially

(D.6).) Now, appendix D gives the detailed expressions for the transformation of the

wavefunctions χµ(z, τ). We note a few things:

1. Very importantly, the S transform, which corresponds to the symplectic transforma-

tion exchanging a and b cycles, that is, that exchanges coordinates and momenta in

the real polarization, is a finite Fourier transform in the canonical basis of level κ

theta functions.

2. The action of −1 ∈ SL(2,Z) is nontrivial: (z, τ) → (−z, τ). It acts by a kind of

“charge conjugation” χµ(z, τ) → χ−µ(z, τ). Indeed, when we discuss the relation

of these quantum states to Wilson lines we will see this is indeed exactly charge

conjugation. The relation S2 = −1 then follows because the Fourier transform is

order four.

3. It is also instructive to check the other relation

(ST )3 = S2 (2.237)

which can be written as

STS = T−1S−1T−1 (2.238)
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viewed this way, the relation boils down to a Gauss sum. The µλ matrix element of

the LHS of (2.238) is

1

2κ
e−2πi 1

24

∑
ν

e2πi ν
2

4κ e2πi
ν(λ+µ)

2κ (2.239)

while the µλ matrix element of the RHS of (2.238) is

1√
2κ
e−2πi 2

24 e−2πi
(µ+λ)2

4κ (2.240)

Are (2.239) and (2.240) the same? This is not obvious. We can of course simplify by

shifting the summation variable ν → ν − (λ + µ) and completing the square. But a

nontrivial finite Gaussian sum remains.

4. The finite Gaussian sum in (2.239) is a special case of more general sums that are

familiar in elementary number theory. See [58] for a nice summary of facts about

finite Gaussian sums. The proper context is that of finite Abelian groups with bilinear

forms valued in Q/Z. These forms admit quadratic refinements and there is a general

result for
1√
|D|

∑
x∈D

e2πiq(x) (2.241)

where q is a quadratic refinement of a bilinear form on a finite Abelian group D. In

general this expression will be a subtle eighth root of unity. In the present case, the ♣WE NEED TO

HAVE AN

APPENDIX ON

THE

GAUSS-MILGRAM

FORMULA. GIVE

TWO

DEFINITIONS

INCLUDING THE

ONE FROM THE

MODULAR

TRANSFORMA-

TIONS OF

LATTICE THETA

FUNCTIONS. ♣

relevant version is
1√
2κ

∑
ν

e2πi ν
2

4κ = e2πi/8 (2.242)

for any integer κ.

5. We thus find the matrices ρ(S) and ρ(T ) on the wavefunctions of the Chern-Simons

theory actually satisfy:

(ρ(S)ρ(T ))3 = e−2πi/6ρ(S)2 (2.243)

We thus have a projective representation of the mapping class group.

******************************

OTHER THINGS TO COVER HERE:

******************************

1. Lifting canonical transformations to the Heisenberg group. Obstructions. And all

that.

2. Generalization to higher genus Sp(2g;Z). Siegel upper half plane. (That should have

been discussed when we discussed the higher genus conformal blocks.)
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2.2.13 The Bundle Of Physical States Over The Moduli Space Of Curves

When we carried out the Kähler quantization of P(Σ2) we introduced some extra data:

The complex structure of the curve. The quantization appears to depend on the complex

structure in the sense that the theta functions definitely do.

However:

1. Different period matrices τ related by Sp(2g;Z) transformations correspond to the

same complex structure on Σ2. It is thus very important that the space of theta

functions forms a representation of Sp(2g;Z). This means that there is a well-defined

space of conformal blocks associated to a given complex structure. ♣SOMEWHERE

NEED TO

EXPLAIN ABOUT

THE EXTRA

DATA OF A

MARKING AND A

CHOICE OF BASIS

FOR H1 ♣

2. Moreover, the theta functions are holomorphic in the period matrix. For example,

the level κ theta functions at g = 1 satisfy

DΘµ,κ(z, τ) = 0 (2.244)

where D is the heat equation operator:

D =
∂

∂τ
+

i

4π

1

2κ

(
∂

∂z

)2

(2.245)

Note that D does not depend on µ, so that it applies uniformly to all states in the

space Hκ,τ .

3. So, the spaces Hκ,τ are the fibers of a holomorphic bundle over the space of complex

structures with a flat connection D. This connection is not quite modular invariant,

and we want a connection that descends to a bundle over the moduli space of curves.

When considering the τ -dependence it is better to take a basis of physical states as

χµ(z, τ) =
Θµ,κ(z, τ)

η(τ)
(2.246)

Since ∂τ log η(τ) = 2πi
24 E2(τ) the χµ(z, τ) are parallel-transported with respect to

D̃ = Dτ +
i

4π

1

2κ

(
∂

∂z

)2

(2.247)

Dτ = ∂τ +
2πi

24
E2(τ) (2.248)

********************************************

NEED TO DISCUSS DESCENT TO THE MODULI STACK OF CURVES AND

THE ORBI BUNDLE.

WHY IT IS A PROJECTIVELY FLAT CONNECTION.

********************************************

4. The extension of this structure to higher genus and to the nonabelian case is non-

trivial. ♣NEED TO PUT

IN MORE INFO

ABOUT THESE.

NEED

CONNECTION ON

SECTION OF DET

LINE BUNDLE. ♣
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2.2.14 Correlation Functions Of Line Defects And Framing Anomalies

Now we consider the path integral on a general 3-manifold M3 with the insertion of Wilson

line defects W (r, γ). These provide sources in the action. The path integral ***** is a

Gaussian integral, so the dependence on the Wilson lines can be done exactly by stationary

phase.

To begin, let M3 = S3 or, more generally, a homology sphere where H1(M3,R) = 0 so

there are no nontrivial flat connections.

Now we consider the formal path integral

〈
∏
α

W (rα, γα)〉 :=

∫
[dA]e

i κ
2π

∫
M3

A∧dA+i
∑
α rα

∮
γα

A
(2.249)

If we are only interested in the dependence on Wilson lines then we can do this Gaussian

integral by stationary phase. Using a suitable Green’s function we can find the classical

gauge field such that
κ

π
dAclass = −J = −

∑
α

rαη(γα ↪→M3) (2.250)

Here η(γ ↪→ M3) is a differential form representative of the Poincaré dual of γ. It can be

written in terms of delta functions:

η(γ ↪→ R3) =
1

2
dxmdxnεmnj

∮
γ

dxj(t)

dt
δ(3)(~x− ~x(t)) (2.251)

Plugging back in to the action we get

〈
∏
α

W (rα, γα)〉 = N e−
iκ
2π

∫
M3

AclassdAclass (2.252)

so it is expressed as the classical Chern-Simons invariant of the classical solution.

Here N is the value of the partition function with no Wilson lines. It is formally just

some numerical constant, independent of the metric, but we will need to revisit this naive

expectation below.

Let us continue to understand this value of this path integral. We write:

iκ

2π

∫
M3

AclassdAclass = − i

2

∫
M3

AclassJ

= − i

2

∑
α

rα

∮
γα

Aclass

(2.253)

Now, if we are in R3 we can choose an unambiguous disk Dα so that ∂Dα = γα. (This

will not be true in a general 3-manifold.) Then we can continue our evaluation:

iκ

2π

∫
M3

AclassdAclass = − i

2

∑
α

rα

∫
Dα

dAclass

=
iπ

2κ

∑
α

rα

∫
Dα

J

=
iπ

2κ

∑
α,β

rαrβ

∫
Dα

η(γβ ↪→ R3)

(2.254)
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and so

〈
∏
α

W (rα, γα)〉 = N · exp

∑
α,β

2πi

4κ
rαrβL(γα, γβ)

 (2.255)

where

L(γα, γβ) :=

∫
Dα

η(γβ ↪→ R3) (2.256)

is called the Gauss linking number. It is discussed in detail in section 2.2.15. It is in fact

symmetric, and an elegant formula for it is

L(γ1, γ2) =

∫
γ1×γ2

ω(x1 − x2) (2.257)

where ω(x) is the 2-form

ω(x) :=
1

8π

εijkx
idxjdxk

|x|3
(2.258)

Exercise Holonomy Around The Source

Show that the classical gauge field obtained by solving the equations of motion with

source W (r) have a holonomy

e−
2πir
2κ (2.259)

around the line supporting W (r).

2.2.15 Digression On The Gauss Linking Number
♣SHORTEN THIS

♣The Gauss linking number was already considered by J.C. Maxwell himself in his great

book. 23

The problem is this: Consider a closed oriented loop C ⊂ R3 carrying a current I.

Next, consider a second oriented loop C ′ ⊂ R3 as in Figure 5. What is the work done by

the magnetic field when transporting a magnetic pole of unit charge around the curve C ′?

The result is given by a topological invariant, the Gauss linking number, which measures

the amount by which the loops C and C ′ are linked. Using the Biot-Savart law you can

work out that the result is that the work is∮
~B · d~̀= IL(C,C ′) (2.260)

where

L(C1, C2) := − 1

4π

∫
C1

∫
C2

(~x1 − ~x2) · (d~x1
ds1
× d~x2

ds2
)

|~x1 − ~x2|3
ds1ds2 (2.261)

where ~x1 := ~x1(s1) describes the loop C1 and ~x2 := ~x2(s2) describes the loop C2. Note

that L(C1, C2) = L(C2, C1).

23J.C. Maxwell, A Treatise on Electricity and Magnetism, Section 419. Dover 1954, vol. 2, p.43
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Figure 5: Two linked curves C1 and C2 in R3

Remark: The integral formula for L(C1, C2) was discovered by Gauss in 1833. It has some

similarities with, but is really quite different from, the Neumann formula for the mutual

inductance of two current loops.

We claim that L(C,C ′) is in fact an integer which measures the linking of C and C ′. In

magnetostatics, if we do not worry about orientation-reversing spacetime transformations,

we can think of ~B as defining a one-form on R3, using B = Bidxi. Similarly, we can

think of the current ~J as defining a two-form J = 1
2εijkJ

idxjdxk. We are using here the

Hodge duality between one-forms and two-forms in R3 and the equivalence of vectors and

one-forms from a Euclidean metric.

In any case, identifying B with a one-form and J with a two-form, the Biot-Savart law

is equivalent to:

dB = J (2.262)

and the work done is just
∫
C′ B.

Now put I = 1 and let D′ be an oriented disk spanning C ′ as in Figure 6. Then we

evaluate the total current flowing through D′:∮
C′
B =

∫
D′
dB =

∫
D′
J

=

∫
D′
dξα ∧ dξβ ∂x

m

∂ξα
∂xn

∂ξβ
1

2
εmnj

∮
C

dxj(t)

dt
δ(3)(~x(ξ)− ~x(t))

(2.263)
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Figure 6: If we fill in C ′ with a disk D′ then we can show that L(C,C ′) counts signed intersections

of C ′ with D′, and is therefore an integer.

where ξα are some coordinates on D′. It is easy to see that in the last expression each

transverse intersection of D′ with C contributes ±1 according to orientation: The orien-

tation of C ′ induces one on D′, and C is oriented. This oriented intersection number is

one of the definitions of the linking number. From this interpretation L(C,C ′) is clearly

invariant under continuous deformation of D′ or C or C ′, so long as C and C ′ do not cross.

Now that L(C,C ′) is a continuous function of the locations of C and C ′. On the other

hand it is an integer. Therefore, it is a topological invariant. Note that this topological

invariant can change, if we allow C and C ′ to cross. When C and C ′ cross the formula

(2.261) becomes ill-defined, and then the integer can jump.

Exercise Explicit verification of topological invariance

Show that I(C1, C2) is invariant under small deformations of ~x1(t) by an explicit vari-

ation of the formula (2.261).

Exercise

Define the 2-form on R3 − {0}

ω(x) :=
1

8π

εijkx
idxjdxk

|x|3
(2.264)

a.) Show that, when restricted to the unit sphere S2 ⊂ R3 − {0} the form ω restricts

to the standard volume form with unit volume.

b.) Show that the Gauss linking number can be expressed elegantly as:

L(C1, C2) =

∫
C1

∫
C2

ω(x1 − x2) (2.265)
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Figure 7: Displacing C infinitesimally to Cε in the normal direction might lead to nontrivial

self-linking because the normal vector might twist around. For this reason L(C,C) is ill-defined.

Figure 8: Different, but equivalent ways of illustrating the effect of the framing. Note in the lower

left, without the framing, one could pull the string tight to a straight line. The fact that quantum

line defects depend on a framing leads to a quantum correction to the first Reidemeister move as

descrbed below.

2.2.16 The Framing Anomaly And Ribbons

All of the above works nicely for the terms with α 6= β. However, the linking number

for α = β requires further discussion. Just as self-inductance is rather more subtle than

mutual inducance, self-linking numbers are a good deal more subtle than mutual linking

numbers. The formula for the self-linking number clearly has singularities at coincident
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points for the Green’s function. That makes perfectly good sense, as explained in Figure 7.

To define L(C,C) one must displace C infinitesimally in a normal direction and evaluate

the mutual linking number of C and its displaced version. but this is clearly ill-defined

because C could link around itself several times. In Chern-Simons theory this is known as

the framing anomaly.

Definition: The framing of the Wilson line operator is a choice of nowhere zero section

of the normal bundle of γ ⊂M3 up to homotopy (continuous deformation). If s : γ → N(γ)

is a nowhere zero section of the normal bundle we denote the framing by f = [s].

More colloquially: We can say that in the quantum theory the Wilson line operators

are associated with ribbons. This will have an important implication when we try to write

link invariants. See Figure 8 for a preview.

Remarks

1. Given a nonvanishing section s : γ → N(γ) we can twist it around n times for

any integer n. Here we use orientation: The Wilson line is defined for an oriented

curve γ and there is therefore an orientation in the disk normal to the line. Then a

twist by n is a twist by a 2πn counterclockwise rotation in the disk. Note that the

framings do not form an Abelian group: You cannot add f1 + f2. For, if you tried to

add two sections of the normal bundle there is no guarantee the sum will be nonzero.

Nevertheless, it does make sense to add an integer to a framing f → f+n, n ∈ Z, and

moreover, any two framings can be related by shifting by an integer. Mathematically,

we say that the framings form a Z-torsor. 24

2. What we have discovered is that in the quantum definition of W (r, γ) we need to add

an extra piece of data to define the line defect, namely, the framing of the curve γ.

We accordingly change our notation to

W (n, γ)→W (n, γ, f) (2.266)

Note that given γ and f there is a well-defined isotopy class γ + f and we can define

the self-linking by

Lf (γ) := L(γ, γ + f) (2.267)

Therefore, a more accurate version of (2.255) is therefore

〈
∏
α

W (rα, γα, fα)〉 = N · exp

∑
α<β

2πi

2κ
rαrβL(γα, γβ) +

∑
α

2πi

4κ
r2
αLfα(γα)

 (2.268)

3. Note that ♣Could it be −n?

Need to check. ♣
Lf+n(γ) = Lf (γ) + n (2.269)

24In general for any group G, a set S is said to be a G-torsor if there is a G action on S that is both

free and transitive. One can think of S as a copy of G without a choice of identity element. The fibers of

a principal G-bundle are good examples of G-torsors.
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and therefore

W (n, γ, f +N) =

(
e2πin

2

4κ

)N
W (n, γ, f) (2.270)

We say that e2πin
2

4κ is the spin of the line defect. (Some authors will say that n2

4κmodZ
is the spin of the line defect. This is the sense in which it is used, for example, in

[28]. This will be related to the spin of a corresponding conformal field and quantum

dimension of a representation of a chiral algebra when we discuss the relation to

RCFT.)

4. If γ ⊂ Σ2 in a 3-manifold of the form Σ2 × R then we can regard the line defect

W (n, γ, f) as an operator on the Hilbert space. If we choose the natural framing that

points forward in time then this operator can be identified with the operator Ŵ (nγ)

we discussed in Heisenberg’s story.

5. Identification Of Line Defect Labels: Note that n → n + 2κ leaves correlators un-

changed. This is in accord with the quantum identification:

W (n+ 2κ, γ, f) ∼= W (n, γ, f) (2.271)

that we found when considering the operators on the Hilbert space H(Σ2). While

similar, (2.271) is conceptually distinct since it concerns line defects that are inserted

in a path integral, rather than operators on the physical Hilbert space of a surface.

From the formula (2.259) we see that we could give a definition of Wilson line observ-

ables by imposing boundary conditions on the gauge fields, rather than integrating

over smooth gauge fields and adding source terms (as we have been doing thus far).

From this point of view, a line defect supported on γ is defined by cutting out a

small tubular neighborhood around γ of radius ε and, to define the defect of charge

n, we require that the gauge field have boundary condition that if C(ε) is a small

linking curve on the boundary of this tubular neighborhood then the path integral

with W (n, γ, f) inserted has boundary conditions

lim
ε→0

e
i
∮
C(ε) A = e−2πin/(2κ) (2.272)

Note that from this viewpoint we automatically have the identification n ∼ n + 2κ.
25

25There is a sloppy version of this argument that goes as follows: We make a singular gauge transformation

by a transformation that looks like g ∼ eiφ near the Wilson line, where φ is an azimuthal angle. The shift

of the Chern-Simons action is written as

κ

2π

∫
d(Adφ) + 2 · κ

2π

∫
Ad2φ (2.273)

when we say that d(dφ) = 2πδ(2)(x) where δ(2)(x) is the Dirac measure on supported on the Wilson line.

You get the constant in this slightly dubious equation by integrating over a disk and imposing Stokes’

theorem. In this approach, there is no boundary, so we can drop the first term. The net effect is to shift

n→ n+ 2κ.
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6. “Operator Product” of line defects. In general, when we have “parallel” defects we

would like to define a notion of “operator product” of the defects. In the present

case we can use (2.268) to define an operator product of the Wilson line defects. To

define what we mean by “parallel curves” we assume that γ2 can be obtained from

γ1 by an infinitesimal framing displacement so that γ2 is isotopic to γ1 + f12. We can

equally well say that γ2 = γ1 + f21. Note that

Lf12(γ1) = Lf21(γ2) = L(γ1, γ2) (2.274)

Now, consider the product of line defects:

W (n1, γ1, f1)W (n2, γ2, f2) (2.275)

Suppose that all other line defects link γ1 and γ2 in the same way, so that:

L(γ1, γβ) = L(γ2, γβ) β > 2 (2.276)

If γ2 is gotten from γ1 by an infinitesimal displacement this is automatically under-

stood. Under the condition (2.276) we can replace the product (2.275) of line defects

by a single line defect. To do this we write

f1 = f12 +N12

f2 = f21 +N21

(2.277)

with N12, N21 ∈ Z. Then we have

W (n1, γ1, f1)W (n2, γ2, f2) ∼= e2πi(
n2

1
4κ
N12+

n2
2

4κ
N21)W (n1 + n2, γ1, f12)

∼= e2πi(
n2

1
4κ
N12+

n2
2

4κ
N21)W (n1 + n2, γ2, f21)

(2.278)

7. Monopole Operators. An important class of local operators in three-dimensional

gauge theories are the monopole operators. For a general gauge theory with gauge

group G they are obtained by choosing an embedding µ : U(1) → G. This allows

to embed a Dirac monopole of magnetic charge µ, where FDirac = 2π sin θdθdφ
4π into

the G gauge theory. We can then define a singular G connection at a point p by

surrounding p with a small sphere of radius ε are requiring that, as ε→ 0

F → µ(FDirac) (2.279)

This singular boundary condition defines a point defect “monopole operator” of

charge µ: Mµ(p).

However, if we recall the gauge variation of the Chern-Simons action (2.45) then we

see that the operator Mµ(p) is not gauge invariant, but rather transforms by

Mµ(p)→ eiκµ(ε(p))Mµ(p) (2.280)

The operator is thus not gauge invariant. In a non-topological theory this problem

can be cured by adjoining a Wilson line or multiplying by some other charged operator

of opposite charge, but in the topological Chern-Simons theory one cannot introduce

these operators. ♣NEED TO

EXPLAIN A LOT

MORE HERE.... ♣
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8. One-form Symmetries. In [23] it was suggested that many familiar facts about global

symmetries of quantum field theories generalize nicely to transformations of math-

ematical structures associated with higher dimensional defects. In particular, “one-

form symmetries” are associated with codimension two defects. When these link

dimension one defects along an infinitesimal link the result is a new codimension two

defect. These are the “one-form symmetries” of [23]. In the present case the objects

that implement the one-form symmetries are themselves the one-dimensional defects,

hence the Wilson lines. They form an Abelian group ∼= Z/2κZ which is just the

group under the “operator product” described above. Because of the simple linking

rule above, W (n, γ) has “charge n” under the one-form symmetry group. That is, it

is in the nth power of the defining representation.

9. COMMENT ON WHAT HAPPENS FOR WILSON LINES IN A GENERAL 3-

MANIFOLD

2.2.17 A Topological Anomaly: The Normalization Factor: N

As we have said, the normalization factor is formally metric independent since, thus far,

we have not needed to use the metric. However, to define the path integral we must gauge-

fix the gauge symmetry and any choice of gauge fixing will break the formal topological

symmetry of the path integral. Fortunately, the topological invariance is spoiled in a

computable way, and a way that makes good physical sense.

The most standard way to gauge fix is to introduce a Riemannian metric on M3 and

choose (in the Abelian case) the gauge slice:

d ∗A = vol (g)gµνDµAν = 0 (2.281)

This will fix all gauge freedom up to harmonic forms A → A + ω. So there will be a

finite-dimensional torus H0(M3;U(1)) of unfixed gauge transformations.

The standard way to gauge fix is to introduce Fadeev-Popov ghosts in the BRST

procedure: We introduce anticommuting zero-forms (in the adjoint representation of the

gauge group) c, b of ghost numbers +1,−1 respectively with a differential ♣should say where

they live, etc. ♣

Q(A) = Dc

Q(c) = 0

Q(b) = H

Q(H) = 0

(2.282)

and we add to the action

Q(i

∫
bd ∗A) = i

∫
bd ∗ dc+ i

∫
Hd ∗A (2.283)

We should think of H as a Lagrange multiplier. 26 The integral over b, c gives

′
det ∗d ∗ d (2.284)
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where ∗d ∗ d is the standard metric Laplacian on 0-forms. ♣Should discuss

zeromode ♣
Meanwhile we can rescale the Lagrange multiplier field H = const. ∗ φ where φ ∈

Ω3(M3) to get the action

exp[
ik

2π

∫
M3

(AdA+ φ ∗ d ∗A) = exp[
ik

2π

∫
M3

Φ ∗DΦ] (2.285)

where

Φ =

(
A

φ

)
D+ =

∗d 0 0

0 0 d∗
0 d∗ 0

 (2.286)

Here

D+ : Ωodd(M3)→ Ωeven(M3) (2.287)

is D+ = ∗d + d∗. This can be interpreted as a twisted Dirac operator. We will return to

that when we revisit this computation in the nonabelian theory.

Later, in section **** we will view D+ as a twisted Dirac operator and use some

general facts about the determinant of Dirac operators on odd-dimensional manifolds. For

the moment, we use some Hodge theory instead. See section F for a summary of some

relevant facts. The operator ∗d : Ω1 → Ω1 is self-adjoint. 27 and can be diagonalized with ♣Check a sign here.

Anti-self-adjoint??

♣spectrum µ
(1)
n on Imd† ⊂ Ω1. This is a Dirac-like operator and has spectrum unbounded

from above and below. Meanwhile, dd† on Imd ⊂ Ω1 has spectrum (λ
(0)
n )2.

Integration over H gives a delta function so we get a Jacobian∫
Ω1

[dA]δ(d ∗A)[....] =

∫
Imd†

[dA]
1∏

n |λ
(0)
n |

[....] (2.288)

then doing the remaining integrals gives determinant:

det′ ∗d ∗ d
det1/2( 1

2e2
d†d+ 2πik ∗ d)|Imd†

1∏
n |λ

(0)
n |

(2.289)

The first factor can give a phase. We regularize using the ζ-function so

ζ(s) =
∑
n

(
1

2e2
(µ(1)
n )2 + 2πikµ(1)

n )−s (2.290)

Note that there is spectral asymmetry. In the limit e2 →∞ we get

Im(−ζ ′(0)) =
π

2
η(∗d+ d∗) (2.291)

This gives a nice derivation of the framing anomaly of the CS theory.

26Usually, in the BRST procedure one adds a Gaussian term in H. In this case that would spoil the

first-derivative nature of the action and complicate the beautiful story.
27(∗d)† = d†∗† = ± ∗ d ∗ ∗ = ± ∗ d. SIGN????
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The η invariant does have metric dependence, but the metric dependence is local. We

will discuss it when we revisit this in the nonabelian case in section 3.2.1. The absolute

value is ∏
n

|λ(0)
n |√
|µ(1)
n |

= exp[−1

4
τ(M3)] (2.292)

where τ(M3) is the Ray-Singer torsion, or analytic torsion. It is a topological invariant, as

shown in Appendix F.

Figure 9: The path integral on a handlebody (in this figure, a solid torus) defines a wavefunctional

of the boundary values of the fields. In the case of Chern-Simons theory, it defines a specific state

in the space of conformal blocks of the bounding surface. We can change the state by inserting

nonlocal operators such as Wilson line defects.

2.2.18 Uniting The Path Integral And Hamiltonian Viewpoints: States Created

By Wilson Lines

Quite generally, suppose we have a field theory in d space-time dimensions with fields φ

valued in some target space T . If this theory is defined via path integrals, then, if X is a

d-dimensional spacetime with boundary ∂X = M , the path integral on X defines a specific

state in the Hilbert space H(M) associated to the (d− 1)-dimensional manifold M :

∂X = M ⇒ ψX ∈ H(M). (2.293)

Our notation here is highly schematic. For example, if we insert local operators or other

defects in the interior of the manifold X then that changes what we mean by X and in

general such insertions will certainly change the state.

Equation (2.293) is easily understood: In order to define the path integral we need to

specify some boundary values φ∂ so that there is a suitable stationary phase approximation

and a suitable classical variational problem. (The φ∂ might be more subtle than the

simple restriction of the field φ to ∂X.) We can identify H(M) as the space of (suitably

normalizable) wavefunctions on the space of boundary conditions, and the value of the path

integral with specific boundary conditions φ∂ is declared to be the value of the wavefunction
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of the state ψX on φ∂ :

ψX(φ∂) := PATH INTEGRAL WITH b.c. = φ∂ ⇒ ψX ∈ H((M) (2.294)

In the axiomatic approach to field theory based on functors from a geometric cate-

gory to a tensor category the above remark becomes axiomatic. (More precisely, it is an

immediate consequence of some more basic axioms.

The implementation of this idea in the present case of U(1) Chern-Simons theory is

the following. Suppose our 3-manifold has a bounding surface Σ2. Suppose, initially, that

it is connected. Then the 3-manifold M3 is what is known as a handlebody. Note that there

is a group homomorphism

ι : π1(Σ2, x0) ↪→ π1(M3, x0) (2.295)

which induces a homomorphism

ι : H1(Σ2) ↪→ H1(M3) (2.296)

For both homomorphisms there will be a large kernel: In Figure 3 if we imagine filling

in the surface in the natural way, then all the a-cycles will map to zero, while the b-cycles

will remain nontrivial. Since all the a-cycles map to zero we expect that, in the operator

approach W (γ)ψM3 = ψM3 for all γ ∈ L1. This indeed selects a one-dimensional line in

the Stone-von Neumann representation, hence, a pure state. Represent this state by some

nonzero vector ΨM3 in that line.

It is interesting to alter X in the way suggested above by inserting a Wilson line of

charge n0 ∈ Z/2κZ as in Figure 9. In general, we can consider W (n0γ) where γ ∈ ♣Need to fix figure

so insertion charge

is n0 ♣H1(M3;Z). This will produce a new state which can be represented by a nonzero vector

ΨM3,n0γ . Let γ̂ ∈ H1(Σ2) be in the pre-image of ι. It is clear that

ΨM3,n0γ = Ŵ (n0γ)ΨM3 (2.297)

because if the Wilson line is applied to the surface then we can let it “sink in” to get

the picture in Figure 9. This is, of course, the pure state (one-dimensional line in H(Σ2))

determined by the condition that it is the eigenline of W (γ′) of eigenvalue e2πi
〈γ′,n0γ〉

2κ for

all γ′ ∈ Lb.
Ŵ (γ′)ΨM3,n0γ = e2πi

〈γ′,n0γ〉
2κ ΨM3,n0γ (2.298)

In fact, (2.298) can also be derived rather directly by letting γ′ also “sink in to the han-

dlebody” until it links γ.

**********************************************************

1. DISCUSS THE BOUNDARY CONDITIONS φ∂ IN THE PARTICULAR EXAM-

PLE OF THE TORUS.

2. NOW GENERALIZE TO SEVERAL CONNECTED COMPONENTS. THEY

CAN HAVE ORIENTATIONS THAT AGREE OR DIFFER WITH THAT OF THE 3-

MANIFOLD M3 SO WE GET SPACES AND DUAL SPACES. IN AND OUTGOING

SPACES. PATH INTEGRAL AS A LINEAR TRANSFORMATION FROM IN TO OUT. ♣Need to fix figure:

Want ribbons.

Representations are

labeled by n1, n2

not µ, ν ♣
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Figure 10: Two linked circles carrying Wilson line defects of charges µ, ν, and linking nothing

else, are equivalent to a scalar, and this scalar is just the matrix element Sµν of the modular

transformation by S in the canonical basis for H(T 2).

3. Relation To The Modular S-Matrix. Of particular interest is an identity relating

the correlators to the modular S-matrix.

ALREADY HERE YOU CAN NOTE THE RELATION OF THE LINKED CIRCLES

TO THE MODULAR S-MATRIX.

**********************************************************

2.3 Relation To Rational Conformal Field Theory

2.3.1 Quantization When ∂Σ Is Nonempty: Emergence Of Edge States

We continue to consider the quantization of U(1) level k Chern-Simons theory.

In this section we consider M3 = D2×R where D2 is a disk. We now have a boundary,

and therefore must choose boundary conditions.

One very general principle: Boundary conditions should be chosen so that the station-

arity of the action is a well-posed problem

In other words, the boundary variations of the action should vanish. ♣Perhaps explain in

terms of very

general symplectic

path integrals that

this always entails a

choice of

Lagrangian

submanifold. ♣

In our case we have

δ

∫
M3

AdA =

∫
M3

2δAF +

∫
M3

d(δAA) (2.299)
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and therefore our boundary conditions must be such that∫
∂M3

δAA = 0 (2.300)

The most straightforward way is to enforce δAA|∂M3 = 0 locally.

On the disk choose polar coordinates (r, φ) and let x0 be the time direction so

δAA = (δAφAt − δAtAφ) dφ ∧ dx0 (2.301)

Next, we must carefully declare what the group of gauge transformations is. We regard

A0 as a Lagrange multiplier, enforcing F = 0 on M3. Then the remaining gauge group

involves time-independent gauge transformations.

One interesting choice is to consider

G = Map(g : D2 → U(1) | g|∂D2 = 1} (2.302)

♣This remark

possibly out of

place here. ♣
Remark: In general if X is a manifold with boundary and we consider the group

Map(X → G) (2.303)

then there is a subgroup of maps g : X → G such that g|∂X = 1. In gauge theories this

is often taken as the group of local gauge transformations that describe redundancies in

our parametrization of local physics. This is a normal subgroup of Map(X → G) and

the quotient group is often identified with the group of global gauge transformations. We

expect states and operators to transform in (possibly projective) representations of this

group.

In this case, it is straightforward to show that As = ig−1dg = dX where X is a

periodic scalar field and the value of the action depends only on the restriction of X to the

boundary: ∫
D2×R

As∂0Asdx
0 =

∫
D2×R

ds (As∂0X) =

∫
∂D2×R

∂φX∂0X (2.304)

Now let us return to the boundary conditions: but express them in terms of X. We

have

∂φδX∂tX − ∂tδX∂φX = 0 (2.305)

and we can solve this if X is a chiral (or anti-chiral) scalar field

∂φX ± ∂tX = 0 (2.306)

where we choose one, or the other, but not both.

*********************

MENTION THE ISSUE OF ACTIONS FOR SELF-DUAL FIELDS.

**********************
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1. As we have seen, on a closed three-manifold M3 the value of the Chern-Simons

invariant of a gauge field 1
4π2

∫
M3

AdA only makes sense as an element of R/Z. When

M3 has a nonempty boundary the story is different and more subtle: The value of

the action defines a section of a line bundle.

EXPLAIN THAT HERE OR LATER???

2. Anomaly cancellation. We could couple any system to the edge with a suitable gauge

anomaly and have a nonanomalous system.

2.3.2 Quantization With Wilson Lines Piercing Spatial Surface

Disk x R with Wilson line: Nontrivial holonomy.

Sources in Gauss law.

2.4 The Gaussian Model For R2 Rational

The Gaussian model is a term that is often used to refer to the conformal field theory of

a single massless scalar field with a periodic identification.

This section is, in part, a rapid tour of some simple aspects of conformal field theory.

For more extensive accounts see:

REFS: Polchinski, vol. 1; DiFrancesco et. al. ; Fuchs ; ... ?

The action for this model is

S = K

∫
dX ∗ dX = K

∫
dτ

∫ 2π

0
dσ
[
(∂τX)2 − (∂σX)2

]
(2.307)

with X dimensionless and periodic (the period can be anything, so long as it is fixed) and

K is a positive constant.

The Green’s function in two dimensions is 1
4π log |z1 − z2|2 so

〈X(z1)X(z2)〉 =
1

2πK
log |z1 − z2|2

〈∂X(z1)∂X(z2)〉 = − 1

2πK

1

(z1 − z2)2
dz1 ∧ dz2

〈∂̄X(z1)∂̄X(z2)〉 = − 1

2πK

1

(z̄1 − z̄2)2
dz̄1 ∧ dz̄2

(2.308)

One standard normalization in physics is to take X ∼ X + 2π and K = r2

4π`2s
. Then X

is a map of the worldsheet to a single circle of radius r, and `s is the string length.

The momentum and winding zero modes of the Gaussian field defined by the general

solution of the equation of motion:

X = x0 +
pL√

2
(τ + σ) +

pR√
2

(τ − σ) +Xosc (2.309)

where we have set `s = 1 and Xosc is the sum of solutions with nonzero Fourier modes. The

zero modes have the property that the vectors (pL, pR) are valued in an even unimodular

lattice embedded in R1;1. The lattice of zero modes can be written as

Γ(r) := {ner + wfr|n,w ∈ Z} ⊂ R1;1 (2.310)
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where

er =
1√
2

(1/r; 1/r), fr =
1√
2

(r;−r) (2.311)

Note that e2
r = f2

r = 0, er · fr = 1 so that Γ(r) is indeed an embedding of the even

unimodular (a.k.a. self-dual Lorentzian) lattice II1,1 of rank 2 and signature (1, 1).

This model has a u(1)L ⊕ u(1)R current algebra generated by currents ♣SOME

ANNOYING

FACTORS OF 2

MISSING HERE. ♣
JL =

√
κ
∑
n∈Z

αnz
−ndz

z
JR =

√
κ
∑
n∈Z

α̃nz̄
−ndz̄

z̄
(2.312)

We have

JL ∼ −i∂X JR ∼ −i∂̄X (2.313)

♣Annoyingly, in our

conventions, there is

a nonzero constant

here. ♣
***********************

NEED TO GIVE MORE CAREFUL AND FORMAL DISCUSSION OF WHAT IS

MEANT BY A ”CHIRAL ALGEBRA”

***********************

The “chiral algebra” they generate is the smallest operator product algebra generated

by these fields. Ignoring possible contact terms from contraction of left- and right-moving

fields we have a direct sum of the “u(1) chiral algebra”. The fields are all obtained from

polynomials in (anti-) holomorphic derivatives of X. We call it A(u(1)). ♣GIVE FORMAL

DEFINITION OF

CHIRAL

ALGEBRA HERE

OR DEFER AND

JUST SAY THIS IS

A SPECIAL CASE

OF A ”CHIRAL

ALGEBRA” TO BE

DEFINED LATER

? ♣

We compute the two-point function in the SL(2)×SL(2) - invariant vacuum in radial

quantization: 28

〈0|JL(z1)JL(z2)|0〉 = κ
∞∑
n=1

n

(
z2

z1

)n dz1

z1
⊗ dz2

z2

=
κ

(z1 − z2)2
dz1 ⊗ dz2

(2.315)

Note that in radial quantization we first work in the domain with |z1| > |z2| so that the

series converges. Then we analytically continue from there. For the currents there is a

single-valued analytic continuation to the entire space C×C−Diag with no monodromy.

That’s how you define all correlators in radial quantization: The operators in the

theory are such that the correlation functions are single-valued.

Any chiral algebra has T (z) and all its derivatives and products of derivatives. Note

that in this case

T (z) = −1

2
(∂x)2 =

1

2κ
: J2

L : (2.316)

This is called the Sugawara form of the stress tensor and will hold, in a slightly modified

form, in the nonabelian case.

28This corresponds to standard normalization

〈∂x(z1)∂x(z2)〉 = − 1

(z1 − z2)2
(2.314)
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********************************************

Unitary Representations Of The U(1) Chiral Algebra:

Representations: Vp with p ∈ C. Unitary representations: p ∈ R. Character

χp := TrVpq
L0− c

24 e2πiξJ0

=
q

1
2
p2
e2πiξp

η

(2.317)

In addition, the model has vertex operators

Vp(z, z̄) = c(p) : eipLX(z) ⊗ eipRX̃(z̄) : (2.318)

where the momentum p = (pL; pR) is confined to be in the even unimodular lattice Γ(r):

So

pL =
1√
2

(
n

r
+ wr)

pR =
1√
2

(
n

r
− wr)

(2.319)

where n,w ∈ Z are momentum, and winding quantum numbers, respectively. (Here c(p)

is a “cocycle operator” - IGNORE IT OR EXPLAIN?) We indicated standard normal

ordering symbols. Henceforth our exponentiated vertex operators are all assumed to have

this normal ordering and we drop it from the notation.

The operator product of these fields is, exactly:

Vp1(1)Vp2(2) = ε(p1, p2)(z1−z2)p
1
L·p

2
L(z̄1−z̄2)p

1
R·p

2
Rc(p1, p2) : ei(p1

LXL(1)+p2
LXL(2))⊗ei(p1

RXR(1)+p2
RXR(2))

(2.320)

Here the cocycle operators satisfy c(p1)c(p2) = ε(p1, p2)c(p1 +p2). They define a Z2 central

extension of the lattice Γ(r), that is, the ε(p1, p2) are valued in {±1} and must satisfy

ε(p1, p2)

ε(p2, p1)
= (−1)p1·p2 (2.321)

EXPLAIN:

1. This is single-valued because p1 · p2 ∈ Z, because Γ(r) is an integral lattice.

2. Consequently, using radial quantization and the SL(2,R) × SL(2,R) invariant vac-

uum:

〈
∏
i

Vpi(zi, z̄i)〉 = FL(z1, . . . , zN )F̃R(z̄1, . . . , z̄N ) (2.322)

where

FL(z1, . . . , zN ) =
∏
i<j

(zi − zj)p
i
Lp

j
L (2.323)

are known as conformal blocks for the correlation function.

3. Stress that the correlation function is single-valued, but the conformal blocks have

monodromy.
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For special radii some of the VpL,pR become purely holomorphic operators. This hap-

pens if there is a solution to the Diophantine equation pR = 0. Clearly this requires

r2 =
m

w
(2.324)

for some integers m,w, and therefore r2 ∈ Q. These are called the rational Gaussian

models. They are among the simplest of the rational conformal field theories. ♣AGAIN, GIVE A

FORMAL

DEFINITION OF

RCFT? OR

DEFER? ♣

So, suppose r2 = p/q is rational in lowest terms. Then the holomorphic operators are

obtained from m = `p and w = `q. These are all powers of the basic holomorphic vertex

operators:

V± := c±e
i
√

2pqX (2.325)

Set κ = pq. Then these operators have integer conformal dimension κ and no monodromy

around the operators generated by JL(z), so they can be added to the chiral algebraA(u(1))

to produce a larger chiral algebra known as the u(1) level κ chiral algebra and denoted as

A(u(1))κ.

The representations of A(u(1))κ can be found among the holomorphic parts of the

vertex operators of the Gaussian model at radius r2 = p/q. They are generated by the

“chiral vertex operators”:

Vn(z) = ce
i n√

2κ
X(z)

(2.326)

Warning: The logical status of (2.326) is different from (2.325) in an important way.

The fields (2.326) by themselves are not part of the spectrum of the Gaussian model. The

left-movers and right-movers must be combined into single valued non-holomorphic fields.

This is quite different from (2.325). These fields are in the spectrum of the theory.

Note that n ∼ n+ 2κ and the character is

χn(z, τ) := TrHnq
L0− c

24 e2πiξJ0

=

∑
`∈Z q

1
2
p2
Le2πiξpL

η

=

∑
`∈Z e

2πiκτ(`+ r
2κ)

2
+2πiz(2`κ+n)

η

=
Θn,κ(z, τ)

η

(2.327)

where we have defined z = ξ/
√

2κ as a more convenient normalization for working with

modular transformations and periodicities.

Now let us consider the partition function of the RCFT where we combine left- and

right-movers. At a generic radius we have

TrHe
2πiτ(L0− c

24
)+iξJ0−2πiτ̄(L̃0− c̃

24
)−2πiξ̃J̃0 =

∑
(pL,pR)∈Γ(r) q

1
2
p2
L q̄

1
2
p2
Re2πiξpL−2πiξ̃pR

ηη̄

=
∑

(pL,pR)∈Γ(r)

χpL(z, τ)χpR(z, τ)
(2.328)
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Now, this expression also has an interpretation as a path integral on a torus:

Z(τ, ξ; τ̄ , ξ̄) = e−2
(Imξ)2

Imτ TrHe
2πiτ(L0− c

24
)+iξJ0−2πiτ̄(L̃0− c̃

24
)−2πiξ̃J̃0 (2.329)

where

Z(τ, ξ; τ̄ , ξ̄) =

∫
[dX]e−K

∫
Σ(∂X+A1,0)∧(∂̄X+A0,1) (2.330)

and we have coupled to a flat external gauge field A = a1dσ
1 + a2dσ

2 and

ξ = constant
1

2π
(a2 − τ̄ a1) (2.331)

The path integral is clearly diffeomorphism invariant and gauge invariant under the gauge ♣NEED TO

CHECK THIS

EQUATION! ♣transformations for the external, nondynamical, U(1) gauge field A.

When a path integral coupled to a metric and/or gauge field fails to be properly gauge

invariant we say there is an anomaly. Because we have both left- and right-moving bosons

coupled in a symmetric way there is no possibility of an anomaly in this case.

****************************************************

****************************************************

HERE PROVIDE DETAILS OF COMPUTATION OF THE PATH INTEGRAL

1. The relevant field space is not connected and has topologically distinct sectors: X =

Xq +Xsol with Xsol = 2πn1σ1 + 2πn2σ2, n1, n2 ∈ Z.

2. So Z = Zq
∑

n,m e
−Sclass .

GIVE FORMULA FOR CLASSICAL ACTION

3. Poisson resum on m.

4. Evaluate Zq using ζ-function regularization to get

Zq =
1√

Imτ |η(τ)|2
(2.332)

5. Comment: For noncompact boson we have

Zq =
1√

Imτ |η(τ)|2
(2.333)

We can recover this from the r →∞ limit: It comes from the Gaussian integral∫ +∞

−∞
dpe−πImτp2

(2.334)

*****************************************************

*****************************************************

Now when r2 = p/q the infinite sum over the Narain lattice Γ(r) simplifies in an

interesting way
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Z(z, τ ; z̄, τ̄) = e−4πk
(Imz)2

Imτ

∑
r,r̃∈Z/2kZ

Dr,r̃χr(z, τ)χr̃(z, τ) (2.335)

The matrix Dr,r̃ is discussed further in section 2.4.1 below.

We can draw some important conclusions from the above computation:

1. In both (2.328) with (2.335) we see the typical feature of conformal field theories

that the partition function is a sum of holomorphic times anti-holomorphic objects,

up to a simple local factor. Notice they are holomorphic in both z and τ . These

holomorphic factors are called conformal blocks and a (defining) property of rational

conformal field theory is that all correlators on all Riemann surfaces are such sums.

The local prefactor represents an anomaly in requiring both gauge invariance and

holomorphic factorization. This observation goes back, at least, to [5]. ♣REALLY NEED

TO DISCUSS

MODULAR

TRANSFORMA-

TIONS TO SEE

THAT ONLY THE

VECTOR SPACE

OF CONFORMAL

BLOCKS IS WHAT

IS INVARIANT. ♣

2. Moreover, as a function of z the vector space of conformal blocks is identical to the

Hilbert space of the U(1)k Chern-Simons theory. This will turn out to be a general

principle:

There is an isomorphism between the vector space of physical states in a Chern-

Simons gauge theory quantized on Σ × R and the space of conformal blocks of a

corresponding rational conformal field theory. Moreover, if the Chern-Simons theory

is quantized using Kähler quantization induced by a choice of complex structure on Σ

then this is an identification of holomorphic vector bundles over the moduli space of

Riemann surfaces.

One of our goals is to understand this statement better in the context of more general

Chern-Simons theories.

3. In this sense there is a kind of equivalence between the topological Chern-Simons

theory on three-manifolds with boundary, and the (chiral half of) a rational conformal

field theory on the boundary. It is a kind of “holography.”

2.4.1 Gluing The Same Chiral Algebra To Get Different Radii

Enquiring minds will notice that, the integer k will have different factorizations as k = pq

(even when k is prime). What picks out the different radii?

Answer Within The Framework Of RCFT

In (2.335) the matrix Dr,r′ tells us how to glue left- and right-movers. As shown in

[43] this must be done via an automorphism of the Z/(2kZ) fusion rule algebra. (This is

a general result on gluing together representations in RCFT.) Thinking of that Abelian

group additively the automorphisms are just x 7→ yx where y is relatively prime to 2k. It
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is claimed in [43] that if we think of a fundamental domain 0 ≤ r ≤ 2k − 1 then Dr,r′ = 1

if r = pr2 + qr1 and r′ = qr1 − pr2 with (r1, r2) valued in the diamond region in Z ⊕ Z
determined by (±p, 0) and (0,±q). ♣Better recheck.

There is a related

paper by

Dijkgraaf-Verlinde -

need to cite this. ♣
Answer Within The Framework Of Maxwell-Chern-Simons Theory

As discussed at length in [26], deriving the lowest Landau Level wavefunctions in the

framework of Chern-Simons theory actually selects out a preferred radius. Let us return

to (2.199) and substitute the formula for the wavefunctions in the LLL. We get:

Ψ̄(A) := N e−4πkImτAzAz̄
∑
ω∈H1

Z

e−4πkImτωzωz̄e−8πkImτωz̄Azψ(Az + ωz) (2.336)

We can recognize this as the instanton sum for a periodic scalar field (with both left- and

right-moving degrees of freedom) at a specific radius, namely,

S =
k

4π

∫
dφ ∗ dφ (2.337)

where φ ∼ φ+ 2π with a chiral coupling to A1,0:

2ik

∫
∂̄φ ∧A1,0 (2.338)

We can unpack this information by matching the partition function of the boson on the

torus with this action with (2.336). The radius is r2 = k`2s. For further discussion, including

the nontrivial generalization to a torus gauge group see [26].

Answer Within The Framework Of Topological Field Theory: Surface Defects

Nontrivial automorphisms of the fusion rules can be interpreted as defining surface

defects within the three-dimensional theory. See [35].

************************************

EXPLAIN MORE ABOUT THE KAPUSTIN-SAULINA PICTURE

************************************

2.4.2 The Free Fermion Radius: Level 1/2 Theta Functions And Spin Structures

On The Torus

It is clear from (2.310) that there are radii of special interest:

1. There is the renowned r → 1/r T-duality symmetry, so we need only look at r ≥ 1.

2. At the fixed point of T -duality, r = 1 there is an enhanced SO(4) = (SU(2)L ×
SU(2)R)/Z2 symmetry.
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3. At the radius r2 = 2 we have
√

2pq = 2 so that we have holomorphic operators

e±
I
2
XL(z) of conformal dimension 1/8 and their squares

ψ(z) = eiXL(z) ψ̄(z) = e−iXL(z) (2.339)

of dimension h = 1/2.

4. At the radius k = 6 the theory actually has N = 2 supersymmetry. The r = ±6

representations give

G±(z) ∼ e±i
√

3X (2.340)

which, remarkably, satisfy the N = 2 superconformal algebra.

The last two examples motivate the idea of introducing a super-chiral algebra. In the

free fermion case we have

ψ(z1)ψ(z2) ∼ (z1 − z2) : ψ(z1)ψ(z2) :

ψ(z1)ψ̄(z2) ∼ (z1 − z2)−1+ : ∂ψψ : +O(z1 − z2)
(2.341)

Thus, the ψ and ψ̄ “almost” form a chiral algebra: Their correlators are single valued but

there is nontrivial braiding: The ordering of the ψ and ψ̄ in the correlators matters.

3. In any case, there is a “double cover” of the Gaussian model at this special “free

fermion radius” . However, rather obviously to define correlators we must define spin

structures.

4. Perhaps the most obvious case of this is in the computation of the partition function.

First of all we must choose fermion boundary conditions for

ψ(z) =
∑

drz
−r−1/2dz1/2 (2.342)

when z = eiφ+t as a function of φ.

5. As explained in Appendix G there are two spin structures on the circle, the Neveu-

Schwarz (NS) and Ramond(R) spin structures corresponding to anti-periodic and periodic

boundary conditions on ψ respectively. In terms of the mode expansion NS corresponds to

r ∈ Z + 1
2 and R corresponds to r ∈ Z.

6. Tre−βH naturally chooses AP bc’s. [See any QFT textbook, or demonstrate it].

7. Altogether we have four natural torus partition functions, corresponding to the four

spin structures on the torus (Convention: Z(gt, gs; τ) for twisted boundary conditions on

the torus.) ♣Get the box macro

and use it for torus

with boundary

conditions ♣
Z(+,+) =

ϑ1(z, τ)

η(τ)

Z(−,+) =
ϑ2(z, τ)

η(τ)

Z(−,−) =
ϑ3(z, τ)

η(τ)

Z(+,−) =
ϑ4(z, τ)

η(τ)

(2.343)
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ETC.

Here we have introduced the half-integer level theta functions.

Define: ♣Depending on how

much we said in the

section on the

charged particle

round the ring we

just refer back. ♣
ϑ[
θ

φ
](z|τ) :=

∑
n∈Z

eiπτ(n+θ)2+2πi(n+θ)(z+φ) (2.344)

ϑ1(z|τ) := ϑ[
1/2

1/2
](z|τ) = 2q1/8 cos[π(z +

1

2
)] + 2q9/8 cos[3π(z +

1

2
)] + · · ·

ϑ2(z|τ) := ϑ[
1/2

0
](z|τ) = 2q1/8 cos(πz) + 2q9/8 cos(3πz) + · · ·

ϑ3(z|τ) := ϑ[
0

0
](z|τ) = 1 + 2 cos[2πz]q1/2 + 2 cos[4πz]q2 + · · ·

ϑ4(z|τ) := ϑ[
0

1/2
](z|τ) = 1− 2q1/2 cos[2πz] + 2q2 cos[4πz] + · · ·

(2.345)

♣Also give infinite

product

representation. All

these formulae

should go into an

appendix. ♣

8. Discuss the three index 3 subgroups of PSL(2,Z) that preserve the three even spin

structures. Use this to explain the S and T -transformations of the above theta functions.

9. Comment on spin operators and their correlators.

2.5 Spin Theories

In important variation on Chern-Simons theories are the spin-Chern-Simons theories.

In this case, M3 has, in addition to an orientation, also a spin structure and the

Chern-Simons action really depends on the spin structure.

See Appendix G for mathematical background on spin structures.

We can define the Chern-Simons invariant on a closed 3-manifold by a bordism of the

gauge bundle to zero. This means that we find a four-manifold W4 such that

∂W4 = M3 (2.346)

and we extend the bundle over W4. Once the bundle extends there is no problem extending

the connection, by a partition of unity argument. Now given this extra data we can lift

the Chern-Simons invariant

CS(A) =
1

(2π)

∫
M3

AdA ∈ R/2πZ (2.347)

to an actual real number

ĈS(A;W4) = 2π

∫
W4

F

2π
∧ F

2π
∈ R (2.348)

There can be different choices of W4 and the differences ♣COMMENT ON

DEPENDENCE ON

EXTENSION OF A

TO W4 ♣(ĈS(A;W4)− ĈS(A;W ′4)) = 2π

∫
Z4

F

2π
∧ F

2π
∈ 2πZ (2.349)

are the integral over a closed four-manifold Z4 (gotten by gluging W4 to W ′r) of the wedge

product of representatives of the first Chern class of the bundle. This is the intersection
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of an integral form and hence is an integer. For example, if Z4 = CP2 and [F/2π] = c1(H)

where H is the basic tautological hyperplane bundle then the integer is +1.

We would like to divide the CS action by 2 to define half-integer level Chern-Simons

theory. But this will lead to an ill-defined action. The above example of Z4 = CP2 shows

that this can be the case.

It is “only” a sign, since we are “only” trying to take a square-root of exp[iCS(A)] but

sloppiness here will lead to serious errors.

H2(Z4;Z) is an integral lattice. In general given an integral lattice Λ, a vector c such

that

v2 = c · v mod 2 (2.350)

is called a characteristic vector. There are always infinitely many characteristic vectors

and any two, say, c, c′ differ by a vector divisible by 2. That is, c − c′ ∈ 2Λ. When you

have a characteristic vector 1
2v · (v + c) is an integer.

It turns out that any integral lift ŵ2 of w2 ∈ H2(Z4;Z2) is a characteristic vector. This

motivates the definition of the half-integer Chern-Simons term:

We choose a spin structure s on W4 and set ♣You are using ŵ2.

Need to explain

that different lifts

for the same spin

structure don’t

matter. ♣

1

2
ĈS(A;W4; s) := 2π

∫
W4

1

2

F

2π
∧ (

F

2π
+ ŵ2) ∈ R (2.351)

Now, if we have two extensions so that all the data (including the spin structure) agree on

the common boundary then

1

2
ĈS(A;W4; s)− 1

2
ĈS(A;W ′4; s′) = 2π

∫
Z4

1

2

F

2π
∧
(
F

2π
+ ŵ2

)
∈ 2πZ (2.352)

as desired. We can therefore define the spin Chern-Simons action to be

exp[2πi
1

2
CS(A; s)] := exp

[
2π

∫
W4

1

2

F

2π
∧ (

F

2π
+ ŵ2)

]
(2.353)

The price we have paid is:

1. Restricting attention to W4 with a choice of spin structure. This is not a serious re-

striction since the spin bordism group in three-dimensions is trivial, as is the bordism

group of a spin manifold with principal U(1) bundle. (In higher dimensions that kind

of restriction can become quite significant.)

2. We need to include the extra data of an explicit lift ŵ2 of w2 to a closed 2-form on

W4.

3. In a neighborhood of the boundary M3 = ∂W4, since M3 admits a spin structure, it

must be that w2(M3) is trivializable. Therefore, in the neighborhood we can trivialize

ŵ2 = dη. However, η will not vanish on the boundary ∂W4. The value of η depends

on the choice of spin structure s on M3. Two different choices of spin structure s, s′

differ by an element of ∆s ∈ H1(M3;Z2). Now, ∆s can be lifted to a closed one-

form ∆η with integer periods. Then η(s) − η(s′) = ∆η can have nontrivial periods,

although only the value of these periods modulo two is meaningful.
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4. From the definition of the spin Chern-Simons term it is easy to see how it depends

on spin structure. If we shift by ε ∈ H1(M3;Z/2Z) then we can prove

exp[2πi
1

2
CS(A; s + ε)] = exp[iπ

∫
M3

ε ∪ c1(L)] · exp[2πi
1

2
CS(A; s)] (2.354)

The pre-factor on the RHS is “just” a sign. To prove (2.354) note that the shift of

η(s) by ∆η descends to ε and F
2π is a representative of c1(L) where L → M3 is the

principal U(1) bundle over M3. So the change of the exponentiated action, which is

just a factor of

exp[iπ

∫
M3

∆η ∧ F

2π
] (2.355)

can just be written as a cup product in cohomology:

exp[iπ

∫
M3

∆η ∧ F

2π
] = exp[iπ

∫
M3

ε ∪ c1(L)] (2.356)

*********************************************************

Comment: Phase of fermion path integral in 3d. APS AND ETA

EXPLAIN INDEX THEOREM ARGUMENT

***********************************************************

2.6 Generalization: Torus Gauge Group

Let us generalize the gauge group to be U(1)d. Then locally there are d connection forms,

locally written as AI , I = 1, . . . , d, and the general Chern-Simons action is ♣Can’t the U(1)

factors mix through

monodromy? ♣

S =
1

4π

∫
M3

KIJA
IdAJ (2.357)

where KIJ is a symmetric integral matrix.

1. KIJ determines an integral lattice Λ.

2. For nonspin theories, the diagonal matrix elements KII must be even. So we are

speaking of even integral lattices.

3. For spin theories, we allow the diagonal matrix elements KII to be odd.

4. Spin structure dependence: Also need to choose a characteristic vector cΛ for Λ.

Then cΛ ⊗ ŵ2 will be a characteristic vector for Λ ⊗ H2(Z4;Z) and hence we write

the action:

exp

[
2πi

∫
W4

1

2
KIJ

F I

2π
∧
(
F J

2π
+ cJ ⊗ ŵ2

)]
(2.358)

5. Wilson operators: Character group Hom(U(1)d, U(1)) ∼= Zd so define

W (~n, γ, f) = exp[2πi

∮
γ
nIA

I ] (2.359)
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The singular gauge transformation ♣NEED TO

DISCUSS

FRAMING

DEPENDENCE ♣AI → AI + `Idφ (2.360)

where φ is the azimuthal angle around γ induces the identification

W (~n, γ, f) ∼W (~n+K~̀, γ, f) (2.361)

6. Coupling to external gauge field: ”Spin-charge relation” of [9], see also [55].

Quantum equivalence statement of Belov-Moore:

1. Discriminant group with quadratic refinement.

2. Gauss-Milgram formula. Need lift to cmod24.

3. Some nontrivial equivalences: II1,1 (Witten) and the Niemeier lattices. Revisit

Chetan Nayak’s paper.

Boundary conditions:

1. Nontopological: edge states.

when discriminant group has a square root: equivalence to finite group gauge theory

[Maldacena-Moore-Seiberg; Banks-Seiberg].

1-form symmetries.

Time reversal.

Extra outer automorphisms: Automorphisms of the lattice Λ act as outer automor-

phisms of phase space. How do they act on the Hilbert space?

************************************************

2.6.1 Applications To the FQHE

how much of FQHE to recall?

the “statistical gauge fields”

duality. densities of quasiparticles.

2.6.2 Coupling To External Abelian Gauge Fields

Witten’s Sp(2n,Z) action.

3. Chern-Simons Theories For NonAbelian Gauge Fields

3.1 Some Chern-Weil Theory

More details in Appendix I. Here we just summarize some key points.

We will eventually want to talk about an arbitrary compact Lie group.

For this section, let G be a compact, connected, simple Lie group with Lie algebra g.

We consider a principal G-bundle P →M over a manifold M of dimension ≥ 4.

We introduce an Ad-invariant bilinear form on g

tr (x, y) = − 1

2h∨
TrgAd(x)Ad(y) (3.1)
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where h∨ is the dual Coxeter number. This is a good normalization because for compact

groups it is positive definite and for simple Lie algebras the norm-square of the longest

coroots is +2. ♣CHECK! CHECK!

♣
*************************

As a sanity-check, let us consider the case of g = su(2):

*************************

Another good aspect of this is that when G is in addition simply connected then

℘(A) :=
1

8π2
trF 2 (3.2)

will have integral periods on all four-cycles, and moreover there will exist bundles and

four-manifolds where the period is 1.

Now, as explained in detail in Appendix I for two connections on P we have a well-

defined form CS(A1, A2) ∈ Ω3(M) so that

dCS(A1, A2) = ℘(A1)− ℘(A2) (3.3)

If A2 = A and A1 = A+ α where α ∈ Ω1(M ; adP ) is a globally well-defined section of the

adjoint bundle adP then

trF (A+ α)2 − trF (A)2 = d

{
tr

(
2αF + αDAα+

2

3
α3

)}
(3.4)

Informally, this is ♣Spell out DAα ♣

δ
(
trF 2

)
= 2d (tr δAF ) (3.5)

So:

CS(A+ α,A) =
1

8π2
tr

(
2αF + αDAα+

2

3
α3

)
(3.6)

Now we would like to write a Chern-Simons action which depends on a single gauge

field A. Informally, we would like to study the exponentiated action:

exp[2πi
k

8π2

∫
M3

tr

(
AdA+

2

3
A3

)
] (3.7)

So, why not just consider CS(A, 0)? If the principal G bundle P →M3 is nontrivial then

there is no such thing as the A = 0 connection on P . Only when P is trivial can one take

the trivial connection. In general the 3-form tr
(
AdA+ 2

3A
3
)

will not be a well-defined

form over M3. Nevertheless, there is a well-defined meaning to the integrated expression

1

8π2

∫
M3

tr

(
AdA+

2

3
A3

)
(3.8)

provided we only consider it as an element of R/Z. Consequently, the constant k must be

an integer. We can define (3.8) as an element of R/Z in three different ways (all of which

will agree):
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1. We write M3 as the boundary of an oriented 4-fold W4 and extend the bundle and

connection to W4. (There are no topological obstructions to the existence of such

extensions.) Then we define∫
M3

1

8π2
tr

(
AdA+

2

3
A3

)
:=

∫
W4

℘(A) ∈ R (3.9)

The problem here is that there are many potential extensions and choices of W4. The

difference between any two choices will be:∫
W4

℘(A)−
∫
W ′4

℘(A′) =

∫
Z4

℘(A) ∈ Z (3.10)

where Z4 is a closed four-manifold. Since ℘ is normalized so that we can get any

integer (for G simply connected), these periods will be integers. So the definition is

only independent of the choice of extension as an element of R/Z.

2. While there is no globally-defined g-valued connection one-form on M3 there is such

a connection on the total space of the principal G-bundle. Therefore, there is a well-

defined form CS(A) on the total space of P . 29 Now, if we could choose a section

s : M → P then we could pull back and integrate
∫
s∗CS(A). There are two problems

with trying to do this: First, if P →M is a nontrivial bundle there is no continuous

section. This is not too serious because we can remove a set of measure zero in

M where the connection is smooth and trivialize the bundle on the complement.

However, the resulting number will depend on how we trivialized. If s1, s2 are two

different trivializations they will differ by s1 = s2 · g where g is an automorphism

(gauge transformation) of P . In the simplest (and most common) cases that means

g : M → G is a well-defined map. Now, when A is globally well-defined so that the

3-form CS(A) makes sense one can easily check the gauge transformation property:

CS(Ag)− CS(A) = CS(g−1dg) + d

(
1

8π2
trAdgg−1

)
(3.11)

and

CS(g−1dg) = − 1

24π2
tr (g−1dg)3 (3.12)

Therefore
∫
s∗CS(A) will change by − 1

24π2

∫
tr (g−1dg)3 and the period of this form

on M will be a nonzero integer. Thus,
∫
M3

CS(A) makes sense, but only as an element

of R/Z. ♣FACTOR OF

TWO

CONFUSION. IT

SEEMS THAT

WITH OUR NOR-

MALIZATIONS

THIS IS ALWAYS

AN EVEN

INTEGER!!! ♣

How does the Chern-Simons action itself vary? Again, using formulae from the Ap-

pendix we have

d

dt
CS(A+ α(t), A) =

1

8π2
[2tr α̇(t)F (A+ α(t))− d (Trα(t)α̇(t))] (3.13)

29A more elegant way to construct the globally defined Chern-Simons form on the total space of P is the

following: If π : P → M is a principal G bundle then the principal G bundle π∗(P ) → P is canonically

trivializable since s(p) = (p, p) is a global section. If A is a connection on P → M it will pull back to a

connection on π∗(P ) → P and we can define CS(π∗(A), 0) as a globally well-defined form CS(A) on the

total space of P .
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Again, this is usually informally written as:

δCS(A) =
1

8π2
[2tr δAF − d (tr (AδA))] (3.14)

************************************************

NEED TO COMMENT ON SPIN THEORIES AGAIN IN THE NONABELIAN

CASE

************************************************

3.1.1 The Chern-Simons Action On M3 With A Nonempty Boundary

EXPLAIN THAT THE ACTION MUST NOW BE CONSIDERED A SECTION OF A

LINE BUNDLE

3.2 The Semiclassical Approximation To The Chern-Simons Path Integral

So, we now consider the formal path integral generalizing (3.15)∫
A/G

[dA] exp[i
k

4π

∫
M3

tr

(
AdA+

2

3
A3

)
]
∏
α

W (Rα, γα) (3.15)

For the moment we take γα to be closed curves and M3 to have no boundary.

Formally we expect this to be a topological field theory so it should only depend on

the topology of M3 and that of the link qαγα.

From our experience with the U(1) case we expect, of course, some anomalies in the

topological invariance.

In the semiclassical approximation k → ∞ we should expand around the solutions of

the equations of motion. These are the flat connections on M3. In sharp contrast to simple

cases like Σ2 × S1 there will, in fact, tend to be just isolated flat connections.

*************************************************

Examples

1. Rational homology spheres: Take M3 = S3/Γ where Γ is a discrete subgroup of

SU(2). Then π1(M3) ∼= Γ. If G = SU(2) then, up to conjugation, there is a unique

subgroup, so the flat connections are isolated.

2. Mapping torus. Let S be a surface and f : S → S a diffeomorphism. Then we can

form the mapping torus Mf = (S × [0, 1])/ ∼ where (x, 0) ∼ (f(x), 1). This can

be viewed as a fibration over a circle by Riemann surfaces. AGOL THEOREM ON

HYPERBOLIC STRUCTURES. NEED TO SAY SOMETHING ABOUT FUNDA-

MENTAL GROUP IN THIS CASE.

3. Heegaard splittings.
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3.2.1 Semiclassical Approximation: The Framing Anomaly Revisited

We now consider the k →∞ asymptotics. Since ~ ∼ 1/k this is the semiclassical approxi-

mation. We are following the discussion in Witten’s paper [67], with a few modifications.

We should expand around the solutions to the equations of motion. These are the

flat connections. For simplicity, we assume the flat connections are isolated - up to gauge

equivalence.

So let us consider expanding around an isolated flat connection A∗. We write A =

A∗ + α, and, using (3.6) the action is

k

4π

∫
M3

tr

(
AdA+

2

3
A3

)
=

k

4π

∫
M3

tr

(
A∗dA∗ +

2

3
A3
∗

)
+

k

4π

∫
tr

(
αDA∗α+

2

3
α3

)
(3.16)

The first term on the RHS is the classical action S(A∗). We then have a nondegenerate

quadratic term and an interaction. To do the one loop approximation we introduce BRST

ghosts exactly as in equation *** above and introduce a metric by using the gauge fixing

condition

DA ∗ α = Di
Aαivol (g) = 0 (3.17)

leading to the quadratic action:

exp

[
i
k

4π

∫
M3

tr (αDA∗α+HDA∗α+ bDA∗ ∗DA∗c)

]
(3.18)

here α ∈ Ω1(M3; adP ) while H, b, c ∈ Ω0(M3; adP ) with b, c anticommuting fields, while H

is commuting.

Now, because A∗ is a flat connection DA∗ : Ωk(M3; adP )→ Ωk+1(M3; adP ) squares to

zero:

(DA∗)
2 = 0 (3.19)

and therefore DA∗ serves as a differential. So the situation is very closely analogous to the

Abelian case discussed in section 2.2.17 above. The Hodge theory discussion of Appendix

F goes through in the same way and we have the one-loop determinant

det′(∗DA∗ ∗DA∗)

det1/2D
(3.20)

where

D : Ωodd(M3; adP )→ Ωodd(M3; adP ) (3.21)

is defined by D = ∗DA∗+DA∗∗. The Hodge theory arguments of appendix F show that the

absolute value of (3.20) is a topological invariant, but the phase turns out to be continuously

metric dependent. ♣NEED REF TO

ALBERT

SCHWARZ

SOMEWHERE ♣
To investigate the metric dependence we interpret D as a twisted Dirac operator.

Recall that antisymmetric tensors can be regarded as bispinors:

S ⊗ S ∼= ⊕kΛkT ∗M3 (3.22)
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Under this isomorphism, the Dirac operator coupled to spinors becomes a first order dif-

ferential operators on differential forms and in fact becomes d ∗+ ∗ d. The same is true if

we couple to adP .

Now, there is a general formula for the phase of 3d Dirac operator [4, 72]

Detγ ·D = |Detγ ·D|e
iπ
2
η(γ·D) (3.23)

****************************

NEED TO DEFINE ETA INVARIANT

EXPLAIN ARGUMENT FROM [4]

MAYBE EXPLAIN PHASE OF FERMI DET AND ETA EARLIER????

****************************

The η invariant η(D) depends on both the flat connection A∗ and the metric. The

dependence on A∗ can be evaluated by considering a one-parameter family of connections

A(s) from A∗ to the trivial connection A = 0. (Since we have flat connections the bundle P

is trivializable. ) We then apply the APS index theorem to the four-manifold M3 × [0, 1] ♣Wait a minute!

Only true if G is

simply connected.

There is a gap

here!! ♣

where s is a coordinate along the interval. Denoting η(D) by η(A∗, gµν) to emphasize the

dependence on these variables we get from the APS theorem:
♣NEED TO

SUPPLY SOME

DETAILS HERE!!!

♣

π

2
η(A∗, gµν)− π

2
η(0, gµν) =

1

2
c2(G)2π

∫
M3

CS(A∗) (3.24)

The RHS is a topological invariant, once again. However, we must now confront the metric

dependence of η(0, gµν). So we consider a one-parameter family of metrics gµν(s)dxµ⊗dxν

and once again apply the APS index theorem to the four-manifold M3 × [0, 1] where s is

a coordinate along the interval. Now, when we have set the gauge field to A = 0 we have

decoupled the gauge indices so

η(0, gµν) = (dimG)η(gµν) (3.25)

where η(gµν) is the eta invariant for the operator ∗d+ d∗ restricted to odd forms. Now the

APS index theorem gives us:

Indexγ ·D =

∫
M3×[0,1]

Â− 1

2
[η(g(1)

µν )− η(g(1)
µν )] (3.26)

but ∫
M3×[0,1]

Â = − 1

24

∫
M3×[0,1]

p1(R) = − 1

24

∫
M3×[0,1]

p1(R) (3.27)

where

p1(R) = − 1

8π2
TrvectorR

2 (3.28)

is the Chern-Weil representative of Pontryagin class. Then∫
[0,1]

TrvectorR
2 = CS(ω1, ω2) (3.29)
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where ω is the spin connection for the Levi-Civita connection so R = dω + ω2. Informally,

CS(ω) = Trvector(ωdω +
2

3
ω3) (3.30)

It follows that, if we trivialize the tangent bundle so we can make global sence of CS(ω)

then ♣NEED TO

EXPLAIN TO

WHAT EXTENT

YOU CAN INDEED

TRIVIALIZE THE

TANGENT

BUNDLE ♣

F :=
1

2
η(gµν) +

1

24

∫
M3

1

8π2
Trvector(ωdω +

2

3
ω3) (3.31)

is metric-independent. But F does depend on the framing of the tangent bundle. Given

one framing and a map ρ : M3 → SO(3) we can produce another one. The Chern-Simons

invariant of the spin connection changes by a multiple of the winding number w(ρ) of ρ

and so

F → F +
w(ρ)

12
(3.32)

Remarks

1. Witten argues that we should add a local counterterm proportional to the gravita-

tional Chern-Simons action to eliminate the metric dependence. Then the one-loop

approximation becomes:

Z ∼k→∞ eiπF
∑
A∗

T (A∗)e
2πi(k+ 1

2
C2(G))

∫
M3

CS(A∗) (3.33)

where T (A∗) is the analytic torsion of DA∗ .

2. The phase shifts by

eiπF → e2πi d
24
w(ρ)eiπF (3.34)

Now, from the relation to RCFT described below we actually expect that this shift

should be

eiπF → e2πi c
24
w(ρ)eiπF (3.35)

where c is the central charge of the WZW theory:

c =
k

k + h∨
dimG (3.36)

There is no immediate contradiction since we are looking at the leading k → ∞
asymptotics, but it does raise the question of the metric dependence of the 1/k

corrections.

3. Thus, the choices of topological data that the path integral depends on include: A

choice of orientation and a choice of framing. When we include Wilson lines, we will

need to including framings of the loops, as we have already seen in the Abelian case.

*********************************

Remarks from

1. Atiyah’s paper on 2-framings.
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2. Segal on riggings

3. p1 structures: Blanchet, Habegger, Masbaum, Vogel

******************************************

3.2.2 Higher Loops

Comment: Axelrod-Singer

3.3 Quantization In Some Important Cases

3.3.1 Quantization On Σ2 × R With Σ A Compact Surface

We now quantize the theory when M3 = Σ2 × R where Σ2 is an oriented surface. We

therefore assume we have a principal G-bundle P → Σ2 and we will first quantize the

space of all gauge fields A = Conn(P → Σ2) and then impose the Gauss law.

Recall we have symplectic form on A:

ω =
k

4π

∫
Σ

tr (δAs ∧ δAs) (3.37)

giving Poisson brackets:

{Aai (x), Abj(y)} =
2π

k
εijδ

abδ(2)(x, y) (3.38)

where A = Aai tadx
i and ta are an orthonormal basis with respect to the trace tr . The

moment map for gauge transformations ε : Σ2 → g is

µ(ε) = − k

2π

∫
Σ

tr (εF ) (3.39)

Now we need to quantize. A method available for all surfaces Σ2 is to choose a complex

structure, making it a Riemann surface. Locally we choose we can define a holomorphic

coordinate z = x1 + ix2 where dx1dx2 is oriented and, also choosing a local trivialization

of the bundle and defining A = Azdz +Az̄dz̄ we find

[Aaz(x), Abz̄(y)] =
π

k
δabδ(2)(x− y) (3.40)

This induces a complex structure on the space A:

T 1,0A ∼= Ω1,0(Σ2; adP ) (3.41)

Moreover, we can make A into a Kähler manifold with the compatible metric:

g(α, α) =
k

4π

∫
Σ2

tr (α1,0α0,1) (3.42)

where α ∈ Ω1(Σ2; adP ) is a globally defined adjoint-valued 1-form. The pre-quantum line

bundle Lk → A has Kähler potential:

K =
k

4π

∫
Σ2

tr (A1,0A0,1). (3.43)
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Now, gauge transformations act symplectically and we can attempt to perform Kähler

quantization. If we impose the constraints classically we are led to the Kähler quantization

of the moduli space of flat gauge fields. This quickly leads one into the world of algebraic

geometry. See 3.4 for some brief remarks. We will instead impose the constraints quantum-

mechanically.

If Ψ ∈ Γ[Lk → A] we can view it, formally, as a holomorphic function Ψ[Az]. We will

need to impose the Gauss law

µ(ε)Ψ = 0 (3.44)

and, using the quantization rule (3.40) we have a first order (functional) differential equa-

tion in Az. We view
δ

δAz(x)
Ψ ∈ T 1,0

x ⊗ g⊗ Lk,A (3.45)

and then the operator equation:

FΨ = 0 (3.46)

becomes the first order differential equation

DA,z
δ

δAz(x)
Ψ = −k

π
∂̄z̄Az(x)Ψ (3.47)

As we will see, this differential equation will require Ψ to live in a finite-dimensional vector

space. We will also interpret it as an equation for an anomaly in current conservation. ♣NEED TO COME

BACK AND

EXPLAIN WHY

THIS IS A

STATEMENT OF

AN ANOMALY IN

GLOBAL

SYMMETRY IN

THE WZW

MODEL ♣

On the Hilbert space of “L2-sections of Lk” we will have a unitary operator represen-

tation of the group of gauge transformations, Aut(P ). When P is trivializable this is just

the group of maps g : Σ2 → G (subject to suitable regularity conditions). We want to

impose

U(g)Ψ = Ψ (3.48)

where

(U(g) ·Ψ)(Az) = ef(Az ,g)Ψ((Ag)z) (3.49)

Note that, since d+Ag = g−1(d+A)g and this is a right-action on the space of connections

we will have a left-action on the Hilbert space of sections.

A priori there could be a projective representation:

U(g1)U(g2) = c(g1, g2)U(g1g2) (3.50)

where there is some nontrivial cocycle c(g1, g2), however, we want to impose (3.48) and

therefore the cocycle should be trivial.

Now the differential equation (3.47) makes is plain that we cannot take f(Az; g) = 0

in (3.49), for we can use it to compute the infinitesimal gauge variation: ♣There is a

normalization ξ

fixed by above

conventions. Work

it out. ♣Ψ[Az +Dzε]−Ψ[Az] = ξ

∫
Σ2

tr

(
DA,z

δ

δAz(x)
Ψ

)
i

2
dzdz̄

= −ξ k
π

∫
Σ2

tr
(
ε∂̄z̄Az

) i

2
dzdz̄Ψ

= ξ
k

π

∫
Σ2

tr
(
∂̄z̄εAz

) i

2
dzdz̄Ψ

(3.51)
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Assuming tr (A) = 0 and g = eε we have:

Ψ[Agz] = exp[
iξ

2

k

π

∫
Σ2

tr (A1,0g−1∂̄g)]Ψ[Az] (3.52)

although at this order we could equally well have written

Ψ[Agz] = exp[
iξ

2

k

π

∫
Σ2

tr (A1,0∂̄gg−1)]Ψ[Az] (3.53)

Combining the group law (3.50) (with trivial cocycle) with the group action (3.49)

gives a consistency condition:

f(Az, g1) + f(Ag1
z , g2) = f(Az, g1g2)mod2πiZ (3.54)

and moreover we know that for g = eε

f(Az, g) =
iξ

2

k

π

∫
Σ2

tr (A1,0g−1∂̄g) +O(ε2) (3.55)

or

f(Az, g) =
iξ

2

k

π

∫
Σ2

tr (A1,0∂̄gg−1) +O(ε2) (3.56)

There is a unique solution to these equations that is affine-linear in Az, that is, even

when g is not close to g = 1 we say:

f(Az, g) =
iξ

2

k

π

∫
Σ2

tr (A1,0g−1∂̄g) + S(g) (3.57)

One derives a functional equation for S(g) which can then be integrated, at least for g in

the connected component of the identity of Map(Σ2, G). The result is known as the WZW

action and it takes the form:

f+(A, g) = −iξkS+(g) + iξ
k

2π

∫
Σ2

tr (A1,0g−1∂̄g) (3.58)

f−(A, g) = iξkS−(g) + iξ
k

2π

∫
Σ2

tr (A1,0∂̄gg−1) (3.59)

where S± are the WZW actions:

S± =
1

4π

∫
Σ2

tr
(
g−1∂gg−1∂̄g

)
± 1

12π

∫
B(g)

tr (g−1dg)3 (3.60)

The second term in (3.60) is the renowned WZ term. Here B(g) ⊂ G is a 3-chain in G

such that

∂B(g) = g(Σ2) (3.61)

Despite appearances, this term leads to a local quantum field theory of the map g : Σ2 → G.

Of course, the choice of B(g) is ambiguous, but [40, 11] for all compact, simple, connected,

and simply connected groups G:

x3 =
[ 1

48π2h∨
Tradj(g

−1dg)3
]

(3.62)
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generates the integral cohomology lattice in H3
DR(G), where h∨ is the dual Coxeter number.

In particular, for SU(2) we can take

x3 =
[ 1

24π2
Tr2(g−1dg)3

]
(3.63)

and more generally for SU(N) we can take

x3 =
[ 1

24π2
TrN (g−1dg)3

]
(3.64)

to generate the integral cohomoloy lattice in H3
DR(G). Therefore, by a standard argument,

the choice of B(g) does not matter in defining the exponentiated action, provided k is an

integer. ♣Our conventions

had better give

ξ = ±1. ♣Finally, it follows from the above that we can write the projection operator Π onto

gauge invariant states when applied to an arbitrary section Ψ0[Az] is

(ΠΨ0)[Az] :=

∫
Map(Σ2→G)

ef
±(Az ,g)Ψ0[Agz] (3.65)

Our projection operator is a path integral of a two-dimensional quantum field theory known

as the WZW theory for the group G. We will explain more about this theory in section 4.

A particularly useful testfunction for the case of f− is to take

Ψ0[Az] = exp

[
iξk

1

2π

∫
tr (J0,1A1,0)

]
(3.66)

where we choose some external (0, 1) form. Then

(ΠΨ0)[Az] := e−iξk 1
2π

∫
tr (A1,0J0,1)

∫
Map(Σ2→G)

eiξkS−[g;A1,0,J0,1] (3.67)

where S−[g;A, Ā] is the gauged WZW action:

S−[g;A, Ā] := S−(g)+

+
1

2π

∫
Σ2

[
tr (A∂̄gg−1 + Āg−1∂g − g−1AgĀ+AĀ)

] (3.68)

where A is the (1, 0) part of the connection and Ā is the (0, 1) part of the connection. ♣PUZZLE: USING

f+ DOESN’T

COMBINE NICELY

INTO GAUGED

WZW. WHY NOT?

♣

Remarks

1. If G has a unitary structure, so that g† = g−1 (e.g. if g ⊂ gl(n,C) is a Lie subalgebra

of anti-Hermitian matrices) then, with our conventions

i

∫
Σ2

tr
(
g−1∂gg−1∂̄g

)
(3.69)

is negative definite. Therefore if we want the path integral over maps g : Σ2 → G in

(3.65) to be formally convergent we should choose f+ for ξk < 0 and f− for ξk > 0.
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2. As we will see, the possible gauge invariant functionals Ψ[Az] we obtain from (3.65)

form a finite-dimensional vector space. It is canonically the vector space of (vacuum)

conformal blocks of the WZW model on Σ2. This space depends on the choice of

complex structure on Σ2, but, again thanks to the Sugawara form of the energy-

momentum tensor there is a projectively flat connection on moduli space. The above

argument was first give in [17]. A more rigorous version was spelled out in [7].

3.3.2 Quantization On Punctured Surfaces

We now include Wilson lines stretching along the time direction in M3 = Σ2 × R. They

are located at points Pi ∈ Σ2 in irreducible representations of G, denoted V (λi) where λi
is a highest weight associated with the line at Pi.

********************************************

EXPLAIN HOW TO REPRESENT THE WILSON LINE IN TERMS OF QUANTUM

MECHANICS FOR COADJOINT ORBIT. COULD GET THIS FROM CHERN-SIMONS

ACTION BY SINGULAR GAUGE TRANSFORMATION - OR BY OTHER MEANS

********************************************

We consider the phase space

P(E; (λi, Pi)) ≡ A(E → Σ2)×
∏
i

Map(Pi,O(λi)) (3.70)

where E → Σ2 is a complex hermitian vector bundle and A(E → Σ2) is the space of

unitary connections on E, Pi are points on Σ2, and O(λi) are coadjoint orbits:

O(λi) = {φ = gλig
−1} ⊂ g∗ (3.71)

P(E; (λi, Pi)) is symplectic, and the gauge group G acts symplectically. The moment

map for the gauge group action is

µ = k

[
1

2π
F (A)−

∑
µ(i)(φ(Pi))η(Pi)

]
(3.72)

where µ(i) are the moment maps for the orbits:

〈TA, µ(i)(g)〉 = TrTAgλig
−1 = TrTAφ (3.73)

and η(Pi) is a delta-function representative of the PD to Pi.

Definition 1: The space of conformal blocks,

H(g, k; (Pi, λi)) (3.74)

is the quantum Hilbert space obtained from quantization of the symplectic reduction:

µ−1(0)/G.

Remark: Note that if (A;φi) ∈ µ−1(0) then

Pexp

∮
γ(Pi)

A = φi(Pi) (3.75)
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where γ(Pi) is a small loop around Pi. In particular, the conjugacy class of the

holonomies around Pi are fixed by the data λi ∈ g∗.

Kähler Quantization

Now choose a complex structure on Σ2 and suppose kλi are in the weight lattice of g.

Then P(E; (λi, Pi)) becomes a Kähler manifold. It is better to represent it as ♣Careful: Do you

want k or k+h ???

♣

A(E → Σ2)×Map(Pi,Okλi) (3.76)

The complex structure on A comes from the splitting into (1, 0) and (0, 1) pieces, where

A(0,1) denotes the space of (0, 1) parts of the unitary connection.

As is well-known, the coadjoint orbits are isomorphic as manifolds to homogeneous

spaces. Moreover, they can be represented as a quotient of compact or of complex groups:

Okλi ∼= G/H ∼= GC/P (kλi) (3.77)

where P (kλi) is the parabolic subgroup associated to the weight kλi,

From this representation it is clear that the complexified gauge group GC acts. Let Ā

be the (0, 1) part of the unitary connection. Then the GC action is

(Ā;φi)→ (Āh;h(Pi)φi(Pi)h(Pi)
−1) (3.78)

The description of this space makes a connection with the WZW theory. The stan-

dard approach first quantizes the coadjoint orbits. Then one is left with a holomorphic

wavefunction valued in the representation spaces: ♣We need to switch

conventions in next

few paragraph:

Wavefunction is a

function of Az . ♣
Ψ[Ā] ∈

∏
Map(Pi, V (λi)) (3.79)

where V (kλi) is the representation of gC associated to the weight. Moreover, in order

to descend to the quotient and be a section of the line bundle we must have

Ψ[Āh
−1

] = ekS[h;0,Ā] ⊗ ρλi(h(Pi))Ψ[Ā] (3.80)

From the symplectic point of view, this is the statement of the Gauss law µ = 0.

The solution of (3.80) is provided, as always, by writing the projection operator onto

gauge invariant states. As for the vacuum conformal blocks above we get the WZW path

integral with fields g in representations V (λi) at the points Pi inserted:

Ψ(Ā) =

∫
[dg]e

Sk[g]− ik
4π

∫
Σ2

Tr[g−1∂gĀ]
∏
i

ρλi(g(Pi))Ψ0[Āg] (3.81)

where Ψ0 is any “test function.”

3.3.3 Quantization On D2 × R, With D2 A Disk: Nonabelian Edge States

We now consider the nonabelian analog of the edge state argument of section 2.3.1.

Boundary conditions must be such that∫
∂D×Rt

tr (δA ∧A) = 0 (3.82)
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We separate out the spatial and time differential d = ds + ∂0dx
0 and similarly we

separate out A = As + A0dx
0. As in the Abelian case A0 multiplies the Gauss law so

integrating over A0, considered as a Lagrange multiplier, we enforce F (As) = dsAs+A
2
s = 0.

On the disk we can solve this equation

As = U−1dsU (3.83)

where U : D×R→ G. Note that U can still depend on time. It is now very instructive to

plug this back into the remainder of Chern-Simons action:

exp[i
k

4π

∫
D×R

tr (As∂0As)dx
0] (3.84)

We need the simple identity

tr
[
(U−1dsU)∂0(U−1dsU)

]
dx0 = −d

[
tr (U−1dsU)(U−1∂0U)dx0

]
+

1

3
tr (U−1dU)3 (3.85)

and hence the remainder of the Chern-Simons action, evaluated on the flat gauge field

A = U−1dU is

exp

{
i

[
− k

4π

∫
∂D×Rt

tr (U−1∂φUU
−1∂0U)dφ ∧ dx0 +

k

12π

∫
D×R

tr (U−1dU)3

]}
(3.86)

So we have recovered the “chiral” WZW action - note that it is first order in time derivatives,

and hence, as usual, should be considered an action for paths in phase space.

******************************************

GENERALIZE THIS TO INCLUDE A WILSON LINE IN THE CENTER THUS

GETTING NONTRIVIAL MONODROMY

GET SYMPLECTIC FORM ON LG/T

******************************************

3.4 Quantization Of The Moduli Space Of Flat Gauge Fields And Algebraic

Geometry

It is also possible to impose the constraints first, that is, descend to the finite-dimensional

moduli space of flat connections - view that as a symplectic space - and quantize that. This

approach leads to some fairly nontrivial mathematics.

Again, it is most useful to give Σ2 a complex structure. This induces a complex

structure on Mflat. The way this works is that we can decompose the covariant derivative

D into D = D1,0 + D0,1. Because we are in one complex dimension (D0,1)2 = 0. The

tangent space to the space of flat connections can be identified with the kernel of D0,1 so

we have

T 1,0Mflat
∼= H0,1(E) ∼= kerD0,1/guage (3.87)

Then the prequantum line bundle is L = DET(D0,1), the determinant line bundle.

By an important theorem of Narasimhan-Seshadri the holomorphic spaceMflat can be

identified with a moduli space of holomorphic vector bundles.
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For G = SU(N) we look at holomorphic rank N “semi-stable” vector bundles with

fixed determinant. *************** NEED TO EXPLAIN *********************

Mholvb is birational to a projective space ***** EXPLAIN **** and hence Pic(Mholvb) ∼=
Z. The generator can be nicely described as follows: Choose an element of the Θ-divisor

of the Riemann surface, that is L ∈ Picg−1(Σ2) such that h0(L) 6= 0. Then define

ΘL ⊂Mholvb (3.88)

to be the set of bundles E so that h0(E ⊗ L) 6= 0. One shows [REFERENCE???] that for

two choices L,L′ in the Θ-divisor of Σ2 we have ΘL ∼ ΘL′ , so we get, canonically, a divisor

in Mholvb.

In fact, the generator of Pic(Mholvb) is isomorphic to the determinant line bundle

BASIC IDEA: Give E a holomorphic connection then we are looking for bundles with

nontrivial solution to ∂̄Es = 0, but this is just the divisor of DET(∂̄E).

The space of conformal blocks, to an algebraic geometer is then

H0(Mhol.v.b.;Lk) (3.89)

where L generates the Picard group.

As we will see, by thinking about conformal field theory one is rather naturally led

to a remarkable formula for the dimension of the space of conformal blocks known as the

Verlinde formula. For the case of G = SU(2) and level k at genus g it has the explicit

form:

dimH0(Mhol.v.b.;Lk) =

(
k + 2

2

)g−1 k+1∑
n=1

(
sin

(
n

k + 2
π

))2−2g

(3.90)

************************

COMMENT ON k → ∞ LIMIT. SEMICLASSICAL SO GET SYMPLECTIC VOL-

UME OF PHASE SPACE GET THIS FROM 2D YANG-MILLS: Scale g = eφ/k get∫
TrφF .

************************

PROJECTIVELY FLAT CONNECTION OVER MODULI SPACE OF CURVES: In

this context, known as “Hitchin connection” – CITE HITCHIN’S PAPER. EXPLAIN?

3.4.1 Generalization To Conformal Blocks With Vertex Operator Insertions

The equivariance condition (3.80) shows that the wavefunction Ψ defines a section of a

holomorphic line bundle over [P(E; (λi, Pi))]
stable/GC. The superscript “stable” refers to

the fact that we must restrict the space of gauge fields on which GC acts to get a good

quotient – something familiar in geometric invariant theory.

A statement analogous to the Narasimhan-Seshadri theorem is the Mehta-Seshadri

theorem which identifies the quotient

µ−1(0)/G ∼= [P(E; (λi, Pi))]
stable/GC (3.91)

with the moduli space of “stable bundles with parabolic structure.” We indicate briefly

what this refers to.
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According to the Borel-Weil-Bott theorem we may associate highest weight represen-

tations λ with flags in GC . Accordingly we can consider the moduli space of holomorphic

bundles E → X2 with specified flags inside the vector bundle:

E0 ⊂ E1 ⊂ · · · ⊂ En (3.92)

at the points Pi. Holomorphic vector bundles with such structures are called quasi-

parabolic. We now associate a sequence of real numbers, called “weights” αi with multi-

plicities governed by the flag to the data (3.92). (These numbers will correspond to the

conjugacy class of the holonomies (3.75) in the real setting). The data of (3.92) together

with the weights defines a parabolic vector bundle.

In order to define a good moduli problem one needs to provide a definition of stability

of a parabolic vector bundle by introducing the normalized degree

par − deg(E) = µ(E) =
c1(E)

rank(E)
+
∑

WEIGHTS (3.93)

Roughly speaking, the definition of stability forbids the existence of holomorphic sub-

bundles with larger µ. This condition forbids the existence of holomorphic self-automorphisms,

and guarantees a good quotient in (3.91).

We now describe the space of conformal blocks using the holomorphic quantization of

the RHS of (3.91). Thus, the space of conformal blocks is just the space of holomorphic

sections of a line bundle:

H(g, k; (Pi, λi)) = H0

{
[P(E; (λi, Pi))]

stable/GC;L⊗k
}

(3.94)

4. WZW Model And RCFT

The WZW model is a very important example of a two-dimensional rational conformal field

theory. It is the subject of a large and rich literature, and there are still many interesting

questions that remain to be understood much better. For example, the theory of LG for

G a noncompact semisimple Lie group is far from completely understood. Among the

applications of the 2d quantum WZW model are:

1. Nontrivial exactly solvable quantum (conformal) field theories.

2. According to a conjecture of Moore + Seiberg, they are the basis for all rational

conformal field theories. ♣COMMENTS ON

THIS

CONJECTURE

AND ITS

CURRENT

STATUS GO

ELSEWHERE ♣

3. Numerous uses in string theory: the gauge symmetry of the heterotic string, exactly

solvable string backgrounds, solitonic five-branes, explicit nontrivial D-brane states,

exactly solvable examples of AdS/CFT, ....

4. Numerous uses in condensed matter physics: Two-dimensional critical phenomena,

the Kondo problem, the quantum Hall effect, applications to quantum computing.
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5. Mathematics: As explained in these notes - they give an explicit and important class

of examples of modular tensor categories, thereby giving relations to knot invariants,

three-dimensional Chern-Simons theory, moduli spaces of flat connections on surfaces.

In addition they play a role in some very striking results on K-theory (Freed-Hopkins-

Teleman). They also play an important role in the Geometric Langlands program,

where level k = −h algebras play a special role.

4.1 The Principal Chiral Model And The WZ Term

4.1.1 The Wess-Zumino Term

Consider a sigma model of maps g : Sd → G where G is a Lie group and Sd is a d-

dimensional (pseudo-) Riemannian spacetime. The standard sigma model action for this

theory is
f2

4

∫
Sd

Tr(g−1dg) ∧ ∗(g−1dg) (4.1)

where f is a coupling constant and ∗ is the Hodge star operator.

Consideration of anomalies in gauge theories led Wess and Zumino to introduce a very

interesting term in the sigma model action [63] in the case of the four-dimensional sigma

model. Its proper conceptual formulation and physical consequences were subsequently

beautifully clarified in a series of papers by Witten [64, 65]. We will write it here for

arbitrary even spacetime dimension d = 2n.

Let Θ = g−1dg be the Maurer-Cartan form on G. Then TrΘ2n+1 is closed. If the rank

of G is suitably larger than n (our main application is n = 1 and this will always be true)

then it represents a nonzero cohomology class and for suitable normalization cn

x2n+1 = [cnTrΘ2n+1] (4.2)

is a DeRham cohomology class that generates the integral lattice in H2n+1
DR (G).

Let g : S2n → G be a sigma-model field, and let us consider a closed spacetime so that

∂S2n = 0. Physically this is relevant even for fields on R2n if we require that the fields

approach 1 at spatial and temporal infinity. In that case, we can consider the the field to

be defined on S2n. 30

There are several slightly different approaches one can take to define the Wess-Zumino

term. One way to do it is to note that the image

g(S2n) ⊂ G (4.3)

is a (2n)-cycle inside G which varies continuously with G. Now, if H2n(G;Z) = 0 (as is

often the case31 ) we can fill in the image of spacetime with an oriented chain B2n+1(g):

∂B2n+1(g) = g(S2n). (4.4)

30The generalization to the case when spacetime has a boundary is very interesting. In that case exp[iWZ]

should be regarded as a section of a line bundle.
31For example H2(G;Z) = 0 always for a compact simple simply connected Lie group. π4(G) = 0 for all

compact simple simply connected groups except π4(USp(2n)) = Z2. LIST H4(G;Z)
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This chain also varies continuously with g. Note however that there can be different

choices of the chain B2n+1(g).

Example S = S2, G = SU(2) ∼= S3, the map g takes S to the equator. Then we can

use the upper hemisphere D+.

We define the Wess-Zumino term to be:

WZ(g) := 2πk

∫
B2n+1(g)

ω2n+1 (4.5)

where k is a real, coupling constant with dimensions of ~. The WZW (Wess-Zumino-

Witten) theory is the nonlinear sigma model with Minkowski-space action

f2

4

∫
Sd

Tr(g−1dg) ∧ ∗(g−1dg) +WZ(g) (4.6)

Now, at first the definition (4.5) seems absurd. There are two immediate problems:

• It appears to be an action for field configurations in 2n+ 1 dimensions.

• It appears to depend on the choice of bounding chain B2n+1, and the constraint (4.4)

leaves infinitely many choices for B2n+1.

Let us first address point (1.) Although the definition of the WZ term uses a 2n + 1

dimensional field configuration, the variation of the action only depends on the fields on the

2n dimensional boundary ∂B2n+1, and hence, the action is in fact local! See the exercise

below for some details on how to vary the action and derive the equations of motion.

Therefore, we find for the variation of the WZ term:

δWZ(g) = 2πkcn(2n+ 1)

∫
S2n

Tr(g−1δg)(g−1dg)2n (4.7)

Remarkably, even though the definition of the WZ action involves an extension into one

higher dimension, this is a local action in the sense that its variation under local changes in

the field g(x) is a local density on spacetime! It’s value might depend on subtle topological

questions, but the variation is local.

Therefore, the equations of motion of the WZW theory are local partial differential

equations:

−f
2

2
d
(
∗g−1dg

)
+ 2πkcn(2n+ 1)(g−1dg)2n = 0 (4.8)

Now let us address the second point - the dependence on the choice of bounding chain

B2n+1(g). For a fixed g we can of course smoothly deform the chain to get a second chain

as in 11. The difference B′ − B is a small closed 2n + 1 cycle in G which is, moreover,

homologous to zero, so B′ − B = ∂Z where Z is a (2n + 2)-chain. But now, by Stokes’

theorem:
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Figure 11: Two slightly different (2n+1)-chains B and B′ in G bounding the same 2n-cycle g(S2n).

Figure 12: Two different (2n+ 1)-chains in G bounding the same 2n-cycle g(S2n).

∫
B′
ω2n+1 −

∫
B
ω2n+1 =

∫
Z
dω2n+1 = 0 (4.9)

Thus WZ(g) does not change under small deformations of B.

However, it can happen that B′ and B are not small deformations of each other as in

12. In general if B,B′ are two oriented chains with

∂B = Σ2n (4.10)

and

∂B′ = Σ2n (4.11)

then

B ∪ −B′ = Ξ2n+1 (4.12)

is a closed oriented (2n+ 1)-cycle. Therefore,∫
B(g)

ω2n+1 =

∫
B′(g)

ω2n+1 +

∫
Ξ2n+1

ω2n+1 (4.13)

and hence, if the periods
∫

Ξ2n+1
ω2n+1 are nonzero then the expression WZ(g) is not well-

defined as a real number!

This might seem disturbing, but, the cycle Ξ2n+1 defines an integral homology class,

and hence the periods of ω2n+1 are quantized. Therefore, the ambiguity in the definition

of WZ(g) is an additive quantized shift of the form 2πkN where N is an integer. Put

differently,

WZ(g)mod2πkZ (4.14)
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is well-defined. The quantized ambiguity cannot vary under small variations of g. Thus,

WZ(g) is still a local action, and the equations of motion are still local.

Note that the situation here is very similar to our discussion of the action for general

quantization of a symplectic manifold when the symplectic form has nontrivial periods.

The situation in quantum mechanics is a little more subtle, since in quantum mechanics

one works directly with the action, and not just the equations of motion. However, in

quantum mechanics the action only enters through exp[ i~S], and therefore all that must

really be well-defined is the expression

exp[
i

~
WZ(g)] (4.15)

What is the ambiguity in (4.15) ? We see that it is just

exp[2πi
k

~

∫
Ξ2n+1

ω2n+1] (4.16)

Therefore, if k = κ~, where κ is an integer, then the

exp[
i

~
WZ(g)] (4.17)

in the path integral is a well-defined U(1)-valued function on the space of fieldsMap[S2n, G].

Assuming we have a well-defined measure on the space of fields, there is no harm including

this expression in the measure.

Thus, the coupling constant k must be quantized for a mathematically well-defined mea-

sure in the quantum mechanical path integral. This is one of the most beautiful examples

of a topological quantization of a coupling constant.

We will usually set ~ = 1. Thus, large k corresponds to the semiclassical limit.

Remarks:

1. Integral normalization. Here are some relevant facts. It can be shown 32 that for all

compact, simple, connected, and simply connected groups G:

x3 =
[ 1

48π2h∨
Tradj(g

−1dg)3
]

(4.18)

generates the integral cohomology lattice in H3
DR(G), where h is the dual Coxeter

number. In particular, for SU(2) we can take

x3 =
[ 1

24π2
Tr2(g−1dg)3

]
(4.19)

It follows that for SU(N) we can take

x3 =
[ 1

24π2
TrN (g−1dg)3

]
(4.20)

to generate the integral cohomoloy lattice in H3
DR(G).

32Ref: Mimura and Toda, Topology of Lie Groups, Translations of Math. Monographs 91; R. Bott, Bull.

Soc. Math. France 84(1956) 251.
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2. Here is another way to define the Wess-Zumino term. For each connected component

Cα of the fieldspace Map(S2n, G) = qαCα we choose a “basepoint” field configuration

g
(α)
0 : S2n → G. If S2n is contractible there is only one component and we can choose

g0 to be the constant map (say with image 1 ∈ G). In general for field configurations

g ∈ Cα we choose a smooth homotopy g(x, s), 0 ≤ s ≤ 1 from g
(α)
0 (x) at s = 0 to g(x)

at s = 1. Now we view the interpolation as a field in 2n+ 1 dimensions, that is, as a

map of the cylinder ĝ : I × S2n → G. We can then define

WZ(g; g0) := 2πk

∫
I×S2n

ĝ∗(ω2n+1) (4.21)

3. The value of WZ(g; g0) depends on the choice of g0 and on the interpolation, but

only “locally,” in the following sense: Suppose we have a continuous family of maps

g̃τ : S2n → G in the connected component Cα. Then we find a continuous family

of extensions g̃τs : B2n+1 → G such that gτ0 (x) = g0(x) for all τ . Then, letting

B = I × S2n we have:

∂

∂τ
Tr(g̃−1dB g̃)2n+1 = dB

[
(2n+ 1)Trg̃−1 ∂g̃

∂τ
(g̃−1dB g̃)2n

]
(4.22)

Proof: We know that the Maurer-Cartan form pulled back to I ×B2n+1 is closed, so

(dB + δ)Tr(g̃−1(dB + δ)g̃)2n+1 = 0 (4.23)

where δ = dτ ∂
∂τ . Now forms on the product space can be decomposed into type (a, b)

with a-forms along I and b-forms along B2n+1. The component of (4.23) of type

(1, 2n+ 1) is

δTr(g̃−1dB g̃)2n+1 + (2n+ 1)dB

[
Tr(g̃−1δg̃)(g̃−1dB g̃)2n

]
= 0 (4.24)

pulling out the dτ gives our identity. It is now an easy matter to show that the

variation of the WZ term defined as in (4.21) only depends on the variation gτs at

s = 1.

Exercise

a.) Calculate Tr(g−1dg)3 for SU(2) in terms of Euler angles for the group, using the

fundamental representation:

Tr2(g−1dg)3 = −3

2
dψ ∧ sin θdθ ∧ dφ (4.25)

b.) Write this differential form as a locally exact form.

c.) Show that ∫
SU(2)

1

24π2
Tr2(g−1dg)3 = −1 (4.26)
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and thus conclude that the form is not globally exact. Compare with the general normal-

izations above.

d.) Now show that x3 in equation (4.20) defines a nontrivial cohomology class for all

SU(N).

Exercise The Polyakov-Wiegman formula

Consider the WZ term in two spacetime dimensions.

a.) Show that

Tr
(
(g1g2)−1d(g1g2)

)3
= Tr

(
g−1

1 dg1

)3
+ Tr

(
g−1

2 dg2

)3
+ 3d

[
Tr(dg2g

−1
2 )(g−1

1 dg1)

]
(4.27)

b.) Conclude that the WZ term satisfies:

WZ(g1g2) = WZ(g1) +WZ(g2) + 6πkc1

∫
Tr(dg2g

−1
2 )(g−1

1 dg1) (4.28)

Exercise Variation Of The WZ Term

Using the variational formula

δ
(
g−1∂µg

)
= ∂µ(g−1δg) +

[
g−1∂µg, g

−1δg
]

(4.29)

We compute:

∂

∂s
Tr(g−1dg)2n+1 = (2n+ 1)Trd

(
g−1∂g

∂s

)
(g−1dg)2n (4.30)

The second term, involving the commutator drops out.

Now we compare with the RHS

d

[
Trg−1∂g

∂s
(g−1dg)2n

]
= Trd

(
g−1∂g

∂s

)
(g−1dg)2n+Trg−1∂g

∂s

[
dΘΘ2n−1−ΘdΘΘ2n−2±· · ·

]
(4.31)

and using the Maurer-Cartan equation we find that the second group of terms cancel in

pairs. ♠
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4.1.2 The Case Of Two Dimensions And The Conformal Point

Above two dimensions the WZ term leads to a higher-derivative correction to the equations

of motion. We must interpret this in terms of an effective field theory. In two dimensions the

situation is different and extremely beautiful: For special values of the coupling constant

f we have infinite-dimensional symmetries of the equations of motion.

We urge you to consult the two beautiful papers where the quantum theory is solved:

1. E. Witten, “Nonabelian bosonization in two dimensions,” Commun.Math.Phys.92:455-

472,1984.

2. V.G. Knizhnik and A.B. Zamolodchikov, “Current Algebra and Wess-Zumino Model

in Two-Dimensions,” Nucl.Phys.B247:83-103,1984.

When f2 = 12πkc1 the action becomes S = kS+
WZW where

S+
WZW = 6πc1

∫
Tr(g−1∂+gg

−1∂−g)dx+ ∧ dx− + 2πc1

∫
B

Tr(g−1dg)3 (4.32)

while if f2 = −12πkc1 the action is S = −kS−WZW with

S−WZW = 6πc1

∫
Tr(g−1∂+gg

−1∂−g)dx+ ∧ dx− − 2πc1

∫
B

Tr(g−1dg)3 (4.33)

These actions satisfy some nice properties: See the exercise on the Polyakov-Wiegmann

formula below. These identities have significant physical implications.

In two dimensions the equations of motion are:

−f
2

2
d
(
∗g−1dg

)
+ 6πkc1(g−1dg)2 = 0 (4.34)

Using the MC equation on the second term we can write this as:

d

(
f2

2
∗ g−1dg + 6πkc1g

−1dg

)
= 0 (4.35)

d

(
∗g−1dg +

12πkc1

f2
g−1dg

)
= 0 (4.36)

Now consider Minkowski space with metric ds2 = −dx+dx− = −dt2 + dx2. We may

write

g−1dg = (g−1∂+g)dx+ + (g−1∂−g)dx− (4.37)

Then using the orientation dt ∧ dx the self dual forms are

∗(dt+ dx) = ∗dx+ = −dx+

∗(dt− dx) = ∗dx− = dx−
(4.38)

so

∗g−1dg = −(g−1∂+g)dx+ + (g−1∂−g)dx− (4.39)

It thus follows that
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• If f2 = 12πkc1 then the equation of motion is

∂+

(
g−1∂−g

)
= 0 (4.40)

• If f2 = −12πkc1 then the equation of motion is

∂−
(
g−1∂+g

)
= 0 (4.41)

We now see a remarkable property of the theory. Let us focus on the case f2 = 12πkc1

for definiteness. We can define the infinite-dimensional group

G := Map(R, G) (4.42)

Then there is a left-action of GL × GR on the set of equations of motion!

Indeed, if g(x+, x−) solves (4.40) then so does

hl(x
+)g(x+, x−)hr(x

−)−1 (4.43)

A closely related fact is that the equations of motion imply that there are two separately

conserved currents. Define

J− := g−1∂−g (4.44)

J+ := ∂+gg
−1 (4.45)

Then (4.40) together with the identity:

∂+

(
g−1∂−g

)
= g−1∂−

(
∂+gg

−1
)
g (4.46)

shows that both ∂+J− = 0 and ∂−J+ = 0.

So when f2 = 12πkc1 there are two separately conserved currents,

Let us use this to work out the general solution of the equations of motion. We must

choose some boundary conditions.

If we are working on R1,1 then as x+ → −∞, J+(x+)→ 0 fast enough so that
∫ x+

−∞ J+

converges, and similarly for J−. We may then regard J± as given, and integrate the

equations (4.44)(4.45) to get 33

g(x+, x−) =

(
P exp

∫ x+

−∞
J+(s)ds

)
· g0 ·

(
P exp−

∫ x−

−∞
J−(s)ds

)−1

(4.47)

In other words, on R1,1, the general solution of the equation of motion is a transfor-

mation of g = 1 by the group GL × GR.

*******************************************

33Our conventions for path ordering put the later times to the left.
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NEED TO DISCUSS EUCLIDEAN CONTINUATION - HOLOMORPHIC AND ANTI-

HOLOMORPHIC CURRENTS

*******************************************

Exercise

Work out the analogous equations for the case f2 = −12πkc1.

Exercise A Consequence Of the PW Formula

Using the PW formula show that

S+
WZW (g1g2) = S+

WZW (g1) + S+
WZW (g2) + 12πc1

∫
Tr
(
∂+g2g

−1
2 g−1

1 ∂−g1

)
(4.48)

S−WZW (g1g2) = S−WZW (g1) + S−WZW (g2) + 12πc1

∫
Tr
(
∂−g2g

−1
2 g−1

1 ∂+g1

)
(4.49)

**********************************

NEED TO COMPARE WITH DISCUSSION OF GAUSS LAW ABOVE WHERE WE

GAUGE Az TO ZERO

**********************************

Exercise

Is k quantized for the 2-dimensional SL(2,R) WZW model?

Remarks

• Notice that there are two senses in which J+ is a “left symmetry.” It describes

left-moving waves because it is a function of x+ = t+ x so as time goes forward the wave

moves to negative x. It also accounts for multiplication of g(x+, x−) on the left.

• Generalization to Euclidean signature. The theory can be continued to Euclidean

signature x+ → z, x− → z̄. Then the symmetries are holomorphic/antiholomorphic current

algebras. Because of conformal invariance the theory can be formulated on an arbitrary

Riemann surface.

•We have shown that the coupling constant k is topologically quantized. The question

arises: “What is the minimal value of k? ” This depends on the representation and the
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normalization cn. For 2D we have the WZ term for SU(N):

exp[ik
1

12π

∫
B3

TrN (g−1dg)3] (4.50)

k ∈ Z, and all integers can occur. Thus, for G = SU(N) using the trace in the N we have

c1 = 1
24π2 .

• Spectral flow and interesting solutions of the equations of motion. Long strings in

SL(2,R) etc.

4.2 Quantization: Virasoro And Affine Lie Algebra Symmetry

We have seen that the particle on the group manifold has GL × GR symmetry. In the

classical two-dimensional theory with space taken to be S1, at the special values of the

coupling constant f2 = 12πc1k, this is promoted to the infinite dimensional (LG)L×(LG)R
symmetry.

In this section we show that the quantum 2D WZW theory on a circle has L̃GL× L̃GR
symmetry, where L̃G is a central extension of the loop group LG = Map(S1, G).

The Lie algebra of LG is Lie(LG) = Lg, the vector space of maps of S1 into g, and it

has a central extension by R. We will decompose our loop in the Lie algebra with respect

to a basis Ta as:

Ja(x) =
∑
n∈Z

Jane
2πinx (4.51)

where we choose an ON basis Ta of the Lie algebra. We are now taking space to be a

circle and x ∼ x+ 1.

Our conventions are that su(N) is the Lie algebra of antihermitian matrices, so(N)

is the Lie algebra of antisymmetric matrices etc. However, we wish to keep the standard

Hermiticity relations (Jan)† = +Ja−n. So our currents will be valued in the space of hermitian

matrices, etc.

The structure constants defining L̃g are that k is central and

[Jan, J
b
m] = ifabcJcn+m + kδabnδn+m,0 (4.52)

This is known as an affine Lie algebra.

Note well that, setting n = 0, the generators Ja0 span a finite dimensional subalgebra

isomorphic to g.

We will sketch three ways to derive this symmetry in the WZW model. Let us choose

S = kS+
WZW for definiteness.

First way:

The Noether current under g → geε is, by PW

JR = J− = i(12πc1k)g−1∂−g (4.53)

and similarly for g → e−εg
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JL = J+ = −i(12πc1k)∂+gg
−1 (4.54)

the factor of i arises because of our conventions explained above.

Because of the equations of motion ∂+J
R
− = 0 and ∂−J

L
+ = 0 there is in fact an

infinite-dimensional symmetry

δRε : g → geε(x
−) (4.55)

δLε : g → eε(x
+)g (4.56)

We have already studied this at the level of the equations of motion. In the quantum

theory these transformations are generated by

δRε O = [

∫
dx−εa(x−)Ja−(x−),O] (4.57)

for any operator O. There is a similar expression for the left-symmetry.

The transformation of the currents themselves is easily computed:

δRε J
R = −[ε(x−), JR(x−)] + i(12πc1k)ε′(x−)

δRε J
L = 0

(4.58)

Combining this with (4.57) we derive:

[Ja(x−), Jb(y−)] = ifabcJc(y−)δ(x− − y−) + i(12πc1k)δab
d

dx−
δ(x− − y−) (4.59)

When we define our current as in (4.51) and use c1 = 1/(24π2) we see that (4.59) is

precisely equivalent to (4.52).

Second way:

A second way to quantization is to use the lightcone formalism. Let us regard x+ as

time and x− as space. Thus, in lightcone formalism, the action S+
WZW is first order in

“time” (i.e. x+) derivatives. Therefore it is already in Hamiltonian form. We now apply

once again our general remark about actions that are first order in time derivatives.

Varying the action we get:

δ(kS+
WZW ) = −12πc1k

∫
dx+

[∫
dx−Tr(g−1δg)∂+(g−1∂−g)

]
(4.60)

comparing with (??) we get the symplectic form

Ω =

∫
dx−Tr(g−1δg)∂−(g−1δg)− g−1∂−g(g−1δg)2 (4.61)

From this we can compute the Poisson brackets of the currents. This is what is done

in Witten’s paper, which you can consult for further details.

– 111 –



*******************

Comment on disadvantages of light cone Hamiltonian quantization: You miss the

waves travelling along x+ = constant. These are “spatial slices” in this formalism, but

nonetheless left-moving degrees of freedom, and hence dynamically important in a different

time slice.

*******************

Exercise

Write (4.61) as a total derivative under δ

Third way:

Here it is good to recall the discussion of the Hamiltonian formalism for a particle on

the group manifold G.

We can go to Hamiltonian formalism without going to lightcone gauge, but it is a little

subtle. Let δ denote differentiation on the space of field configurations LG = Map(S1, G)

at fixed time.

The tangent space to LG at a loop g(θ) is isomorphic to Lg: ♣Be consistent

about whether

spatial coordinate

along S1 is x or θ.

♣TgLG ∼= Lg (4.62)

The dual space to Lg is Ω1(S1; g∗), so the canonical momentum L which is a coordinate

on the fiber of T ∗LG is in

L ∈ Ω1(S1; g∗) (4.63)

with the pairing

〈L, ε〉 =

∮
dθ〈L(θ), ε(θ)〉 (4.64)

We use an invariant form to identify g ∼= g∗ so that we can write the symplectic form

on T ∗LG as

Ω =

∮
S1

TrδLg−1δg + Tr(L+ ξg−1dg)(g−1δg)2 (4.65)

where ξ = −6πc1k. Here g = g(θ) is a loop in G, while g−1δg is a one-form on LG

valued in Lg∗ ∼= Lg and is a 0-form on S1. L is now regarded as a one form on S1 valued

in Lg. Thus (4.65) is a two-form on T ∗LG. It is a good exercise to show that it is closed

under δ.

Now, again, to write the Legendre transform of the Hamiltonian formalism we need to

find a one-form on T ∗G so that Ω = δΘ. To do that we need to extend g to a map of the

disk g̃ ∈Map(D2, G). Then we can write:

Θ =

∮
S1

Tr(Lg−1δg)− ξ
∫
D2

Tr(g̃−1dg̃)2(g̃−1δg̃) (4.66)
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Then one can check that

S =

∫
γ

Θ−
∫
dt 6πc1k

[∮
S1

1

2
TrL2 +

1

2
Tr(g−1∂xg)2

]
(4.67)

indeed gives the WZW action.

Indeed, this is precisely the form we obtained from quantizing Chern-Simons theory

on the disk! See (3.86) above.

Let us compute the Poisson brackets. The discussion closely follows the case of a point

particle on a group manifold. See equations (??) above. Written in an ON basis for the

Lie algebra we have

Ω =
1

2

∮
dx

∮
dy
(
δLa(x) δεa(x)

)( 0 δabδ(x− y)

−δ b
a δ(x− y) −f cab(Lc + ξg−1∂yg)δ(x− y)

)(
δLb(y)

δεb(y)

)
(4.68)

so that the inverse matrix is:

ΩAB =

(
−f cab

(
Lc + ξ(g−1∂yg)c

)
δ(x− y) −δ b

a δ(x− y)

δab(x− y) 0

)
(4.69)

The Poisson brackets that follow from (4.69) are

{g(x), g(y)} = 0

{La(x), g(y)} = −g(y)Taδ(x− y)

{La(x), Lb(y)} = −f cab
(
Lc(y) + ξ(g−1g)c(y)

)
δ(x− y)

(4.70)

Variation of the action with respect to La gives La = 6πc1k(g−1ġ) under time evolution,

and hence

Ja(x) = La(x)− 6πc1k(g−1∂xg)a (4.71)

is a right-moving current.

Now, using (4.70) we easily compute the Poisson brackets of Ja(x) to be:

{Ja(x), Jb(y)} = −fabcJc(y)δ(x− y)− k

2π
δab∂xδ(x− y) (4.72)

Thus recovering the current algebra.

Remark: Using the angular momenta conjugate to the left-symmetry we can similarly

derive the current algebra of the left-moving currents.

Exercise

Show that indeed Ω = δΘ.

Hint: Explain why

δTr(g−1dg)2(g−1δg) + dTr(g−1δg)2(g−1dg) = 0 (4.73)
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4.2.1 Stress-Energy Tensor

In general the coupling to gravity defines the energy-momentum tensor:

Tµν :=
1

2
√
g

δ

δgµν
S (4.74)

Let us continue to work in light-cone coordinates. Classical conformal invariance shows

that T+− = 0. Under a variation δh−− we have:

∂− → ∂−

∂+ → ∂+ + δh−−∂−
(4.75)

Since the WZ term doesn’t depend on the metric we easily compute

δS = −6πc1kTr(g−1∂−g)2δh−−

T−− =
π

k
Tr(J−)2

(4.76)

and similarly for T++.

The Hamiltonian is

H ∼
∮
dx(T++ + T−−) (4.77)

It is convenient to decompose into Fourier modes

T−−(x) = const.
∑
n∈Z

Lne
2πin(t−x) (4.78)

T++(x) = const.
∑
n∈Z

L̃ne
2πin(t+x) (4.79)

where the constant is such that

Ln =
1

2k

∑
m∈Z

Jan−mJ
a
m (4.80)

In the quantum theory we will define a “highest weight” vacuum so that Jan|vac〉 = 0

for n > 0. Therefore, we need to normal-order the expression (4.80) with Jan for n > 0 to

the right.

We should allow for a multiplicative renormalization of the expression in terms of the

product of two currents due to the short distance singularities when J(x) multiplies J(y)

for x near y.

Now, L0 generates scale transformations and Ja− is a conserved current. Therefore, Ja−
must have scaling dimension exactly equal to one in the quantum theory. This means we

must have

[L0, J
a
n] = −nJan (4.81)
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On the other hand, we can compute:

[
∑
m∈Z

: Jb−mJ
b
m :, Jan] = −2n(k + h∨)Jan (4.82)

where we use the fact that in an ON basis∑
bc

fabcfdbc = 2h∨δad (4.83)

where h is the dual Coxeter number.

Therefore, we learn that quantum effects have lead to a renormalization

1

k
→ 1

k + h∨
(4.84)

Recall that the semiclassical expansion parameter is 1/k.

Therefore, provided k + h 6= 0, the quantum stress-energy tensor is 34

Ln =
1

2(k + h∨)

∑
m∈Z

: JamJ
a
n−m : (4.85)

One can now compute straightforwardly (if somewhat tediously) that

[Ln, Lm] = (n−m)Ln+m +
c

12
(n3 − n)δn+m,0 (4.86)

with

c =
k

k + h∨
dim g (4.87)

Note that it approaches dim g as k →∞.

Remarks:

• Since we can represent the Virasoro algebra on the Hilbert space we have a conformal

field theory. Therefore, one can maintain T+− = 0 in the quantum theory. The value

f2 = ±12πc1k of the coupling constant defines an exact zero of the beta function of the

theory. If f2 is not at this value the model is asymptotically free.

• Since the central charge is nonzero, the left- and right-moving sectors of the theory

have a gravitational anomaly. Just the way the classical Lg symmetry of the theory turns

out to be anomalous and is replaced by L̃g in the quantum theory, so too the classical

diff(S1) symmetry of the theory is replaced by the Virasoro algebra.

• While there is an anomaly in the left- and right-sector the generators of diffeomor-

phisms of the circle are Ln − L̃−n and these in fact have no anomaly. Therefore, we can

consistently couple the model to gravity.

• The commutators above can be evaluated straightforwardly, but there is a more

elegant formalism based on the operator product expansion of holomorphic fields to obtain

the same answers.

34When k + h∨ = 0 there are new operators that commute with the current algebra and the symmetry

is even larger. This case is relevant in the Geometric Langlands Program.
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• The central charge can be interpreted as measuring the dimension of the target space

of the nonlinear sigma model. If r is the rank of the simple Lie algebra then

r ≤ c ≤ dim g 1 ≤ k <∞ (4.88)

In the semiclassical limit k →∞ the target space is of dimension g: Already the zeromode

sector of the model becomes the quantum mechanics of a particle on a group manifold.

However, for finite k one must use a notion of “quantum geometry.” This is especially

dramatic for k = 1. In this case c = r for the simply laced groups ADE. 35 In this case

there is in fact an equivalent sigma model whose target space is just the Cartan torus! This

is part of “nonabelian bosonization” and the Frenkel-Kac-Segal construction.

• The Sugawara construction of L0 makes it clear that it is the quadaratic Casimir for

Lg. Put differently, it is the Laplacian on the infinite-dimensional loop group.

Exercise

Show that

[Ln, J
a
m] = −mJan+m (4.89)

4.3 The Central Extension Of The Loop Group And The WZ Term

We will give a very beautiful geometrical construction of the cocycle for LG which defines

the centrally-extended loop group.

The trick is to consider the group of maps DG from the disk to the group G, i.e. we

introduce DG = Map(D,G) where D is the disk. Note that the subgroup D1G of maps

such that g|∂D = 1 is a normal subgroup and DG/D1G ∼= LG, and explicit isomorphism

being given by the restriction map.

Now, in contrast to LG, it is easy to write a central extension D̃G of the group DG:

(g1, λ1) · (g2, λ2) = (g1g2, λ1λ2f(g1, g2)) gi ∈ DG (4.90)

where

f(g1, g2) = exp

[
2πi(6πc1k)

∫
D

Tr(dg2g
−1
2 )(g−1

1 dg1)

]
(4.91)

Note that we have written our Ad-invariant inner product (·, ·)g in terms of a defi-

nite trace Tr in some representation. For SU(N) with the trace in the N dimensional

representation c1 = 1/(24π2).

Exercise

35For all simple groups d/(g + 1) = r where g is the Coxeter number.

– 116 –



a.) Check that (4.91) is indeed a group cocycle.

b.) Compute the corresponding central extension on the Lie algebra Dg and show that

it is trivial when one of the elements vanishes on the boundary. Indeed, show that it is

24π2ic1k

∮
S1

Trε1dε2 = ik

∮
Trε1dε2 (4.92)

for c1 = 1/(24π2).

Now, the beautiful observation is that, when g1 and g2 are equal to 1 on the boundary

∂D, we can consider them to define maps from S2 → G, and therefore we can define the

WZ term. But, because of the identity we proved above:

WZ(g1g2) = WZ(g1) +WZ(g2) + 6πkc1

∫
Tr(dg2g

−1
2 )(g−1

1 dg1) (4.93)

the cocycle becomes a coboundary when restricted to the subgroup D1G. Therefore,

the extension

1→ U(1)→ D̃G→ DG→ 1 (4.94)

splits over the normal subgroup D1G, that is:

ψ : g → (g, eiWZ(g)) g ∈ D1G (4.95)

is a group homomorphism from D1G to D̃G, and hence we can take a quotient

1→ U(1)→ D̃G/ψ(D1G)→ DG/D1G = LG→ 1 (4.96)

to construct the loop group L̃G := D̃G/ψ(D1G).

Finally, if we include L0 then note that

exp[iθ0L0]g(θ) exp[−iθ0L0] = g(θ + θ0) (4.97)

so L0 generates rigid rotations of loops.

Remarks

1. The above construction of the central extension is due to J. Mickelsson. For a gener-

alization to Map(X,G) for arbitrary manifolds X see [37] and references therein.

2. At the Lie group level one can construct a semidirect product with the Virasoro group

- the centrally extended diffeomorphism group of the circle.

3. The above presentation of the centrally extended loop group is very convenient for

quantizing three-dimensional Chern-Simons theory on D × R. The group of gauge

transformations is D1G. The flat gauge fields on the disk are parametrized by DG.
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4.4 Relation To Anomalies

4.4.1 Coupling To External Gauge Fields

When we gauge the global LGhol×LGanti−hol symmetry we obtain the gauged WZW action

(3.68) ♣OR THE ONE

FOR S+ ♣
For simplicity put A0,1 = 0. Then, identifying the effective action in WZW theory

with the Chern-Simons wavefunction

Z = Ψ[Az] (4.98)

we identify δ
δAz

Ψ with the one-point function of the current 〈J0,1(x)〉 we can (3.47) as an

anomaly equation:

DA,z〈Jz̄〉 = −k
π
∂̄z̄Az (4.99)

4.4.2 Anomalies Of Weyl Fermions

The WZ term summarizes the anomalous variation of quantum actions. Let us sketch that

briefly here in the two-dimensional case.

Let ψ+ be a complex chiral fermion field in 1 + 1 dimensions. Let us first explain the

anomaly using elementary quantum field theory.

Let us couple the fermion to a U(1) gauge field and define the effective action:

e−Γ(A−) :=

∫
dψ+dψ̄+e

−
∫
ψ̄+(∂−+A−)ψ+ (4.100)

Formally, we have

Γ(A−) = − log det(∂− +A−) (4.101)

and formally the effective action is gauge invariant under the transformation (ε is real):

A− → A− + idε(x−) (4.102)

because we can make the compensating transformation

ψ+ → e−iεψ+

ψ̄+ → eiεψ̄+

(4.103)

to get an invariance of the action. However, 1-loop quantum effects spoil this formal

gauge invariance. The noninvariance of the expression Γ(A) is called the anomaly.

Let us derive an expression for the anomaly using the Feynman diagram expansion as

in 13: That is, we write

Γ(A−) = −TrLog(1 +
1

∂−
A−) (4.104)
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Figure 13: Feynman graphs in the expansion of Γ(A−) in a power series in A−.

Figure 14: Momentum q flows into the two point graph.

and expand in A. The quadratic term is the graph 14. The propagator for the fermion is

〈ψ̄+(p)ψ+(−p)〉 =
1

p− + iεsign(p+)
(4.105)

Note the tricky sign on the iε term. One can understand this from the m→ 0 limit of

the scalar propagator

1

p2 +m2 + iε
|m→0 =

1

p+

(
p− + iεsign(p+)

) (4.106)

Thus the Feynman graph is∫
dp+dp−

1

(p− + iεsign(p+))(p− − q− + iεsign(p+ − q+))
(4.107)

Note that if the sign of both iε terms is positive then we can close the p− integral in

the other half-plane and get zero. Therefore, they must have opposite sign to get a nonzero

result. Suppose q+ > 0. Then we must have 0 < p+ < q+ and the evaluation of the integral

is straightforward and gives q+/q−. In this way we get

Γ(A−) ∼
∫
d2qA−(q)A−(−q)q+

q−
+O(A3) (4.108)

It turns out that the higher graphs are gauge invariant, so under a gauge transformation

A−(q)→ A−(q) + iq−ε(q) (4.109)

we have

δΓ(A−) ∼
∫
d2q(iq+A−)ε(−q) =

∫
d2qF (q)ε(−q) =

∫
d2xF (x)ε(x) (4.110)
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This is the anomaly.

Now let us consider the nonabelian case with a collection of Fermi fields ψi+ transform-

ing in the n of SU(n). Then, coupling to an external SU(n) gauge field the effective action

becomes

e−Γ(A−) :=

∫
dψ+dψ̄+e

−
∫
ψ̄+i(δ

i
j∂−+(A−)i j)ψ

j
+ (4.111)

Formally the path integral is invariant under

ψ → g−1ψ

ψ̄ → ψ̄g

A→ g−1Ag + g−1dg

(4.112)

However, the result of an analogous computation to the above gives:

Γ(Ag−)− Γ(A−) =
i

2π

∫
Tr(∂+gg

−1)A− + F (g) (4.113)

where F (g) is independent of A−.

******************

EXPLAIN THAT F (g) IS THE WZ TERM:

Now, in two-dimensions we can write A− = h−1∂−h for some group element h and

hence we conclude

Γ(A−) ∼ iS+
WZW (h) (4.114)

Thus, the WZW Lagrangian summarizes the effective of quantum anomalies in a clas-

sical action.

WHAT ABOUT PATH DEPENDENCE WHEN ∂+A− 6= 0 ?

GAUGED WZW ACTION

QUESTIONS OF ANALYTIC CONTINUATION

*******************

4.5 Highest Weight Representations Of Loop Groups

************************************************

NEED SEPARATE SECTION ON Borel-Weil-Bott especially for LG/T.

***************************************************

4.5.1 Integrable highest weight representations of L̃g
♣This section does

not clearly

distinguish when

you are working in

the irrep and when

you are working in

the Verma module.

♣

When the target space group G is compact the representations we are interested in are

those for which the energy can be bounded below. Because of the Sugawara form of the

energy momentum tensor these are the highest weight representations.

To define these we introduce the notion of a Verma module, which is a certain kind of

representation of a Lie algebra g.

Choose a Cartan subalgebra t ⊂ g. For any vector λ ∈ t∗ (not necessarily in the weight

lattice) we construct a representation M(λ), called a Verma module, as follows.
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Choose a splitting into positive and negative roots. Then, a Verma module M(λ) is a

cyclic module generated by a vector v satisfying

Eαv = 0 ∀α ∈ Φ+

Hv = λ(H)v
(4.115)

One builds up the module by taking the span of
∏
iXiv withXi negative step operators.

Then, one has a key

Theorem M(λ) has a maximal proper submodule S(λ). The quotient

V (λ) := M(λ)/S(λ) (4.116)

is irreducible.

Vectors in S(λ) are called “null vectors”: S(λ) is a sum of highest weight Verma

modules and the highest weight vectors are called primitive null vectors.

Example: g = sl(2). We use the basis

[E+, E−] = H

[H,E±] = ±2E±
(4.117)

The translation to physics notation is H = 2J3, E± = J± = J1 ± iJ2. (With the

convention [Ja, Jb] = iεabcJc, for a, b, c = 1, 2, 3 and ε123 = +1.)

The highest weight vector is usually denoted |j〉 with

E+|j〉 = 0

H|j〉 = 2j|j〉
(4.118)

We will also denote it by v0.

The Verma module is spanned by vm := (E−)m|j〉 for m ≥ 0. It is infinite dimensional.

A simple computation shows

H(E−)m|j〉 = (2j − 2m)(E−)m|j〉 (4.119)

Let us search for a highest weight submodule. We need to compute:

E+(E−)m|j〉 =

m−1∑
i=0

(E−)m−1−i[E+, E−](E−)i|j〉

= m

(
2j − (m− 1)

)
(E−)m−1|j〉

(4.120)

Thus, there is a nontrivial submodule iff 2j ∈ Z≥0. If 2j /∈ Z≥0 then M(2j) = V (j) is an

infinite dimensional irreducible representation. If 2j ∈ Z≥0, then
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v2j+1 := (E−)2j+1|j〉 (4.121)

generates the maximal submodule, isomorphic to M(−2j − 2). The quotient

V (j) := M(2j)/M(−2j − 2) (4.122)

is isomorphic to the finite-dimensional irreducible module of dimension 2j + 1.

Remarks:

1. By considering E± = J1 ± iJ2 we can consider these representations to be represen-

tations of su(2). We can then introduce a Hermitian form on the Verma module so

that J− = (J+)†. From what we have said we see that

〈j|(J+)2j+1(J−)2j+1|j〉 = 0 (4.123)

On the other hand, this is the norm square

‖ (J−)2j+1|j〉 ‖2 (4.124)

and hence in a unitary representation it must vanish. For this reason the vector v2j+1

is known as a null vector.

2. Only for those representations with 2j+1 a positive integer can the representation of

the Lie algebra be exponentiated to a representation of the Lie group. In fact, much

more is true. SU(2)/U(1) = SL(2, C)/B = CP 1 is a complex manifold, and the

representation is naturally identified with the holomorphic sections of a holomorphic

line bundle over SU(2)/U(1). This is a beautiful example of geometric quantization:

For a compact simple Lie group G with maximal torus T the flag manifold G/T is a

compact Kahler manifold, hence symplectic, and quantization of the phase space gives

Hilbert spaces which are the irreducible representations of G. This is the Borel-Weil-

Bott theorem. A quantum-mechanical approach uses the phase space path integral∫
〈λ, g−1ġ〉 −H(g). The path integral can be done exactly using localization yielding

the Kirillov character theorem and the Weyl character formula. For an account of

this see:

1. A. Alekseev, L.D. Faddeev, Samson L. Shatashvili, “Quantization of symplectic

orbits of compact Lie groups by means of the functional integral,” J.Geom.Phys.5:391-

406,1988.

2. Richard J. Szabo, Equivariant localization of path integrals. e-Print: hep-

th/9608068

***********************************

SOME OF ABOVE MATERIAL MOVES TO APPENDIX B.3
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Now, for affine Lie algebras L̃g based on finite-dimensional semisimple Lie algebras g

one can develop the entire theory of Cartan subalgebras, roots, and weights. It turns out

to be very useful to extend the algebra L̃g by including L0. Then, choosing a Cartan-Weyl

decomposition of g, a natural Cartan subalgebra of the resulting algebra is

H i
0,K, L0 (4.125)

The inclusion of L0 allows one to define a nondegenerate inner produce on the root

space. Once again one can construct Verma modules: A highest weight vector generating

a Verma module has

H i
0|v〉 = λi|v〉 (4.126)

and because of the Sugawara construction

L0|v〉 =
(λ, λ+ 2ρ)

2(k + h∨)
|v〉 (4.127)

Then the highest weight condition is ♣Use either v or |v〉
or |λ〉 consistently.

It is all muddled

below. ♣
Eα0 |v〉 = 0 α ∈ Φ+ (4.128)

Jan|v〉 = 0 n > 0,∀a (4.129)

Once again one can form a Verma module and then take a quotient to get the irreducible

module.

One can easily see that the irreducible representation will be infinite dimensional be-

cause already the subalgebra generated by H i
n is a Heisenberg algebra

[H i
n, H

j
m] = knδijδn+m,0 (4.130)

and acting with H i
−n on the vacuum with n > 0 will not produce any null vectors.

At this point one restricts attention to the integrable highest weight representations.

To construct these representations we note that for each root α of g and integer n we can

form an sl(2) subalgebra generated by J+ ∼ Eαn , J− ∼ E−α−n .

For simplicity, let us assume that g is of A-D-E type, so we can normalize the roots to

α2 = 2. Then

[Eαn , E
−α
−n ] = αiH i

0 + nK (4.131)

Thus we have an isomorphism with the standard basis of sl(2):

H → αiH i
0 + nK

E+ → Eαn

E− → E−α−n

(4.132)

Let us call this sl(2)n,α
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Definition: An integrable highest weight representation V (λ) is one such that V (λ)

can be decomposed into sums of finite dimensional representations of the sl(2) subalgebras

sl(2)n,α.

In other words, once we diagonalize the Cartan subalgebra (H i
0,K, L0) to produce

weight vectors each state of definite weight vector must generate a finite-dimensional rep-

resentation under sl(2)n,α. ♣NEED TO

EXPLAIN SOME

TERMS AND

MORE DETAILS

HERE ♣

Considering this for sl(2)0,α we find that λ must be a dominant integral weight of g.

Then we learn that nk + α · λ ∈ Z≥0 for n ≥ 0 and all α. The strongest constraint comes

from n = 1 with α = −θ, where θ is the highest root. So k must be a nonnegative integer

and the weights of the integrable representations are constrained by

k ≥ λ · θ (4.133)

In physics this is often derived from the constraint of unitarity. The basic computation

is: ♣Here

v = |v〉 = |λ〉. Use a

single notation! ♣
0 ≤ ‖ Eα−1|λ〉 ‖2

= 〈λ|E−α1 Eα−1|λ〉
= 〈λ|[E−α1 , Eα−1]|λ〉
= (k − (α, λ)) ‖ |λ〉 ‖2

= [(k − (θ, λ)) + (θ − α, λ)] ‖ |λ〉 ‖2

(4.134)

Here θ is the highest root. Thus, the constraint of unitarity is satisfied if λ should is a

dominant weight, and k − (θ, λ) ≥ 0.

Let us consider the case of L̃su(2). Let us choose a highest weight vector |j〉 defined

by:

J3
0 |j〉 = j|j〉
K|j〉 = k|j〉
J+

0 |j〉 = 0

Jan|j〉 = 0 n > 0,∀a

(4.135)

From the Sugawara formula we compute

L0|j〉 =
j(j + 1)

k + 2
|j〉 (4.136)

We begin by acting with J−0 to fill out a spin j multiplet of sl(2)0,+:

|j〉, J−0 |j〉, (J
−
0 )2|j〉, . . . , (J−0 )2j |j〉 (4.137)
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Figure 15: Schematic drawing of points with nonzero multiplicity in the highest weight represen-

tation of ˜Lsu(2)k.

Figure 16: Degeneracies of ˜Lsu(2)k highest weight representations for k = 1, j = 0 and k = 3, j =

0. From I. Affleck, et. al., J. Phys. A Math. Gen. 22(1989)511

Notice that these states all have the same L0 eigenvalue.

Next we act with J+
−1 on the highest weight vector J+

−1|j〉. We can now act with J−0
multiple times. In general we will get the states in the Clebsch-Gordon series (j) ⊗ (1) =

(j + 1)⊕ (j − 1).

One the other hand, we can also act with sl(2)1,− generated by

H → k − 2J3
0

E+ → J−1

E− → J+
−1

(4.138)

Since H|j〉 = (k− 2j)|j〉 for this algebra we have a spin k/2− j representation and we

learn that for an integrable representation:

0 ≤ j ≤ k

2
(4.139)

and moreover

(J+
−1)k+1−2j |j〉 ∼ 0 (4.140)

is a null vector.

Exercise

Check that
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H → k − 2J3
0

E+ → J−1

E− → J+
−1

(4.141)

H → k + 2J3
0

E+ → J+
1

E− → J−−1

(4.142)

Are both isomorphisms with sl(2). Describe some null vectors associated with the

second algebra.

Exercise

Work out the first few levels of the highest weight representations for affine su(2) at

level k = 1.

*******************************************

ABOVE SECTION REQUIRES MUCH IMPROVEMENT: LIST THE FULL STRUC-

TURE OF NULL VECTORS - CONSTRUCT SOME BY HAND AND THEN IMPOSE

THE AFFINE WEYL GROUP. IN THIS WAY YOU GET THE BGG RESOLUTION

IN THIS CASE. THEN CITE THE GENERAL BGG RESOLUTION. Nice ref: Pressley-

Segal, Loop Groups.

Null vectors:

Note that

(E−0 )2j+1|j〉 (4.143)

is standard from finite-dimensional representation theory and has spin 2J3
0 = −j − 1 so

generates a Verma of that type.

Now

(E+
−1)k+1−2j |j〉 (4.144)

is annihilated by E+
0 but has spin

2J3
0 = (2k + 2)− 2j (4.145)

(obtained by flipping j → (k + 2)− (j + 1) on ******* )

So, now we consider

(E−0 )2k−2j+1(E+
−1)k+1−2j |j〉 (4.146)

which has spin 2J3
0 = ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗, and so forth.

**********************************************

**********************************************
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4.5.2 Integrable Highest Weight Representations Of The Group

*************************************

Remarks:

• The representations are called integrable because these are the representations which

extend to representations of L̃G. Indeed, they are unitary representations of L̃G. More-

over the Borel-Weil theory extends to this infinite dimensional case: L̃G/T is an infinite-

dimensional complex manifold L̃G/T ∼= L̃GC/B where B are the loops which extend

holomorphically into the disk. LG/T is also an infinite-dimensional phase space, and geo-

metric quantization of this phase space leads to the irreps of L̃G. The Borel-Weil theory

for loop groups is developed from the mathematical point of view in Pressley-Segal. There

is again a path integral treatment in the physics literature. See ????

***********************************************

Let G be simple and compact. The centrally-extended loop group constructed above

will be denoted simply Gk for k ∈ Z+. 36

What can we say about the representations of Gk? Clearly there are many. For

example, Gk has a homomorphic image LG so, choosing any representation ρ : G→ Aut(V )

of G (for example, a finite-dimensional irreducible representation of G) and a point z0 on

the circle we can define the evaluation representation:

ρ̂ : Gk → ρ(g(z0)) (4.147)

with carrier space V . Note that these representations do not interact well with L0, since

L0 translates z0 → z0e
iθ.

It turns out that Gk has a finite set of irreducible representations with L0 bounded

below. These representations are naturally constructed as highest weight representations

of the Lie algebra and are known as integrable representations because they extend from

representations of the Lie algebra to the Lie group.

The integrable representations are graded by L0 and the spectrum is bounded below.

The lowest weight space under L0 is itself an irreducible representation of G, and has a

highest weight λ corresponding to an element of

Λwt/W (4.148)

where W is the Weyl group and Λwt is the weight lattice. After making a choice of simple

roots for g the highest weight of an irreducible representation of G can be labeled by a

dominant highest weight λ ∈ Λwt. Recall this means that

λ =
∑

niλ
(i) (4.149)

where ni ≥ 0 and λ(i) is a basis of fundamental weights dual to the simple roots.

36In general for a compact group it can be shown that the central charge should be regarded as an element

of H4(BG;Z). For G simple, compact, and connected this cohomology group is isomorphic to Z and we

can consider the central extension to be an integer.
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Now for the case of Gk the irreducible representations are labeled by the quotient

Λwt/Ŵ
(k) (4.150)

where Ŵ (k) is the level k affine Weyl group. It is a discrete crystallographic subgroup of

the group of affine transformations of t∨. As a group it is isomorphic to the semidirect

product of the Weyl group W with the translation group by the coroot lattice Λcrt but we

denote it by Ŵ (k) because the translations act by

{σ|v} : λ 7→ σ(λ) + kv σ ∈W, v ∈ Λcrt (4.151)

It is useful to know that this is a Coxeter group, generated by reflections. These include

the Weyl reflections and the reflection in the hyperplane (λ, θ) = k, where k ∈ Z+, θ is

the highest root and we use a normalization of the Killing form so that (θ, θ) = 2. A

fundamental chamber for this action in Λwt is the finite set of dominant weights satisfying:

(λ, θ) ≤ k (4.152)

This condition is usually derived in conformal field theory by using unitarity and a null-

vector.

Example 1 G = SU(2). Then θ = α and λ = jα where j ∈ 1
2Z+ is known in physics

as the spin. (Mathematicians normally would write λ = n1λ
(1) where λ(1) = 1

2α1 is the

fundamental weight. Thus n1 = 2j is twice the spin.) The irreducible representation has

of SU(2) with weight λ = jα1 has dimension 2j + 1. The lattice Λwt is isomorphic to Z.

The hyperplane in t∨ ∼= R is (xα, α) = k or x = k/2. So reflection in the hyperplane takes

j → k
2 − j. Therefore a fundamental domain for the affine Weyl group is:

0 ≤ j ≤ k

2
(4.153)

Note that Ŵ k in this case is isomorphic to Z o Z2, the infinite dihedral group.

Example 2 G = SU(3). For SU(3) we can choose two simple roots. The standard choice

is

α1 = (
√

2, 0)

α2 = (−
√

1

2
,

√
3

2
)

(4.154)

λ1 =
2

3
α1 +

1

3
α2

λ2 =
1

3
α1 +

2

3
α2

(4.155)

Now θ = α1 + α2. The integrable weights at level k are n1λ
1 + n2λ

2 with ni ∈ Z+ and

n1 + n2 ≤ k.
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Figure 17: The root and weight lattice for SU(3). A standard set of simple roots α1, α2 is shown

along with fundamental weights λ1, λ2. The fundamental Weyl chamber is the positive cone spanned

by these two weights. The highest root is θ = α1 + α2. The heavy green line is the line (λ, θ) = k

for some positive integer k. The affine Weyl chamber is the region (λ, θ) ≤ k and the integrable

weights at level k is the intersection of the weight lattice with the fundamental Weyl chamber.

4.5.3 Characters of integrable highest weight representations

The characters of the representations V (λ) are

TrV (λ)q
L0e2πiζ·H0 (4.156)

where ζ ∈ t∗ ⊗ C and q = e2πiτ with τ in the upper half-plane.

By bounding the dimensions of weight spaces one can learn that this is an entire

function of ζ and of τ . Note that it is crucial to include L0 to get a finite expression.

There are four ways to derive explicit formulae for characters:

1. Algebraic approach based on the Verma module construction.

2. Differential equations following from recursion relations for weight multiplicities.

3. Applying fixed point formula and the Borel-Weil-Bott theorem.

4. Writing a phase space path integral with action S ∼
∫
〈λ, g−1ġ〉 −

∫
dtH(g(t)) for

a particle moving on G/T and using the stationary phase method - which turns out to be

exact. The sum over the Weyl group is a sum over classical solutions of the equations of

motion.
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We’ll sketch approach (1). The character of a Verma module is straightforward, be-

cause it is essentially a Fock space. Abstractly it can be written as

eλ∏
α>0(1− e−α)

(4.157)

For example, for M(2j) for SU(2) we have

TrM(2j)u
2J3 =

u2j

1− u−2
(4.158)

For 2j ∈ Z≥0 the irreducible representation is a quotient M(2j)/M(−2j − 2) and hence

the SU(2) the characters are:

χj(u) := TrV (j)u
2J3 = TrM(2j))u

2J3−TrM(−2j−2)u
2J3 =

u2j

(1− u−2)
− u−2j−2

(1− u−2)
=
u2j+1 − u−2j−1

u− u−1

(4.159)

In general, the characters of irreducible representations of g and g̃ for g semisimple are

linear combinations of those of the Verma modules. Using the Weyl group invariance one

proves the Weyl-Kac character formula:

χλ =

∑
w∈W ε(w)ew(λ+ρ)−ρ∏

α>0(1− e−α)
(4.160)

For example, for L̃su(2) we have

TrM(j)q
L0e2πiζH0 =

q
(j+ 1

2 )2− 1
4

k+2 e2πiζ(2j)

(1− e−4πiζ)
∏∞
n=1(1− qn)(1− e4πiζqn)(1− e−4πiζqn)

(4.161)

The factors in the denominator account for the action with operators J−0 , H−n, J+
−n,

J−−n on the highest weight vector, respectively.

Now, the affine Weyl group is in general ΛweightnW where W is the Weyl group of g.

For g = su(2) this is just Z n Z2 and it acts on the weights as

j → j +m(k + 2) m ∈ Z (4.162)

for the even transformations and

j → −1− j −m(k + 2) m ∈ Z (4.163)

for the odd transformations. For example: (J−0 )2j+1|j〉 corresponds to the odd Weyl

reflection with m = 0 and (J+
−1)k+1−2j |j〉 corresponds to the odd Weyl reflection with

m = −1, etc.

In this way we derive

TrV (j)[q
L0ei2πz2J

3
0 ] =

=

∑
m q

1
k+2

[(j+ 1
2

+m(k+2))2−1/4]
(
ei4πz(j+

1
2

+m(k+2)) − e−i4πz(j+
1
2

+m(k+2))
)

(e2πiz − e−2πiz)
∏

(1− ei4πzqn)(1− e−i4πzqn)(1− qn)

(4.164)
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for the loop group ŜU(2)k.

Now comes a beautiful trick: For j = 0, k = 0 the only unitary irreducible representa-

tion is the trivial representation. Therefore, the numerator equals the denominator.

Introduce the level k theta function defined by

Θµ,k(z, τ) :=
∑
n∈Z

qk(n+µ/(2k))2
y(µ+2kn) =

∑
`=µmod2k

q`
2/(4k)y` (4.165)

with y = e2πiz. The Riemann theta function we introduced for the particle on a circle

corresponds to level 1/2. Note:

Θµ,k(ω, τ) = Θµ+2ka,k(ω, τ) a ∈ Z
Θµ,k(−ω, τ) = Θ2k−µ,k(ω, τ) = Θ−µ,k(ω, τ)

(4.166)

We recognize the numerator for j = 0, k = 0 as Θ1,2(z, τ)−Θ−1,2(z, τ), and hence

Θ1,2(z, τ)−Θ−1,2(z, τ) = (e2πiz−e−2πiz)
∏

(1−ei4πzqn)(1−e−i4πzqn)(1−qn) = −iϑ1(2z, τ)

(4.167)

Next comes a conceptually important step. The characters turn out to have very

beautiful mathematical properties if we modify the definition of the character slightly and

define:

χkj (z, τ) := TrV (j)q
L0−c/24e2πiz(2J3

0 ) (4.168)

This might look unnatural from the point of view of Lie algebra theory, but it is

well-motivated by physics: We are subtracting the groundstate energy.

Now, we can write the elegant formula:

χkj (z, τ) := tr qL0−c/24e2πiz(2J3
0 )

=
Θ2j+1,k+2(z, τ)−Θ−2j−1,k+2(z, τ)

Θ1,2(z, τ)−Θ−1,2(z, τ)

= q(`+1)2/(4(k+2))−1/8χj(y) + · · ·

(4.169)

where 0 ≤ j ≤ k/2 and j is half-integral.

4.5.4 Modular properties

The characters satisfy many beautiful mathematical properties. They define examples of

Jacobi forms. When specialized to ζ = 0 they form a vector of modular forms under

PSL(2,Z).

Recall that SL(2,Z) is the subgroup of SL(2,R) with integral matrix elements. It is

generated by S, T defined in Appendix C in equations (C.2) and (C.3) respectively. ♣Redundant with

equations in

Appendix D. ♣SL(2,Z) acts on (τ, z) by

(τ, z)→ (
aτ + b

cτ + d
,

z

cτ + d
) (4.170)
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Note that the action on τ factors through PSL(2,Z) := SL(2,Z)/〈−1〉. Note that T : τ →
τ + 1, S : τ → −1/τ .

By using the Poisson summation formula one checks the transformation laws of level

k theta functions under the generators of SL(2,Z):

Θµ,k(ω, τ + 1) = e2πiµ
2

4k Θµ,k(ω, τ) (4.171)

Θµ,k(−ω/τ,−1/τ) = (−iτ)1/2e2πikω2/τ
2k−1∑
ν=0

1√
2k
e2πiµν

2k Θν,k(ω, τ) (4.172)

From (4.172) we deduce that

(Θ1,2 −Θ−1,2)(−z/τ,−1/τ) = i(−iτ)1/2e4πiz2/τ (Θ1,2 −Θ−1,2)(z, τ) (4.173)

and then a short computation yields:

χ
su(2)
j (−1/τ,−z/τ) = e2πikz2/τ

k/2∑
j′=0

Sjj′χ
su(2)
j′ (τ, z) (4.174)

with

Sjj′ =

√
2

k + 2
sin

π(2j + 1)(2j′ + 1)

k + 2
. (4.175)

The action of T is easily computed to be:

χkj (τ + 1, z) = e
2πi
(

(`+1)2

4(k+2)
− 1

8

)
χkj (τ, z) = e

2πi
2`(`+2)−k

8(k+2) χkj (τ, z) (4.176)

where ` = 2j. These two transformations generate a unitary representation of the

modular group SL(2,Z).

Remarks

1. In general, the characters are given by the Weyl-Kac character formula. Just as the

Weyl character formula can be written∑
w∈W ew(λ+ρ)−ρ∑
w∈W ew(ρ)−ρ (4.177)

the Weyl-Kac character formula can be written in the identical form, where we replace

the sum over the Weyl group by the sum over the affine Weyl group and λ, ρ are

replaced by suitable affine weights. We recognize the structure of the sum over the

affine Weyl group in equation (??): The theta functions come from the sum over Z
and the difference of the theta functions comes from the nontrivial reflection in the

Weyl group of SU(2).

2. In general one can put λ = 0 and get the denominator identity:∑
w∈W

ε(w)ew(ρ) =
∏
α>0

(e
1
2
α − e−

1
2
α) (4.178)
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3. There are very interesting generalizations of (4.178) to generalized Kac-Moody alge-

bras. [NEED CITATIONS HERE!]

4. It turns out that the representation theory of Gk is closely related to that of the

corresponding quantum group when q is a suitable root of unity:

q = exp(
2πi

k + h
) (4.179)

See the book by Fuchs for a detailed exposition.

5. There is a generalization of the above story to a much wider class of two-dimensional

conformal field theories known as “rational conformal field theories.”

Exercise

Explain carefully why the irreducible representation for j = k = 0 is the trivial repre-

sentation.

Show that M(j = 0, k = 0)/S(j = 0, k = 0) is one-dimensional.

Exercise

Find the integrable level k representations for ŝu(3), and explain how they are dis-

tributed on the weight lattice.

4.6 The Hilbert Space Of WZW And The One-Loop Partition Function

Hilbert space and one-loop partition function.

Note: Large k limit: Particle moves on group G. Truncation of L2(G) decomposition.

Conformal blocks on torus. S and T matrix.

In the case of a compact group G the Hilbert space has a beautiful structure. It turns

out that the decomposition of the Hilbert space with respect to the quantum L̃GL × L̃GR
symmetry encodes each of the unitary irreducible representations precisely once. Thus, it

is a perfect analog of the Peter-Weyl theorem for compact groups.

We have

H = ⊕0≤λ·θ≤kVλ ⊗ Vλ (4.180)

where

0 ≤ λ · θ ≤ k (4.181)

and θ is the highest root of g. For the SU(2) level k model we have in particular:
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H = ⊕0≤j≤k/2Vj ⊗ Vj (4.182)

The modularity of the characters now receives a beautiful explanation. Consider the

partition function:

Z = TrHe
−2πβH+2πiθP = TrHq

L0−c/24q̄L̃0−c/24 (4.183)

where

H = L0 + L̃0 − c/12 (4.184)

P = L0 − L̃0 (4.185)

and

τ = θ + iβ (4.186)

so that

Z =
∑
λ

χλ(τ, 0)χλ(τ, 0) (4.187)

♣REALLY NEED

TO ADD

COUPLING TO

FLAT GAUGE

FIELDS HERE!!! ♣

Figure 18: Identifications in the z = σ + it plane induced by taking a trace. We propagate in

Euclidean time β and then twist by a shift 2πθ in the σ direction before identifying states.

The partition function (4.183) has the interpretation of being the path integral on

a flat torus with modular parameter τ as shown in 18. As we will see in section 2.2.12

modular transformations on τ are equivalent to the action of nontrivial diffeomorphisms

on the torus.

On the other hand, the partition function must be diffeomorphism invariant. The effect

of the Weyl scaling on the partition function is zero because of the conformal anomaly and

because the background metric is flat. Therefore, the partition function must be modular

invariant. This is achieved since the χλ transform in a unitary representation of the modular

group.

Remark: There are different modular invariant combinations of characters. That is,

it is possible to find nonnegative integers Nj,j̄ not proportional to the unit matrix so that∑
j,j̄

Njj̄χjχj̄ (4.188)

– 134 –



is modular invariant. These correspond to other theories.

For G = SU(2) the modular invariants have an ADE classification. as shown in a

beautiful paper of Capelli, Itzkyson, Zuber.

For G = SU(3) the classification was done by Terry Gannon (hep-th/9212060, hep-

th/9404185). The paper

hep-th/9604104: ”Comments on the Links between su(3) Modular Invariants, Simple

Factors in the Jacobian of Fermat Curves, and Rational Triangular Billiards” by M. Bauer,

A. Coste, C. Itzykson, P. Ruelle

finds fascinating links to various branches of mathematics.

For higher rank groups the complete classification is not known(?)

******************************** ********************************

MATHEMATICIANS HAVE SOME PROBLEM WITH THE NAIVE DIAGONAL

MODULAR INVARIANT. I learned of this from A. Neitzke. (May 8, 2019)

******************************** ********************************

4.7 Primary Fields

State-operator correspondence: Primary vertex operators

Holomorphic factorization: The chiral vertex operators.

COMMENT: VERTEX OPERATOR ALGEBRAS and the purely algebraic approach.

(Borcherds, FLM, Lepowsky-Huang, etc.)

OPE - fusion rules: F-matrix. Consistency: Pentagon.

Surprise! S diagonalizes the fusion rules! Verlinde formula.

4.7.1 Semisimple Algebras

Remark: “Verlinde formula” for a general semisimple algebra. Give example of finite group

ring Exercise: Fusion rules and Verlinde formula in finite group theory.

In general this is all there is to it. However, one can say a little more when the algebra

(C, θ) is semisimple.

The most useful characterization of semisimplicity is the following. The structure

constants 37

φµφν = N λ
µνφλ (4.189)

defines a set of matrices via the left-regular representation, L(φµ), with matrix elements

N λ
µν . Since C is commutative these are commuting matrices. Then:

Definition : C is semi-simple iff the matrices L(φµ) are simultaneously diagonalizable.

Thus in the semisimple case we can find a matrix S such that:

N λ
µν =

∑
x

S x
ν Λ(µ)

x (S−1) λ
x (4.190)

37The structure constants N λ
µν need not be integral. But in many interesting examples there is a basis

for the algebra in which they are in fact integral.
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where Λ
(µ)
x are the different eigenvalues of L(φµ).

Now choose a basis such with the index µ running over values µ = 0, . . . , n, and

take φ0 = 1C , the multiplicative identity. Putting µ = 0 in equation (4.190) leads to a

trivial identity, but putting ν = 0 and using Nλ
µν = Nλ

νµ so that Nλ
µ0 = δ λ

µ we see that

S x
0 Λ

(µ)
x = S x

µ since this is the matrix inverse of S−1. So:

S x
0 Λ(µ)

x = S x
µ no sum on x (4.191)

Plugging back into (4.190) we get:

N λ
µν =

∑
x

S x
ν S

x
µ (S−1) λ

x

S x
0

(4.192)

Note that θ(φµφνφλ) = Nλ′
µνQλ′λ := Nµνλ is totally symmetric on µ, ν, λ. Suppose we

further restrict attention to a basis {φµ} so that θ(φµ) = δµ,0. Then taking the trace of

(4.189) we learn that Qµν = N0
µν and then (4.192) gives

Qµν =
∑
x

S x
ν S

x
µ

(S−1) 0
x

S x
0

(4.193)

so that

Nµνλ =
∑
x

S x
µ S

x
ν S

x
λ

(S−1) 0
x

(S x
0 )2

(4.194)

If we form the linear combinations

εx =
∑
µ

S x
0 (S−1) µ

x φµ (4.195)

then the εx serve as a set of basic idempotents, that is,

C = ⊕xCεx
εxεy = δx,yεy

(4.196)

Moreover, if we choose the natural normalization θ(φµ) = δµ,0 then

θx := θC(εx) = S x
0 (S−1) 0

x (4.197)

Here θi are some nonzero complex numbers. The unordered set {θx} is the only

invariant of a finite dimensional commutative semisimple Frobenius algebra.

******************************************************

******************************************************

SOME OF THE FOLLOWING MATERIAL SHOULD BE MOVED TO CHAPTER

OF TOPOLOGICAL FIELD THEORY: EXAMPLE OF 2D TFT:

Note that in this case the characteristic element is simply
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H =
∑
x

1

θx
εx (4.198)

and hence the vacuum amplitude on a genus g ≥ 0 surface is

Zg =
∑
x

θ1−g
x (4.199)

Remarks:

1. If we consider the sum over all genera then the sum only converges when |θx| > 1

(with conditional convergence on the unit circle), in which case it is:

Zstring =
∑
x

θx

1− θ−1
x

(4.200)

2. Note that nothing has fixed the overall normalization of the matrix S at this point.

In some cases S will be unitary so that (S−1) 0
x = (S x

0 )∗. Moreover, if the matrix

elements S x
0 can be taken to be real then we have a nice simplification of (4.194):

Nµνλ =
∑
x

S x
µ S

x
ν S

x
λ

S x
0

(4.201)

This is how the Verlinde formula is usually stated.

Exercise

Show that the eigenvalues Λ
(ρ)
x satisfy the algebra

Λ(µ)
x Λ(ν)

x =
∑
λ

Nλ
µνΛ(λ)

x (4.202)

Exercise

A natural question in field theory is whether the vacuum amplitudes of a theory com-

pletely determine all the amplitudes in the theory.

Investigate this for the case of a semisimple 2d TFT.

*************************************************

*************************************************
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4.7.2 An Example Of Semisimple Fusion Rules: Finite Group Theory

Let G be a finite group. The space of complex-valued functions C[G] is a C∗ algebra (see

below) with the obvious product given by pointwise multiplication

f1 · f2(g) := f1(g)f2(g) (4.203)

Let C be the subspace of class functions, that is, functions such that

f(hgh−1) = f(g) ∀g, h ∈ G (4.204)

This is the space of functions on the the (finite) set of conjugacy classes of G.

There are two natural bases of functions for C. One makes it clear that C is a Frobenius

algebra in a natural way, and the other makes it clear that this Frobenius algebra is

semisimple.

The first natural basis for the space of class functions is given by the characters of the

distinct irreps χµ, µ labels the distinct irreps of G.

Under the pointwise product

χµχν =
∑
λ

Nλ
µνχλ (4.205)

where Nλ
µν are the fusion coefficients, (they are also known as “Littlewood-Richardson

coefficients”). They are determined by the Clebsch-Gordon series

Tµ ⊗ T ν = ⊕λNλ
µνT

λ (4.206)

and are nonnegative integers. The natural trace is

θ(χµ) = δµ,0 (4.207)

where χ0 = 1 corresponds to the identity representation. Since for every rep µ there

is a rep µ∗ with χµχµ∗ = χ0 + · · · , we conclude 〈f, g〉 = θ(fg) is nondegenerate, and hence

that C is indeed a Frobenius algebra.

Another natural basis of class functions are the delta functions on conjugacy classes:

δC(g) = 1 g ∈ C
= 0 g /∈ C

(4.208)

where C is a conjugacy class. Note that in this basis the pointwise product is diagonal.

Thus it is clear that C is semi-simple.

We can of course expand one basis in terms of another:

χµ =
∑
i

χµ(Ci)δCi (4.209)

Now recall a standard result from group representation theory: the orthogonality re-

lations on the characters of the irreducible representations:

1

|G|
∑
g

χµ(g)χν(g−1) = δµ,ν (4.210)
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Since G is finite we can, WLOG, assume the representation Tµ is unitary. There fore the

matrix

Siµ =

√
mi

|G|
χµ(Ci) (4.211)

where mi is the order of the class |Ci|, is a unitary matrix.

Now we have:

χµ =
∑
i

√
|G|
mi

SiµδCi (4.212)

and therefore since multiplication is diagonal in the basis δCi , Siµ is the matrix which

diagonalizes the fusion rules in the character basis.

Now, using (4.197) we compute

θx = |S0x|2 =
(dimVx)2

|G|
(4.213)

********************************************************

********************************************************

MOVE THIS TO CHAPTER ON TOPOLOGICAL FIELD THEORY -2D EXAM-

PLE.

and hence the partition function on a compact Riemann surface of genus g is

Zg = |G|1−g
∑
x

1

(dimVx)2g−2
(4.214)

where the sum runs over irreducible representations of G. The first factor is relatively

uninteresting (it can be absorbed in the scale of the string coupling) but the second is

interesting.

What geometrical object is the sum in (4.214) counting?

We will answer this question in a few lectures.

*********************************************************

**********************************************************

Exercise

a.) Show that the center of the group algebra C[G] with the convolution product is C,
the space of class functions.

b.) Show that the matrix Siµ is a kind of Fourier transform between these two product

structures on C. Note that the basis of characters of irreps χµ diagonalize the convolution

product:

χµ ∗ χν =
δµν
nν

χν (4.215)

c.) Show that the invariants θx of this Frobenius algebra are given by
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θ(εµ) =
(dimVµ)2

|G|
(4.216)

Figure 19: Three CFT state spaces are associated with the circles C1, C2, and C3 and are

associated with radial quantization around z = 0, z0, 0, respectively.

4.8 Tensor Product Of Highest Weight Representations

The integrable highest weight representations L(λ) turn out to be objects in a tensor

category. The tensor product is not symmetric. Note that it is not obvious how to take

a tensor product of two representations L(λ) and L(λ′) to get a representation of the KM

algebra with the same value of k. 38 The way to do this is to use conformal field theory.

The tensor product can be thought of as follows. (We follow the description from [42],

equation (2.5). Rigorous descriptions of the tensor product using vertex operator algebra

theory are given in [29, 30].)

We can form a current:

Ja(z) =
∑

T anz
−n−1dz (4.217)

where we now analytically continue z to the complex plane - regarded as the Euclidean

worldsheet of a 2d Euclidean QFT for the WZW model. Note that

T an =

∮
znJa(z) (4.218)

38For the same reason one does not want to multiply characters.
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There is a state-operator correspondence: The insertion of a local operator Φ(z) at a

point z on the plane produces a state in the Hilbert space of radial quantization centered

on that point.

To give a tensor product we need a comultiplication ∆ : A → A ⊗ A where A is the

algebra of local observables.

We imagine one Hilbert space of states on a small circle C1 centered at z = 0, a second

circle C2 centered at z = z0, and a third on a larger circle C3 centered at z = 0 but

encircling z0. See Figure 19.

If local operators creating states in representations Lλ and Lµ are inserted at z = 0

and z = z0 then the resulting state on the circle C3 will have an action of the current with

modes

∆0,z0(T an ) =

∮
C3

znJa(z)

=

(∮
C1

znJa(z)

)
⊗ 1 + 1⊗

(∮
C2

znJa(z)

) (4.219)

In the first line we have written an operator acting on the space of states on the circle

C3. (Think of it as the outgoing state space in a pair of pants diagram.) The next line

is a contour deformation (since Ja(z) is a holomorphic current) to give an action on the

space of states on the circles C1 and C2. Since there are two ingoing states on the pair

of pants we have a tensor product of state spaces. The interesting term is
∮
C2
znJa(z)dz.

When acting on the Hilbert space obtained by radial quantization centered at z0 we should

expand the current as

Ja(z) =
∑
m∈Z

(z − z0)−m−1Jam(z0)d(z − z0) (4.220)

but ∮
C2

zn(z − z0)−m−1dz =

{
0 m ≤ −1(
n
m

)
zn−m0 m ≥ 0

(4.221)

and hence

∆0,z0(T an ) = T an ⊗ 1 + 1⊗

( ∞∑
k=0

(
n

k

)
zn−k0 T ak (z0)

)
(4.222)

Now, the fusion rules for multiplication, with this tensor product, of the the simple

objects (that is, the irreducible representations of Gk) turn out to define a semisimple

Frobenius algebra: 39

L(µ)⊗0,z0 L(ν) ∼= ⊕λNλ
µνL(λ). (4.223)

Therefore, there is a matrix S that diagonalizes these rules.

39The conceptual reason for this is that one can gauge the G symmetry of the WZW model to produce

the G/G model. This is a 2d TFT.
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4.8.1 Fusion Rules For The WZW Model

In general, labeling the irreducible highest weight representations of Gk by the dominant

weight of the representation of G at the lowest eigenvalue of L0 we have the eigenvalues:

Λ(µ)
ν =

S ν
µ

S ν
0

= chµ

(
2π
ν + ρ

k + h

)
(4.224)

where µ, ν are dominant weights, ρ is the Weyl vector, 40 h is the dual coxeter number,

and we have used the Killing form, normalized so that (θ, θ) = 2 to identify t∨ ∼= t and

thereby regard ν + ρ as an element of t. ♣Give the

specialization of

this formula to

SU(2)k. ♣
Using equation (4.224) it is possible to express the CFT fusion rules Nλ

µν in terms of

the Littlewood-Richardson coefficients N̄λ
µν of the finite-dimensional group:

chµchν =
∑
λ∈Λ+

wt

N̄λ
µνchλ (4.225)

We know that, in general

Λ(µ)
x Λ(ν)

x =
∑
λ

Nλ
µνΛ(λ)

x (4.226)

for semisimple Frobenius algebras. Evaluating (4.225) on the special conjugacy classes

2π(λ+ ρ)/(k + h) and using some simple manipulations 41 one obtains:

Nλ
µν =

∑
w∈Ŵk,w·λ∈Λ+

wt

sign(w)N̄w·λ
µν (4.227)

(The sign of w is defined since Ŵ k is a Coxeter group. It is ±1 according to whether the

group element is a product of an even/odd number of reflections.)

For example, for SU(2)k the ordinary Clebsch-Gordon rules N̄ j′′

jj′ give

[j]⊗ [j′] = [|j − j′|]⊕ [|j − j′|+ 1]⊕ · · · ⊕ [j + j′] (4.228)

However, if j + j′ > k/2 then there will be an affine Weyl reflection around j = k/2. Each

weight larger than k − j − j′ will have a reflected image larger than k/2 and these will

cancel in pairs. In this way we get:

N j′′

jj′ =

{
1 |j − j′| ≤ j′′ ≤ min{j + j′, k − j − j′}&j + j′ + j′′ ∈ Z
0 else

(4.229)

♣Say something

about tetrahedra ♣

Exercise

a.) Find the invariants θx for the Frobenius algebra defined by N j′′

jj′ .

40The Weyl vector is half the sum of positive roots. It is equal to the sum of fundamental weights.
41See Di Francesco et. al. Section 16.2.1 or Fuchs, Section 5.5
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b.) Note that since N j′′

jj′ are integers, Z(Σg) is an integer, a surprising fact when

viewed as (4.199). This is a special case of the famous Verlinde formula.

Exercise

a.) Show that the product of theta functions of level k and k′, as functions of z can

be expanded in terms of theta functions of level k + k′. Thus, taking a direct sum of the

span of the level k theta function defines a graded ring.

b.) Show that the characters χkj (z, τ) can be expanded in level k theta functions.

This is another way to see that the standard tensor products of representations of

SU(2)k will not produce a representation of SU(2)k.

4.9 Conformal Blocks And Monodromy

Monodromy of conformal blocks: Braiding matrix B: Consistency: Braid Relations.

Formula for dimension of space of conformal blocks.

Conformal blocks in higher genus: Projectively flat connection over moduli space of

Riemann surfaces. Sugawara and parallel transport.

4.10 Open String WZW Model: Symmetry Preserving Boundary Conditions

Open string and branes: Conjugacy classes. Symmetry-preserving D-branes (boundary

conditions)

When the spacetime S2n is not closed but is a manifold with boundary the nature of

the WZ term becomes much more subtle. We will comment on this below.

However, we can discuss now the solutions of the equations of motion without entering

into the subtleties of formulating the action. Let us illustrate this in the 2-dimensional

case:

Our field is defined for g(σ, t) with σ ∈ [0, π].

Let us choose the action kS+
WZW so the conserved currents are

∂+JR(x−) = 0 JR = g−1∂−g

∂−JL(x+) = 0 JL = ∂+gg
−1

(4.230)

where x± = t± σ.

We have seen that the general solution of the equations of motion is:

g(t, σ) = gL(x+)gR(x−) (4.231)

But now we should choose boundary conditions. A natural choice of such boundary

conditions are the “symmetry-preserving” boundary condition at σ = 0 which says that

the total Jσ current should not leak out the side:

(J (L) + J (R))σ = 0 ⇒ g′L(t)g−1
L (t) = −g−1

R (t)g′R(t) (4.232)
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Therefore, there is some g-valued function of time, A(t) such that:

g′L(t) = A(t)gL(t)

g′R(t) = −gR(t)A(t)
(4.233)

Integrating using the path-ordered exponential we have

A(t) = ∂tUU
−1 = −U∂t(U−1) (4.234)

The general solution is therefore

gL(t) = U(t)gL(0)

gR(t) = gR(0)U−1(t)
(4.235)

and hence

g(t) = gL(t)gR(t) = U(t)gL(0)gR(0)U−1(t) = U(t)g(0)U−1(t) (4.236)

Thus, the ends of the the open string move along a conjugacy class in the group

FIGURE FOR SU2

In the quantum theory (for compact groups) it turns out that the allowed conjugacy

classes themselves are quantized. For some references on the open string WZW model see:

1. Volker Schomerus, “ Lectures on branes in curved backgrounds,” Class.Quant.Grav.19:5781-

5847,2002. e-Print: hep-th/0209241

2. G. Moore, “K theory from a physical perspective,” e-Print: hep-th/0304018

**************************************

COMMENT ON FREED-HOPKINS-TELEMAN THEOREM

**************************************

5. Topological Field Theories And Categories

**********************************

**********************************

DO JUST ENOUGH SO THAT YOU CAN RETURN TO CS THEORY AND GO

THROUGH THE SURGERY ARGUMENTS AND THE OLYMPIC PROOF OF THE

VERLINDE FORMULA

*************************************************

*************************************************

5.1 Basic Ideas

Topological field theory is an excellent pedagogical tool for introducing both some basic

ideas of physics along with some beautiful mathematical ideas.

The idea of TFT arose from both the study of two-dimensional conformal field theories

and from Witten’s work on the relation of Donaldson theory to N=2 supersymmetric field

theory and Witten’s work on the Jones polynomial and three-dimensional quantum field
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Figure 20: A spacetime Xd = Y × R. Y is (d − 1)-dimensional space, possibly with nontrivial

topology.

theories. In conformal field theory, Graeme Segal stated a number of axioms for the

definition of a CFT. These were adapted to define a notion of a TFT by Atiyah.

TFT might be viewed as a basic framework for physics. It assigns Hilbert spaces,

states, and transition amplitudes to topological spaces in a way that captures the most

primitive notions of locality. By stripping away the many complications of “real physics”

one is left with a very simple structure. Nevertheless, the resulting structure is elegant, it

is related to beautiful algebraic structures which, at least in two dimensions, which have

surprisingly useful consequences. This is one case where one can truly “solve the theory.”

Of course, we are interested in more complicated theories. But the basic framework

here can be adapted to any field theory. What changes is the geometric category under

consideration. Thus, it offers one approach to the general question of “What is a quantum

field theory?”

It is possible to speak of physics in 0-dimensional spacetime. From the functional

integral viewpoint this is quite natural: Path integrals become ordinary integrals. It is also

very fruitful to consider string theories whose target spaces are 0-dimensional spacetimes.

Nevertheless, in the vast majority of physical problems we work with systems in d spacetime

dimensions with d > 0. We will henceforth assume d > 0.

What are the most primitive things we want from a physical theory in d spacetime

dimensions? In a physical theory one often decomposes spacetime into space and time

as in (20). If space is a (d − 1)-dimensional manifold Y then, in quantum mechanics, we
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associate to it a vector space of states H(Yd−1).

Of course, in quantum mechanics H(Yd−1) usually has more structure - it is a Hilbert

space. But in the spirit of developing just the most primitive aspects we will not incorporate

that for the moment. (The notion of a unitary TFT captures the Hilbert space, as described

below.) Moreover, in a generic physical theory there are natural operators acting on this

Hilbert space such as the Hamiltonian. The spectrum of the Hamiltonian and other physical

observables depends on a great deal of data. Certainly they depend on the metric on

spacetime since a nonzero energy defines a length scale

L =
~c
E
.

In topological field theory one ignores most of this structure, and focuses on the depen-

dence of H(Y ) on the topology of Y . For simplicity, we will initially assume Y is compact

without boundary.

So: In topological field theory we want to have an association:

(d − 1)-manifolds Y to vector spaces: Y → H(Y ), such that “H(Y ) is the same for

homeomorphic vector spaces.” What this means is that if there is a homeomorphism

ϕ : Y → Y ′ (5.1)

then there is a corresponding isomorphism of vector spaces:

ϕ∗ : H(Y )→ H(Y ′) (5.2)

so that composition of homeomorphisms corresponds to composition of vector space iso-

morphisms. In particular, self-homeomorphisms of Y act as automorphisms of H(Y ): It

therefore provides a (possibly trivial) representation of the diffeomorphism group.

Now, we also want to incorporate some form of locality, at the most primitive level.

Thus, if we take disjoint unions

H(Y1 q Y2) = H(Y1)⊗H(Y2) (5.3)

Note that (5.3) implies that we should assign to H(∅) the field of definition of our vector

space. For simplicity we will take H(∅) = C, although one could use other ground fields.

Remark: In algebraic topology it is quite common to assign an abelian group or vector

space to a topological space. This is what the cohomology groups do, for example. But here

we see a big difference from the standard algebraic topology examples. In those examples

the spaces add under disjoint union. In quantum mechanics the spaces multiply. This is

the fundamental reason why many topologists refer to the topological invariants arising

from topological field theories as “quantum invariants.”

Finally, there is an obvious homeomorphism

Y q Y ′ ∼= Y ′ q Y (5.4)

and hence there must be an isomorphism

Ω : H(Y )⊗H(Y ′)→ H(Y ′)⊗H(Y ) (5.5)
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Figure 21: Generalizing the product structure, a d-dimensional bordism X can include topology

change between the initial (d− 1)-dimensional spatial slices Yin and the final spatial slice Yout. The

amplitude F (X) determined by a path integral on this bordism is a linear map H(Yin)→ H(Yout).

In addition, in physics we want to speak of transition amplitudes. If there is a spacetime

Xd interpolating between two time-slices, then mathematically, we say there is a bordism

between Y and Y ′. That is, a bordism from Y to Y ′ is a d-manifold with boundary and a

disjoint partition of its boundary into two sets the “in-boundary” and the “out-boundary”

∂Xd = (∂Xd)in ∪ (∂Xd)out

so that there is a homeomorphism (∂Xd)in
∼= Y and (∂Xd)out

∼= Y ′. We will say this a bit

more precisely, and discuss some variants, in Section **** below.

If Xd is a bordism from Y to Y ′ then the Feynman path integral assigns a linear

transformation

F (Xd) : H(Y )→ H(Y ′).

Again, in the general case, the amplitudes depend on much more than just the topology

of Xd, but in topological field theory they are supposed only to depend on the topology.
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More precisely, if Xd
∼= X ′d are homeomorphic by a homeomorphism = 1 on the boundary

of the bordism, then

F (Xd) = F (X ′d)

One key aspect of the path integral - in quantum mechanics, or functional integral -

in quantum field theory, we want to capture - again a consequence of locality - is the idea

of summing over a complete set of intermediate states. In the path integral formalism we

can formulate the sum over all paths of field configurations from t0 to t2 by composing the

amplitude for all paths from t0 to t1 and then from t1 to t2, where t0 < t1 < t2, and then

summing over all intermediate field configurations at t1. We refer to this property as the

“gluing property.” The gluing property is particularly obvious in the functional integral

formulation of field theories.

Figure 22: Gluing two bordisms to produce a third bordism.

In topological field theory this is formalized as:

If X is a bordism from Y to Y ′ with

(∂X)in = Y (∂X)out = Y ′

– 148 –



and X ′ is another oriented bordism from Y ′ to Y ′′

(∂X ′)in = Y ′ (∂X)out = Y ′′

then we can compose X ′ ◦X as in (??) to get a bordism from Y to Y ′′.

Naturally enough we want the associated linear maps to compose:

F (X ′ ◦X) = F (X ′) ◦ F (X) : H(Y )→ H(Y ′′)

What we are describing, in mathematical terms, is a functor between categories. See

appendix K for background material on categories. After describing a few variations on

the above theme, we will explain the categorical picture in some more detail.

5.1.1 More Structure

We can regard the above picture as a basic framework for building up more interesting

theories by enriching the topological and geometric data associated with the spaces X and

Y .

For example, we might be able to endow X and Y with

1. Orientations, spin, spin-c, pin structures, etc. (for certain X’s and Y ’s).

2. Complex structures, conformal structures, causal structures, Riemannian structures.

3. Other fields - Principal G-bundles with connection, sections of associated bundles

etc.

One of the motivating examples was two-dimensional conformal field theory. In this

case, Segal’s axioms were based on two-dimensional bordisms endowed with conformal

structure.

Two important complications that will arise when considering nontopological theories

are:

1. The notion of scale and renormalization becomes important.

2. The Hilbert space is actually not defined for a (d − 1)-dimensional manifold but

rather for a germ of d-manifolds around a (d − 1)-dimensional manifold, and then

the operator algebra can depend on extra structure, such as the second fundamental

form. [CITE SEGAL for example].

5.2 The Definition Of Topological Field Theory

See Appendix ?? for basic math backgound on bordism theory. This will be assumed

known in the following.

Let S be a structure on the tangent bundle and C any symmetric monoidal category.

Then

Definition A d-dimensional topological field theory of S-manifolds is a symmetric tensor

functor from the tensor category BordS〈d−1,d〉 to some symmetric tensor category C.
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The example we started out with is the case where S is empty and the target category

is VECTκ for some field κ, so a topological field theory is a tensor functor from Bord〈d−1,d〉
to VECTκ.

For examples of this more general notion:

1. Use the identity functor! This gives what Michael Freedman calls the “lazy TFT”

and it leads to a pairing of manifolds with very interesting positivity properties. See

[?].

2. We can generalize this as follows: Let K be a closed manifold of dimension k. Then

Cartesian product with K defines a symmetric tensor functor tK

tK : Bord〈d−1,d〉 → Bord〈d+k−1,d+k〉 (5.6)

where tK(Y ) = Y ×K, etc. If F is a (d+ k)-dimensional TFT then we can compose

F ◦ tK to obtain a d-dimensional TFT denoted FKK . This is the topological field

theory analog of “Kaluza-Klein compactification”. For example the state space on

(d− 1)-manifolds is

FKK(Y ) := F (Y ×K) (5.7)

3. If there are sufficiently natural constructions of quantum field theories depending on

some geometric category then one can define a TFT whose values are moduli spaces

of vacua of the quantum field theory. This is done for the case of a target category

of holomorphic symplectic varieties in [?].

5.2.1 Some General Properties

Let us deduce some simple general facts following from the above simple remarks.

For the moment take the target category to be SVECTκ, the category of super-vector

spaces over the field κ. (If one prefers, just ignore the signs and work with the category of

vector spaces.)

First note that ifX is closed then it can be regarded as a bordism from ∅ to ∅. Therefore

F (X) must be a linear map from κ to κ. But any linear map T ∈ Hom(κ, κ) must be of

the form

T (z) = tz (5.8)

for some scalar t ∈ κ. That is, any linear map κ→ κ is canonically associated to an element

of the ground field. For the case of F (X) : κ→ κ we call that number the partition function

of X, and denote it Z(X).

There is one bordism which is distinguished, namely [0, 1]× Y . This corresponds to a

linear map P : H(Y )→ H(Y ). In Euclidean field theory the amplitude one would associate

to a cylindrical spacetime [0, 1]× Y is just

exp[−TH]

where H is the Hamiltonian, and T is the Euclidean time interval. Notice that this requires

a metric. A change of the length of the cylinder leads to a change in T .
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Evidently, by the axioms of topological field theory, P 2 = P and therefore we can

decompose

H(Y ) = PH(Y )⊕ (1− P )H(Y ) (5.9)

All possible transitions are zero on the second summand since, topologically, we can always

insert such a cylinder. It follows that it is natural to assume that

F (Y × [0, 1]) = IdH(Y ) (5.10)

One can think of this as the statement that the Hamiltonian is zero. Note that this renders

the amplitude independent of the length of the cylinder.

Figure 23: Bending the cylinder to define ∆Y and QY .

Now, let us consider the oriented bordism category, so Y is oriented. Let Y ∨ denote

Y with the opposite orientation. The bordism (5.10) is closely related to the bordism

∅ → Y ∨ q Y thus defining a map

∆Y : κ→ H(Y ∨)⊗H(Y ) (5.11)

and also to a bordism Y q Y ∨ → ∅ thus defining a quadratic form:

QY : H(Y )⊗H(Y ∨)→ κ (5.12)

Let us now compose these bordisms we get the identity map as in 24. It then follows

from some linear algebra that Q is a nondegenerate pairing, so we have an isomorphism to

the linear dual space:

H(Y ∨) ∼= H(Y )∨,
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Figure 24: Composing ∆⊗ 1 and 1⊗Q in a way that gives P .

under which Q is just the dual pairing. (On the left Y ∨ is Y is the reversal of orientation,

and on the right H(Y )∨ is the linear dual space.)

To prove this choose a basis {φi} for H(Y ) and a basis {ψa} for H(Y ∨). Then we must

have

∆Y (1) =
∑
i,a

∆aiψa ⊗ φi (5.13)

The S-diagram shows that

φ→
∑
i,a

∆aiQ(φ, ψa)φi (5.14)

must be the identity map, so, choosing φ = φj and defining QY (φj , ψa) := Qja we must

have ∑
a

∆aiQja = δij (5.15)

In addition to this we can exchange the roles of Y and Y ∨. Including signs for the Z2-graded

case (with a homogeneous basis) we get∑
i

∆ai(−1)(|a|+|b|)|i|Qib = δab (5.16)

It follows that Q is invertible, hence the pairing is nondegenerate. This implies hence there

is an isomorphism H(Y ∨) ∼= H(Y )∨ as asserted above. Moreover, choosing an isomorphism
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so that Qi,a = δi,a, now labeling the dual basis by an index i and changing notation to

ψi → ψi in this basis we have simply

∆Y (1) =
∑
i

ψi ⊗ φi (5.17)

Now, the result (5.17) brings up an important point. It is not obvious that (5.17) will

converge if H(Y ) is infinite dimensional. In fact, even if H(Y ) is a normed vector space, or

a Hilbert space, so that convergence of infinite sums of vectors does make sense, since φi
and φi are dual bases the sum will not converge if H(Y ) is infinite dimensional. Therefore,

the space of states H(Y ) must be finite-dimensional!

There are many examples of interesting “topological field theories” where H(Y ) is

decidedly infinite-dimensional. We will comment on this below.

Figure 25: Composing QY ∨ with ∆Y gives the super dimension of H(Y ) in the Z2-graded case,

and dimH(Y ) = Z(Y × S1) in the ungraded case.

Now consider the diagram in 25. On the one hand this is just the partition function

Z(Y ×S1). On the other hand, the linear map κ→ κ must be the composition QY ∨∆Y , or,

equivalently, QY ◦Ω◦∆Y : κ→ κ. From our formula for ∆Y (1) above we see that the value

Z(Y × S1) is just the dimension dimH(Y ), or, in the Z2-graded case, the superdimension

sdimH(Y ) = dimH(Y )0 − dimH(Y )1 (5.18)

Remarks
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1. Note that if we change the category to the category of manifolds with Riemannian

structure and we take the product Riemannian structure on Y × S1 then

Z(Y × S1) = Tre−βH (5.19)

where β is the radius of the circle and H is the Hamiltonian.

2. There are important examples of “topological field theories” of interest in the physics

literature where this condition is violated. One example is Chern-Simons theory with

noncompact gauge group. Another example is two-dimensional Yang-Mills theory

with zero area element. These are “partially defined” topological field theories. They

are only defined on a subset of objects in the bordism category. ♣Say more. ♣

3. The S-diagram argument above points the way to a definition of a dual object in a

symmetric monoidal category. A dual object x ∈ Obj(C) is one such that there exists

an object x∨ ∈ Obj(C) and morphisms δx : 1C → x⊗ x∨ and qx : x∨ ⊗ x→ 1C such

that

x
ιL(x)−1

// 1C ⊗ x
δx⊗1x// x⊗ x∨ ⊗ x 1x⊗qx // x⊗ 1C

ιR(x) // x (5.20)

and (omitting the isomorphisms with multiplication by the tensor unit, for simplicity)

x∨
1x∨⊗δx// x∨ ⊗ x⊗ x∨

qx⊗1x∨ // x∨ (5.21)

are the identity morphisms.

Figure 26: A state created by a bordism of ∅ to Y .
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Figure 27: If a closed manifold X is cut along a codimension one submanifold Y that divides X

into two pieces X1 and X2 then there are two associated states ψX1
∈ H(Y ) and ψX2

∈ H(Y ∨),

and the value of the partition function Z(X) may be viewed as the natural contraction of these

states using the nondegenerate pairing QY .

Exercise Mapping cylinders and characters of the diffeomorphism group

Let f ∈ Diff(Y ) and consider the mapping cylinder Mf (Y ) = ([0, 1]×Y )/ ∼ where we

identify (0, y) with (1, f(y)). Recall that H(Y ) has a representation ρ(f) of the diffeomor-

phism group.

Show that

Z(Mf (Y )) = TrH(Y )ρ(f) (5.22)

is a character of the diffeomorphism group.

In fact, ρ(f) only depends on the image of f in the mapping class group ΓY : This is ♣Explain in detail

how the

independence of

ρ(f) under isotopy

of f follows from

the axioms. ♣

defined as follows: The diffeomorphisms isotopic to the identity form a normal subgroup

Diff0(Y ) of the full diffeomorphism group and ΓY := Diff(Y )/Diff0(Y ).

Exercise Hartle-Hawking sates and partition functions as inner products

a.) Show that any bordism of X : ∅ → Y defines a state in the space H(Y ). (See

Figure 26.) The functor of the topological field theory defines a map F (X) : κ → H(Y ),

and we can define,

ψX := F (X)(1) ∈ H(Y ) (5.23)
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This simple observation is very important in physics.

The state, of course, depends on the (topological) details of the bordism. For exam-

ple, any Riemann surface with a single hole defines a bordism of the circle to zero and

there are many such topologies. This is a primitive version of the notion of the “Hartle-

Hawking” state in quantum gravity. It is also related to the state/operator correspondence

in conformal field theory.

b.) Show that, in the oriented bordism category, by exchanging in and out boundaries

(but not the orientation of X) the same manifold defines a bordism X∨ : −Y → ∅, and

hence a linear functional on H(Y ∨).

c.) Show that applying this linear functional to ∆Y (1) gives back the original vector

in H(Y ) associated to X.

d.) Show that if a closed manifold X is cut along an oriented manifold Y to produce

X1 and X2 then Z(X) can be interpreted as a contraction of a state ψX1 ∈ H(Y ) and

ψ∨X2
∈ H(Y ∨):

Z(X) = 〈ψ∨X2
, ψX1〉 (5.24)

See Figure 27.

5.2.2 Unitarity

In unitary theories, and certainly in the axioms of quantum mechanics, one wants the

state space to be a complex Hilbert space, and F (X) for a bordism X should be a unitary

operator.

Now, in general, a sesquilinear form on a complex vector space V is a linear map

V → V̄ ∨. Therefore, in a unitary theory changing orientation of Y complex conjugates the

Hilbert space

H(Y ∨) ∼= H̄(Y ) (5.25)

Moreover, in physical unitary theories there is a positivity condition on QY . If X :

Y1 → Y2 is a bordism then, if we change the orientation of X and take the dual we get a

bordism

X̄∨ : Y2 → Y1 (5.26)

It is natural to add a condition that

F (X̄∨) = F (X)† (5.27)

In particular, changing orientation of the manifold invariant Z(X) for a closed manifold

complex conjugates the invariant.

5.3 One Dimensional Field Theories

Consider the oriented case. Then the objects in BordSO
〈0,1〉 are disjoint unions of points pt±

with + and − orientation.

The topological field theory with symmetric monoidal category C gives two objects

y± = F (pt±) with data δ and q as described above. The general object is a disjoint union
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of n± points of type pt±. The diffeomorphism group of this manifold is just Sn+ × Sn−
and it acts in a natural way on the “state space” y

⊗n+
+ ⊗ y⊗n−− .

Specializing to VECTκ, we get a pair of finite-dimensional vector spaces V± together

with the data mentioned above: A nondegenerate pairingQ : V+⊗V− → κ and the “inverse”

∆ : κ→ V+ ⊗ V−. As mentioned above, these constitute duality data for V− = V ∨+ .

A good example of a physical origin of such a topological field theory is to consider

quantization of a compact symplectic manifold (M,ω).

A useful concrete example to keep in mind is M = S2 with a symplectic form

ω =
1

2~
sin θdθdφ (5.28)

where here ~ is some dimensionless normalization of the form.

In the Hamiltonian formulation of the path integral we consider paths in phase space

M . We form a path integral of the form∫
P

[dγ] exp[iS] (5.29)

where P is a space of paths in M , [dγ] is an induced measure on the space of paths from

the symplectic form, and S is an action. There are many issues to settle in making sense

of this expressions. We will just touch on a few of them here.

If the symplectic form ω is globally exact then we can write ω = dλ where, in terms

of local Darboux coordinates

λ =
1

~
pdq (5.30)

A good example of this is the case M = T ∗X for some manifold X. Note that the

Hamiltonian associated with the action principle:

S[γ] =
1

~

∫
γ
pdq (5.31)

is zero.

But what if ω is not exact? (As in our above example with M = S2.) Let us suppose

first that M is simply connected. Then, if γ is a closed path we can attempt to define the

action by choosing a disk Σ ⊂M such that ∂Σ = γ and then take

SΣ[γ] :=

∫
Σ
ω (5.32)

If ω is exact this reduces to the previous definition.

Now there is a problem because there can be more than one disk bounding γ. If Σ1,Σ2

both bound γ then Σ12 := Σ1 ∪γ Σ∨2 is a closed 2-cycle and the ambiguity in the action is

SΣ1 [γ]− SΣ2 [γ] =

∫
Σ12

ω (5.33)

So the action is not well-defined. However, all we need for the quantum path integral is

that the weight

exp[iS] = exp[i

∫
Σ
ω] (5.34)
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should be well-defined. The ambiguity in the exponentiated action is:

exp[iS1]/ exp[iS2] = exp[i

∫
Σ12

ω] (5.35)

The LHS will be one - and there will be an unambiguous weight in the path integral - if

the periods of ω are integral multiples of 2π. Notice that this quantizes “1/~” to be an

integer.

Now, suppose that γ is not closed. Let us consider a path space

P = {γ : [0, 1]→M |γ(0) = x0 & γ(1) = x1} (5.36)

(We assume x0, x1 are in the same path-connected component of M .) Choose a basepoint

path γ0 in P. Then any other path homotopic to γ0 will be such that γ−1
0 ∗ γ bounds a

disk Σ. We then use this data to define an action as

Sγ0,Σ[γ] :=

∫
Σ
ω. (5.37)

For a fixed basepath the exponentiated action will be independent of the choice of Σ if the

periods of ω are in 2πZ. If we change the basepath γ0 to another one in the same homotopy

class then the action only shifts by a constant, and in fact with ω quantized as above, the

choice will again not matter in the exponentiated action.

If M is not simply connected further considerations are needed because there will

be paths in P not in the path-component of γ0 even when x0, x1 are in the same path

component of M . One way to deal with this is to work on the universal cover M̃ . It is best

to couple the theory to a flat connection on M to keep track of the fundamental group. ♣EXPLAIN

MORE! ♣
An important special case of the quantization above is the case of coadjoint orbits of a

compact simple Lie group defined by integral weights λ ∈ g∗. There is a natural integrally-

quantized symplectic form - the Kirillov-Kostant symplectic form, and quantization gives

a representation with dominant weight vector a suitable Weyl rotation of λ. Pursuing this

line of thought leads to a path integral interpretation of the Borel-Weil-Bott theorem. In ♣Do it later? ♣

the topological field theory the space V+ is the representation with dominant weight λ and

the space V− is the conjugate representation with anti-dominant weight −λ. The duality

data Q is the standard pairing of a representation and its conjugate to form the singlet

while ∆ is the embedding of the singlet into R⊗R∨.

*********************************************

SHOULD ADD MATERIAL ON STOLZ-TEICHNER VIEWPOINT HERE

*********************************************

5.4 Two-Dimensional Topological Field Theories

Explain:

1. Sewing theorem and commutative Frobenius

2. How to compute all amplitudes
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3. Semisimple case: Spacetime interpretation.

4. Open-closed theorem and boundary conditions as objects in a category.

5. Semi-simple: Spacetime interpretation.

6. Making the theory equivariant.

FOR ALL THE ABOVE: THOROUGH DISCUSSION IS IN GMP2015: [47]

5.5 Extended Topological Field Theories

*********************************

CAN ALREADY ILLUSTRATE THE IDEA WITH 2D THEORIES

Follow discussion in [47].

*********************************

5.6 Three-Dimensional Topological Field Theories

5. Tensor categories

6. Modular tensor categories. Theorem: MTC gives 3d unitary TFT.

This might go after we return to 3d nonabelian chern simons?

5.7 Some Source Material For Topological Field Theories

There is an enormous literature on topological field theory. One of the key early papers is

1. M.F. Atiyah, “Topological quantum field theories.” Inst. Hautes Etudes Sci. Publ.

Math. No. 68 (1988), 175–186 (1989).

This paper was inspired by Witten’s work together with Graeme Segal’s axiomatization

of conformal field theory, now available as:

2. G. Segal, “The Definition Of Conformal Field Theory,” in Topology, Geometry and

Quantum Field Theory: Proceedings of the 2002 Oxford Symposium in Honour of the 60th

Birthday of Graeme Segal

For an introduction written more from a physicist’s perspective see

D. Birmingham, M. Blau, M. Rakowski,m and G. Thompson, “Topological Field The-

ory,” Phys.Rept. 209 (1991) 129-340

We have also relied on lecture notes

3. Segal, Stanford notes, http://www.cgtp.duke.edu/ITP99/segal/

as well as the expository article:

4. G. Segal and G. Moore, “D-branes and K-theory in 2D topological field theory”

hep-th/0609042. See also chapter 2 in Mirror Symmetry II, Clay Mathematics Institute

Monograph, by P. Aspinwall et. al.

For a very meticulous can careful discussion of topological field theory in general see

5. V.G. Turaev, Quantum Invariants Of Knots And 3-Manifolds, De Gruyter, 2nd

edition 2010.

The special case of d=3 TQFT and modular tensor categories was first described in

detail in
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G. Moore and N. Seiberg, “Lectures on RCFT,” in Superstrings ’89, World Scientific,

pp. 1-129.

The subsequent book

Bakalov and Kirillov

gives a more careful treatment.

We have used some material from the very nice lecture notes of Dan Freed :

10. D. Freed, “Bordism Old And New,”

https://www.ma.utexas.edu/users/dafr/M392C-2012/index.html

For recent developments in higher category theory and locality see

11. A. Kapustin, “Topological Field Theory, Higher Categories, and Their Applica-

tions,” arXiv:1004.2307 [math.QA]

12. J. Lurie, “On the classification of topological field theories,” arXiv:0905.0465

[math.AT]

13. D. Freed, “The cobordism hypothesis” BAMS

14. D. Freed, “Remarks On Chern-Simons Theory,” Bull. AMS, 46 (2009), pp. 221-

254

6. Computing Nonabelian Chern-Simons Correlators Using RCFT

6.1 3D Interpretation Of Braiding And Fusing Matrices

6.2 Surgery Manipulations

3D Interpretation Of Modular S-Matrix

We observed, experimentally, in Figure 10 that the modular transformation S-matrix,

expressed in the canonical basis of corresponding to irreps of the chiral algebra is equal to

the value of the path integral for linked circles in S3 carrying line defects corresponding to

those representations. In fact, this relation is quite general, as we can now explain.

We need two key facts:

1. Take two copies of the handlebody D2×S1. The boundary is S1×S1, where the first

S1 factor is the boundary of D2. If we glue the two handlebodies together so that the

two copies of D2 are glued to form a sphere then the resulting closed 3-manifold is

S2×S1. On the other hand, if we glue the two T 2 factors using an S-transformation

that exchanges the two circles then the resulting 3-manifold is S3. One quite way

to see this is to observe that the resulting 3-manifold is simply connected, since the

a, b cycles in the torus can be continuously shrunk to a point in one or the other

handlebodies. One then invokes the Poincaé conjecture. A more low-level proof is....

♣GIVE A PROOF

THAT DOES NOT

RELY ON

POINCARE ♣2. Now consider the path integral with line defects inserted along the core of each of the

above two handlebodies, one for representation i and one for representation j. These

create corresponding states χi, χj in H(T 2). There is a bilinear form on this space in

which these states are orthonormal On the other hand, when we glue the boundaries ♣NEED TO

EXPLAIN!! ♣
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using the modular transformation we must apply S to one of the two states before

the gluing. The general result follows. ♣EXPLAIN THIS

BETTER. ♣

Olympic proof of the Verlinde formula: Follow Moore-Seiberg Lectures on RCFT ex-

ercise 7.13.

6.3 The Jones polynomial and WRT Invariants

1. Knot invariants and Reidemeister moves

2. Skein Relations

3. Jones polynomial

4. Generalizations: Colored Jones polynomial according to Witten.

5. The path integral: WRT invariant

6. Computation using data of braiding, fusing and S-matrices.

6.4 Beyond knot polynomials: The idea of categorification and Knot homology.

7. Finite Group Chern-Simons Theory

7.1 The General Compact Group G

Three-dimensional Chern-Simons theory can be defined for any compact Lie group. See

Appendix J.1 for some idea of what the general compact Lie group looks like.

7.1.1 Chern-Simons Theory When The Gauge Group Is A Finite Group

group cohomology.

group cohomology and BG.

general home for the level H4(BG;Z).

cite: Dijgraaf-Witten. Freed.

8. p-form Generalizations And Differential Cohomology

Review of differential cohomology: Follow chapter in FK lectures.

stress Abelian CS action is just a quadratic refinement of the Cheeger-Simons multiply-

and-integrate bilinear form.

9. More About Topological Field Theories

Invertible topological field theories and anomaly cancellation.

Invertible topological field theory, bordism theory, and SPT phases.
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10. Anyons, nonabelions, and quantum computation

10.1 Anyons in 2+1 dimensions

Let us now consider what happens when charged particles are constrained to live in two

spatial dimensions. See

1. http://en.wikipedia.org/wiki/2DEG

2. S. Girvin, “The Quantum Hall Effect: Novel Excitations and Broken Symmetries,”

arXiv:cond-mat/9907002

for a description of some experimental realizations approximating this idealized situa-

tion.

Now, it is interesting if our plane also has thin solenoids of flux Φ piercing it. We can

imagine a situation in which the flux cannot spread out, so they behave like particles in

2+1 dimensions as well. A good example of how this can happen is in a superconductor. A

nice way to understand superconductivity is that it is a theory of electromagnetism where

the U(1) gauge theory symmetry is spontaneously broken by the vacuum expectation value

of a charge two field representing the Cooper pairs. The flux tubes are regions of normal

phase, where the photon is massless. The superconductor is a region where the photon

gets a mass. The flux cannot spread out.

Now imagine that - for some unspecified reason - a particle of charge q binds to such

a solenoid-particle. We label the boundstate by (q,Φ). These 2 + 1 dimensional analogs of

dyons have some very curious properties.

Figure 28: A boundstate (q1,Φ1) moves very slowly counterclockwise around a boundstate (q2,Φ2).

Only the topology of the path matters in computing the change of phase of the wavefunction. Do

not confuse the vertical direction with the z-axis. The vertical direction now represents the time

direction.

Let us move a particle (q1,Φ1) very slowly around a particle (q2,Φ2) as in Figure 28

Applying the formula (??) the wavefunction picks up a phase exp[ i
~c(q2Φ1)]. Note that

this does not depend on the exact shape of the trajectories, only that one particle circles

around the other. At the same time, there is a phase change because particle (q2,Φ1) loops

around the flux Φ1. Indeed we could deform Figure 28 to Figure 29. Altogether then, the
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Figure 29: A topologically equivalent formulation of the path in Figure 7. This makes it clear

that the boundstate (q2,Φ2) also moves counterclockwise around (q1,Φ1).

wavefunction of the pair of particles changes by

exp[
i

~
(q2Φ1 + q2Φ2)] (10.1)

Figure 30: A pair of identical particles (q,Φ) are exchanged.

Now let us consider a pair of identical particles which are exchanged as in Figure 30.

The net phase change is just exp[i qΦ~ ]. But since we have exchanged identical particles we

can interpret this as a statistics phase. Unlike the case of particles in 3 + 1 dimensions, in

the present case the statistics phase can be any phase. Such particles are called anyons.
42

It is interesting to check the relation between spin and statistics.

We now apply the general formula (??) to the angular momentum in d = 2 + 1

dimensions. Here there is just the one generator J = J12.

42The possible existence of anyons was pointed out by Leinaas and Myrheim in 1977. The term “anyon”

was invented in F. Wilczek, ”Quantum Mechanics of Fractional-Spin Particles”. Physical Review Letters

49 (14): 957959.
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In 2+1 dimensions the solenoid contributes Fij = εijΦδ
2(x), (here i, j run from 1 to 2

and ε12 = +1). From (??) the electric particle at ~R contributes an electric field

~E = 2q
~x− ~R

|~x− ~R|2
(10.2)

so F0j = −2q(x−R)j/|~x− ~R|2. Therefore the momentum density is

T0i = F0kFik =
qΦ

2π
εij
Rj
R2

δ(2)(~x) (10.3)

Thanks to the δ-function in the integral is easily done and we find

J12 =
qΦ

2π

~a · ~R
~R · ~R

(10.4)

It is now amusing to check the relation of spin and statistics:

Figure 31: In (a) the charge q is slowly moved around the fluxon Φ and the wavefunction acquires

an Aharonov-Bohm phase. In (b) we perform a rotation by 2π centered on q and the wavefunction

of the electromagnetic field acquires a phase. These two phases are the same.

1. If we slowly rotate the particle around the flux in a counterclockwise fashion then

the wavefunction picks up a phase exp[iqΦ/~].

2. On the other hand, if we rotate the flux around the particle then the wavefunction

should change by exp[2πiJ/~]. Taking ~a = ~R in (10.4) we get the same phase:

exp[2πiJ/~] = exp[iqΦ/~] (10.5)

Remark Spin-statistics theorem: The important property used in proving the spin-statistics

theorem is the existence of an analytic continuation to Euclidean space. ♣Need to elaborate

much more on that.

♣Here are some sources for more material about anyons:

1. There are some nice lecture notes by John Preskill, which discuss the potential rela-

tion to quantum computation and quantum information theory: http://www.theory.caltech.edu/˜preskill/ph219/topological.pdf
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2. For a reasonably up-to-date review see A. Stern, ”Anyons and the quantum Hall

effectA pedagogical review”. Annals of Physics 323: 204; arXiv:0711.4697v1.

3. A. Lerda, Anyons: Quantum mechanics of particles with fractional statistics Lect.Notes

Phys. M14 (1992) 1-138

4. Other refs include: A. Khare, Fractional Statistics and Quantum Theory, and G.

Dunne, Self-Dual Chern-Simons Theories.

OTHER REFS:

S. Buron, “A Short Guide to Anyons and Modular Functors,”

From categories to anyons: a travelogue

Preskill

Rowell and Wang: [52] BAMS

11. A Survey Of Further Generalizations And Applications

11.1 Applications To Supergravity

1. RR fields and self-duality

2. Anomaly cancellation.

3. M-theory Chern-Simons term.

4. Anomaly cancellation for M-theory on a manifold with boundary and E8 gauge

theory.

11.2 Noncompact Groups

3d quantum gravity:

Brown-Henneaux

Witten’s approaches to 3d quantum gravity.

Analytic continuation in k: Complex groups.

11.3 Applications to Holography

SL(2,R)

Singletons

11.4 Many Other Applications And Extensions

1. Lattice Fermions (David Kaplan)

2. Arithmetic Chern-Simons (Minhyong Kim)

3. Chern-Simons for supergroups

4. Chern-Simons and topological strings. See review by Marino [39].

5. Holomorphic Chern-Simons on CY 3-folds: The B-model open topological string

6. String Field Theory
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A. Symplectic Geometry

Recall that a phase space is a symplectic manifold: A manifold with a nondegenerate

two-form

ω =
1

2
ωµνdx

µ ∧ dxν (A.1)

from which we can define Poisson brackets of two functions on phase space:

{f1, f2} = ωµν
∂f1

∂xµ
∂f2

∂xν
(A.2)

The first main theorem of symplectic geometry is that there are no nontrivial local invari-

ants of a symplectic form. This is the Darboux theorem: It says that there are always ♣Not hard to prove.

Give it? ♣
local coordinates (pi, q

i) on P so that

ω =
∑
i

dpi ∧ dqi (A.3)

Phase space is the proper arena in which to discuss classical mechanics, and is also a good

starting point for quantization.

A.1 Kahler quotients: A lightning review

A.1.1 The moment map

Let (M,ω) be a phase space, that is, a symplectic manifold.

Recall that given a function h on M one can produce a corresponding Hamiltonian

vector field by ι(V )ω = dh, or, in local coordinates

V i = ωij∂jh. (A.4)

The vector field V generates a group of diffeomorphisms which preserve the symplectic

form.

Conversely, suppose that (M,ω) is a symplectic manifold and a Lie group G acts

symplectically:

g∗(ω) = ω ∀g ∈ G (A.5)

Applying this to a one-parameter subgroups generated by T ∈ g we get vector fields

ξ = ξ(T ) such that

0 = Lξω
= (dι(ξ) + ι(ξ)d)ω

= d
(
ι(ξ)ω

) (A.6)

Therefore, if H1
DR(M) = 0, then we can conclude

ι(ξ)ω = dµ (A.7)

for some globally well-defined function µ : M → R. Note that µ is only defined up to a

constant. It depends on T so we denote its value at a point by µ(p;T ), p ∈M,T ∈ g.
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In Hamiltonian dynamics, µ is the charge associated to the symmetry generated by

the vector field ξ. It generates the transformations associated with the symmetry:

{µ, f} = ωij∂iµ∂jf

= ξi∂if

= Lξ(f)

(A.8)

where in the last line we are using the Lie derivative wrt ξ.

We have a conserved charge µ(·;T ) for each element T ∈ g. Since T → ξ(T ) is linear

in T so is T → µ(·;T ). To give a function M → R for each T ∈ g in a way that depends

linearly on T is equivalent to giving a single function

µ : M → g∗ (A.9)

This function is known as the moment map. It satisfies:

〈T, µ(p)〉 := µ(p;T ) (A.10)

all T ∈ g, by definition, and also

µ(g · p) = Ad∗(g)(µ(p)) (A.11)

where on the right hand side we have the coadjoint action.

Choosing a basis TA for g we may write:

µ =
∑
A

µAT ∗A (A.12)

where µA = µ(TA) is an ordinary function on M .

The word “moment” is short for “momentum.” It could be linear or angular momentum

as the following examples show:

Example 1: Let M = T ∗Rn with Darboux coordinates (~q, ~p) = (~qi, ~pi) so that

ω =
∑
i

dpi ∧ dqi (A.13)

Let G = Rn acting by translation:

~a · (~q, ~p) = (~q + ~a, ~p) (A.14)

We also have g ∼= Rn as a vector space, with Lie bracket given by 0 and infinitesimal action

by g(t) = et~v:

g(t) : (~q, ~p)→ (~q + t~v, ~p) (A.15)

Then

ξ(~v) = vi
∂

∂qi
(A.16)
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and

ι(ξ(~v))ω = −vidpi = dµ(~v) (A.17)

with

µ(qi, pi;~v) = −vipi (A.18)

Example 2 Let us turn to our main example: Suppose G acts linearly on a vector space

V = {(x1, . . . , xN )} with symplectic form ωijdx
idxj where ωij is a constant antisymmetric

matrix. Let ρ(TA)ij be the N ×N matrices representing the Lie algebra. Then

ξA := ξ(TA) = xjρ(TA)ij
∂

∂xi
(A.19)

Then the moment map is:

µA(x) =
1

2
xjρ(TA)ijωikx

k (A.20)

(The group acts symplectically iff the matrix ρ(TA)ijωik is symmetric in jk.)

Specializing to the case M = T ∗Rn with standard Darboux coordinates we can consider

the embedding GL(n,R) ↪→ Sp(2n,R) with(
A

Atr,−1

)
(A.21)

For the group elements g(t) = 1 + teij ∈ GL(n,R) we have

g(t) : (~q, ~p)→ (~q + tqj~ei, ~p− tpi~ej) (A.22)

so

ξ(eij) = qj
∂

∂qi
− pi

∂

∂pj
(A.23)

and

µ(qi, pi; eij) = −qipj (A.24)

If we further specialize to SO(n) ⊂ GL(n,R) with basis Tij = eij − eji we get µ(Tij) =

qjpi − qipj and finally, specializing to T ∗R3 with Ti = 1
2εijkTjk we find that µ(Ti) = Li is

the standard formula for angular momentum:

µ(qi, pi;Ti) = εijkq
jpk (A.25)

A.1.2 Symplectic Quotient

If H1
DR(M) = 0 one can show that

{µA, µB} = fABC µC + cAB (A.26)

for some constants cAB. The Jacobi relation on Poisson brackets shows that the cAB

in fact define a Lie algebra 2-cocycle. Shifting µA by constants redefines the cocycle by a
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coboundary. If the 2-cocycle vanishes then by we can simultaneously impose the constraints

µA = 0, as in constrained Hamiltonian dynamics. If the 2-cocycle defines a nontrivial

cohomology class then there is an anomaly attempting to impose these constraints.

Let us assume that we can put to zero any cocycles cAB via a shift with a coboundary.

If ζ ∈ Z(g)∗ is in the (dual of ) the center then the constraints φ = µ − ζ are first class

constraints. That is, the set of constraints

φA = µ(TA)− 〈TA, ζ〉 = 0 (A.27)

form a set of first class constraints.

Now equation (A.26) with cAB = 0 implies

LV A(µB) = fABC µC (A.28)

and hence, if G is connected we can conclude that the constrained space

S := {p|φA(p) = 0} ⊂M (A.29)

in phase space defined by (A.27) is G-invariant. We can therefore take the quotient by the

G-action.

Definition The symplectic quotient – or Hamiltonian reduction – of M by G is the

manifold:

M//ζG = µ−1(ζ)/G (A.30)

A.1.3 Kähler quotient

Recall that a Kähler manifold is a Riemannian manifold with a compatible complex struc-

ture I, i.e. g(IX, IY ) = g(X,Y ), X,Y ∈ TM which is parallel ∇I = 0 wrt the Levi-Civita

connection. Equivalently, the two-form defined by ω(X,Y ) = g(X, IY ) is a closed 2-form.

In coordinate terms: There exist local complex coordinates zi so that ds2 = gij̄dz
i ⊗

dz̄j + cc and then

ω =
i

2
gij̄dz

i ∧ dz̄j̄ (A.31)

is a closed 2-form.

Of course, a Kahler manifold is a symplectic manifold with symplectic form ω.

Theorem: Suppose M is Kähler and G acts symplecticaly without fixed points. Then

the symplectic quotient is a smooth Kahler manifold with Kahler structure inherited from

M .

For a proof see the references.

An important special case of this is the following. Take V = CN to be a complex

vector space with symplectic form

ω =
i

2

N∑
a=1

dza ∧ dz̄a =
∑
a

dxa ∧ dya (A.32)
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where za = xa +
√
−1ya. Clearly this is preserved by the unitary group U(N) acting

on za. An element of the Lie algebra is an antihermitian matrix

(T ab)
∗ = −T ba (A.33)

the corresponding vector field is

ξ(T ) = zbT ab
∂

∂za
− z̄b(T )ba

∂

∂z̄a
(A.34)

and the corresponding momentum is

µ(T ) = izbT abz̄a (A.35)

up to a constant.

Example 1 V = CN , with symplectic form (A.32) with G = U(1) acting by

eiθ : za → eiQ
aθza, a = 1, . . . , N (A.36)

The moment map is

µ =
∑

Qa|za|2 (A.37)

The nature of the symplectic quotient depends very strongly on the Qa and the level ζ of

the moment map:

a.) Unless the Qa are commensurate the U(1) action is ergodic. Let us suppose

the Qa are commensurate. Then we can write Qa = pa/L where L is some integer and

g.c.d(p1, . . . , pN ) = 1. The nature of the quotient depends on the integers pi. If they are

pairwise mutually prime, then the quotient space is smooth. However, suppose that there

is a subset S ⊂ {1, . . . , N} on which we have pa = rqa for some common factor r. If zb = 0

for b /∈ S and we take θ = 2π/r then the group has a fixed point. Thus, we have a Zr
orbifold singularity.

b.) If all the Qa are positive and rational and ζ > 0 then the constrained space µ = ζ

is compact and nonempty. It is a deformed sphere.

c.) If the Qa have different signs then the constrained space is noncompact, and very

different phenomena can happen.

This example also illustrates how topology of Kähler quotients can change as we change

the level ζ. Suppose there are n+ values Qa = +1 and n− values with Qa = −1. Then for

ζ > 0 the symplectic quotient is the total space of the bundle O(1)⊕n− → CPn+−1 and for

ζ < 0 it is O(1)⊕n+ → CPn−−1.

Example 2 D-terms in supersymmetric field theories. Suppose we have a supersymmetric

field theory in four dimensions with four supersymmetries with a set of chiral superfields Φa

transforming in some unitary representation of a gauge group with generators TA. Suppose

the chiral superfields take values in a linear space and have the standard Kahler potential∑
|Φa|2. Then the D-terms in the potential energy DA are precisely the moment maps for

the G-action on the target space. The levels ζA of the moment maps are associated with

U(1) factors in G and are called Fayet-Iliopoulos terms.

**************************
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B. Lightning Review Of Kähler Quantization

B.1 The Bargmann Representation

The Bargmann representation is an alternative way of quantizing the standard phase space

P = R2 with coordinates (q, p) and symplectic form

ω =
dp ∧ dq

2π~
(B.1)

leading to the standard [p̂, q̂] = −i~. ♣SIGN??? ♣

In the usual quantization we regard P = T ∗R with coordinate q on the real line so

H = L2(R), wavefunctions are normalizable functions ψ(q) and p̂ = − i
~
d
dq , etc. One must

choose an operator ordering prescription to define Q(k)(f) for general functions f(p, q) and

this can be done in several ways to satisfy the above criteria (2.75)- (2.78).

In the Bargmann representation instead the Hilbert space H = Hol(C) is the space of

entire functions on the complex plane that are normalizable in the inner product defined

by:

〈ψ1, ψ2〉 =

∫
C
e−κ|z|

2
ψ1(z)∗ψ2(z)ω (B.2)

Here κ > 0 will play the role of 1/~ and

ω =
idz ∧ dz̄

2π
=
dxdy

π
=
dφ

2π
d(r2) (B.3)

The quantization Q(k)(f) of an integrable function f(z, z̄) (not necessarily holomorphic

or anti-holomorphic) is defined by

〈ψj1 |Q(κ)(f)|ψj2〉 =

∫
C
e−κ|z|

2
ψ∗j1(z̄)f(z, z̄)ψj2(z)

dxdy

π
(B.4)

In particular if we define

a =
√
κQ(κ)(z̄) a† =

√
κQ(κ)(z) (B.5)

then we can verify the usual relations

[a, a†] = 1 (B.6)

*******************************************

SOME REMARKS ABOUT COHERENT STATES. WHY THEY ARE USEFUL

FOR SEMICLASSICAL COMPUTATION.

BEREZIN TRANSFORM.

*******************************************
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B.2 Generalization: Berezin-Toeplitz Quantization

There is a very nice quantization procedure, which is extremely useful in Chern-Simons

theory, that is available when the phase space carries the extra structure of a Kähler

manifold. See, for example, [53] and references therein for a description of Berezin-Toeplitz

quantization.

Recall that symplectic manifold is Kähler if it has a Riemannian metric

ds2 = gµνdu
µduν µ, ν = 1, . . . , 2n. (B.7)

with a metric-compatible complex structure such that the symplectic form is a positive

(1, 1) form so that

ω(v1, Jv2) = g(v1, v2) (B.8)

Written out in local coordinates, this means the symplectic form in general in local

coordinates has the form

ω =
1

2
ωµνdx

µ ∧ dxν (B.9)

Poisson brackets:

{f1, f2} = ωµν
∂f1

∂xµ
∂f2

∂xν
(B.10)

and

ωµλJ
λ
ν = gµν (B.11)

where the complex structure is

J(
∂

∂uµ
) = J ν

µ

∂

∂uν
(B.12)

There are local complex coordinates zi so that we can write

ds2 =
1

2
gij̄dz

i ⊗ dz̄j̄ + cplx.conj. i, j = 1, . . . , n. (B.13)

where gij̄ is an Hermitian metric

(gij̄)
∗ = gjī (B.14)

and in these coordinates the symplectic form is

ω =
i

2
gij̄dz

idz̄j̄ (B.15)

One can check that it is a real form. A (choice of) Kähler potential is a locally-defined

function so that

ω = i∂∂̄K (B.16)

♣MISSING NOR-

MALIZAATION

FACTOR HERE!!!!

♣
We now assume that there is a holomorphic line bundle L → P with an Hermitian

metric h and a metric-compatible connection ∇ so that the curvature F (∇) = ω. Then we

can define

Hκ := ker[∂̄ : Ω0,0(L⊗κ)→ Ω0,1(L⊗κ)] (B.17)
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Here Ωp,q(L⊗κ) is the inner-product space of globally defined C∞ sections of L⊗κ with

values in (p, q)-forms on P. We regard Hκ as a subspace of a the Hilbert space completion

of Ω0,0(L⊗κ). The Berezin-Toeplitz quantization of the algebra C(X) is f 7→ Q(κ)(f) where

Q(κ)(f) := Π ◦Mf ◦ ι (B.18)

Here ι : Hκ ↪→ Ω0,0(L⊗κ) is inclusion, Mf is the multiplication operator on the Hilbert

space Ω0,0(L⊗κ) and Π is the orthogonal projection onto the closed subspace Hκ. The

inner product on two holomorphic sections is

〈s1, s2〉 =

∫
X
hκ(s1, s2)

ωn

n!
=

∫
X
e−κKs1(x)∗s2(x)

∏
i

dz̄idzi
2πi

(B.19)

In terms of this inner product we can define the quantization (B.18) of a function is the ♣NORMALIZATION

FACTORS:

FACTORS OF π ♣operator with matrix elements:

〈s1, Q
(κ)(f)s2〉 =

∫
X
e−κKs1(x)∗f(x)s2(x)

∏
i

dz̄idzi
2πi

(B.20)

GENERAL COHERENT STATES

Remarks:

1. We can think of a section s of L⊗κ as a collection of complex-valued functions sα(x)

defined on patches Uα providing an atlas for X such that

sα(x) = (gαβ(z))κsβ(x) (B.21)

when x ∈ Uα ∩ Uβ and gαβ(z) are holomorphic transition functions. Then e−κK |s|2

is a well-defined function on X so that, on patch overlaps

e−κK
(α) |sα(x)|2 = e−κK

(β) |sβ(x)|2 (B.22)

because, in the trivialization we have used, K changes by Kähler transformation:

K(α) = K(β) + log gαβ(z) + log gαβ(z) (B.23)

2. At large k there is one state per 2π~ unit of volume. This is just the Bohr-Sommerfeld

semiclassical quantization rule. In particular, if the phase space has finite symplectic

volume there will be a finite-dimensional Hilbert space of states.

3. In good cases, when L is sufficiently positive H i(P,L⊗k) will vanish for i > 0 and then

we can compute the exact dimension of the Hilbert space using the index formula:

dimCH
0(P;L⊗k) =

∫
P
ekc1(L)Td(T 1,0P) (B.24)

Since c1(L) is represented by ω
2π this can be writte, for k →∞ as

dimCH
0(P;L⊗k) = knvol (P)

(
1 +

nπ

k

∫
P ω

n−1c1(T 1,0P)∫
P ω

n
+O(k−2)

)
(B.25)

where vol (P) :=
∫
P

1
n!

(
ω
2π

)n
and dimR P = 2n.

Recalling that ~ = 1/k so we see:
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4. There is a finite series of ~ = 1/k corrections to the semiclassical result. The sign

depends on the sign of c1(T 1,0P). In general, curvature alters the semiclassical ex-

pectation. At large k, positive curvature creates room for more quantum states and

negative curvature eliminates quantum states.

B.2.1 Example: Quantization Of The Sphere And Representations Of SU(2)

The quotient SU(2)/U(1) is an example of a coadjoint orbit whose quantization is required

when quantizing Chern-Simons on surfaces with punctures. In general G/T can be given

the structure of a Kähler manifold and Kähler quantization is well-suited to the problem.

The Hopf fibration π : SU(2)→ S2 shows that S2 ∼= SU(2)/U(1). We can also give S2

a natural complex structure by the identification with CP1. It is useful to describe things

explicitly using stereographic projection to the complex plane. Here are the basic formulae:

z =
x1 + ix2

1 + x3
= eiφ tan(

θ

2
)

z

1 + |z|2
=

1

2
(x1 + ix2) = eiφ sin θ

1

1 + |z|2
= cos2(θ/2) =

1 + cos θ

2

−idz ∧ dz̄
(1 + |z|2)2

=
1

2
sin θdφ ∧ dθ

(B.26)

with the Bott projector:

1

2
(1 + x̂ · ~σ) =

1

1 + |z|2

(
|z|2 z̄
z 1

)
(B.27)

The symplectic form after stereographic projection is

ω

2π
=

i

2π

dz ∧ dz̄
(1 + |z|2)2

=
1

2πi
∂∂̄ log(1 + |z|2) (B.28)

Note the symplectic volume is ∫
CP1

ω

2π
= +1 (B.29)

We can take Kähler potential K = log(1 + |z|2). Note that it is not single-valued on

CP1: If we choose the opposite stereographic projection with coordinate w = 1/z then we

would have used K = log(1 + |w|2) = log(1 + |z|2)− log z − log z̄.

The Hopf line bundle has Hermitian metric so that if we view sections of L as functions

on C then they are simply complex-valued functions on C with restricted growth at infinity.

The Hermitian inner product on the fibers L⊗κx are give by:

h(ψ1(x), ψ2(x)) := (1 + |z|2)−κψ∗1(x)ψ2(x) = e−κKψ∗1(x)ψ2(x) (B.30)

so that the inner product on Γ(L⊗κ) is given by

〈ψ1, ψ2〉 =

∫
C
h(ψ1(x), ψ2(x))

ω

2π
=

i

2π

∫
C

1

(1 + |z|2)κ+2
ψ∗1(x)ψ2(x)dz ∧ dz̄ (B.31)

– 174 –



Normalizable functions must have ψ(z, z̄) ∼ r` with ` < 1
2(κ+ 1).

In geometric quantization the Hilbert space Hκ = Hol(L⊗κ) is κ+1 dimensional. Note

that it is finite-dimensional because the symplectic space has finite volume. Indeed, if one

defines operators:

J i := (j + 1)Q(κ)(xi) (B.32)

where j := κ/2 and xi are the functions on S2 given by restricting the standard coordinate

functions on R3, viewing S2 as the unit sphere in R3 then one finds that J i satisfy the

standard commutation relations for su(2):

[J i, J j ] = iεijkJk (B.33)

In fact, Hκ is the irreducible representation of su(2) of spin j = κ/2. Note that the ♣SIGN IN THIS

COMMUTATOR ?

♣symplectic volume ∫
CP1

ω(κ)

2π
= κ = 2j (B.34)

is not the exact dimension of the Hilbert space, which is κ + 1 = 2j + 1. The two only

agree in the semiclassical κ→∞ limit.

B.3 The Borel-Weil-Bott Theorem

The previous example is a very special case of a more general and very beautiful theorem

known as the Borel-Weil-Bott theorem.

G/T = Gc/P both compact and Kähler. Need to discuss complex structures and

Kähler form.

Good reference on geometry of flag manifolds: Alekseevsky.

O(λ) ⊂ g∗ (B.35)

**************

Simply using bilinear form to identity g ∼= g∗ as vector spaces

**************

Family of symplectic structures: If λ ∈ g∗ then

ωλ(X,Y ) =
1

2
〈λ, [X,Y ]〉 (B.36)

Descends from 2-form on g to a 2-form on TλO(λ) where it becomes nondegenerate. Using

a nondegenerate bilinear form tr on g we can identify with adjoint orbits, so if t0 ∈ t ⊂ g

we can instead write:

ωt0(X,Y ) =
1

2
tr (t0[X,Y ]) (B.37)

This is the form that is more useful in discussions of Chern-Simons theory.

Mathematical version: Sections of holomorphic line bundles. Induced representations.

etc.

************************************

Physics version: Phase space integral. There is also a SQM interpretation.
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1. Alekseev, Faddeev, Shatashvili [1]

2. Alvarez, Singer, Windey [2][3]

3. Stone....

4. Szabo [57]

Figure 32: The keyhole region, a standard choice of fundamental domain for the action of

PSL(2,Z) on the complex upper half-plane. Figure from Wikipedia article on ”Modular Group”.

C. A Few Details About SL(2,Z)

C.1 Generators And A Fundamental Domain For PSL(2,Z)

The modular group is PSL(2,Z) := SL(2,Z)/{±1}, where SL(2,Z) is the subgroup of

SL(2,R) of matrices all of whose matrix elements are integers. Recall that this group acts

effectively on the complex upper half-plane H via(
a b

c d

)
· τ :=

aτ + b

cτ + d
(C.1)

We will find a fundamental domain for this group action, and in the process prove that

SL(2,Z) is generated by the group elements S and T defined by: ♣Need to check we

have used a

consistent sign for S

throughout the

notes. ♣
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S =

(
0 −1

1 0

)
(C.2)

T =

(
1 1

0 1

)
(C.3)

These matrices satisfy relations:

S2 = −1

(ST )3 = (TS)3 = −1
(C.4)

Note that if we change the sign of S the (ST )3 = (TS)3 = +1, so we should take some

care with the definition of the sign of S.

Denote the images of S, T in PSL(2,Z) by S̄, T̄ . Note that S̄ does not depend on the

sign of S. 43

Let:

F̃ := {τ ∈ H||τ | ≥ 1 & |Re(τ)| ≤ 1

2
} (C.5)

This is almost, but not quite the canonical fundamental domain for the modular group. It

is the famous keyhole region shown in Figure 32. Let Ḡ be the subgroup generated by S̄

and T̄ . We claim that ∪g∈Ḡg · F̃ is the entire half-plane. To prove this recall that, for any

g ∈ SL(2,Z),

Im(g · τ) =
Imτ

|cτ + d|2
(C.6)

Now, for any fixed τ ∈ H the function |cτ + d| is bounded below on SL(2,Z), and hence

on G. Indeed, decomposing τ = x+ iy into its real and imaginary parts

|cτ + d|2 = (cx+ d)2 + c2y2 ≥

{
y2 c 6= 0

d2 ≥ 1 c = 0
(C.7)

Therefore, for any fixed τ there will exist a group element g ∈ Ḡ such that Im(g · τ) takes

a maximal value as a function of g. Note that multiplying g on the left by a power of T̄ or

T̄−1 does not change this property, so there is not a unique g which maximizes Im(g · τ).

We can fix the ambiguity by requiring |Re(g · τ)| ≤ 1
2 . Choose such a group element g. We

claim that for this transformation, τ ′ = g · τ ∈ F̃ . We need only check that |τ ′| ≥ 1. If not,

then |τ ′| < 1 but then Im(S̄ · τ ′) = Im(τ ′)/|τ ′|2 > Im(τ ′), contradicting the definition of

g. In conclusion, every element of the upper half-plane can be brought to F̃ by a suitable

element of Ḡ.

Now we need two Lemmas:

Lemma 1: If g ∈ SL(2,Z) and τ have the property that both τ ∈ F̃ and g · τ ∈ F̃ then

1. |Re(τ)| = 1
2 and g · τ = τ ± 1, or

43We are here following a very nice argument by J.-P. Serre, A Course in Arithmetic, Springer GTM 7,

pp. 78-79.
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2. |τ | = 1

To prove this note that, WLOG, we may assume that Im(g · τ) ≥ Imτ . (If not replace

g → g−1 and τ → g−1τ .) But this equation implies 1 ≥ |cτ + d| which in turn implies:

1 ≥ |cτ + d|2

= (cx+ d)2 + c2y2

= c2|τ |2 + 2cdx+ d2

≥ c2|τ |2 − |cd|+ d2

= c2(|τ |2 − 1

4
) + (|d| − 1

2
|c|)2

≥ 3

4
c2 + (|d| − 1

2
|c|)2

(C.8)

From (C.8) we conclude:

1. (c = 0, d = ±1) or (c = ±1, d = 0,±1).

2. The inequalities are saturated iff 2cdx = −|cd| and |τ | = 1.

If c = 0 and d = ±1 then g · τ = τ ± 1. In this case it is clear that |Re(τ)| = 1
2 . If

c = ±1, and d = 0,±1 then the inequality is saturated, and hence |τ | = 1.

Lemma 2: If τ ∈ F̃ and ḡ · τ = τ with ḡ ∈ PSL(2,Z) and ḡ 6= 1 then either

1. τ = i and the stabilizer group is {1, S̄}

2. τ = ω = e2πi/3 = −1
2 +

√
3

2 i and the stabilizer group is

{1, S̄T̄ , (S̄T̄ )2} (C.9)

3. τ = −ω2 = eπi/3 = 1
2 +

√
3

2 i and the stabilizer group is

{1, T̄ S̄, (T̄ S̄)2} (C.10)

In particular, for all other points τ ∈ F̃ , the stabilizer group is the trivial group.

Lemma 2 follows quickly from Lemma 1: If gτ = τ then we must be in the case c = ±1.

If d = 0 then a − 1/τ = τ for some integer a. But we must also have |τ | = 1 and hence

a = τ+ τ̄ . Since a is an integer we quickly find that a = 0 with τ = i, or a = ±1 with τ = ω

or −ω2. If d = ±1 then from the saturation condition 2cdx = −|cd| we get x = −1
2d/|d|

and hence τ = ω or = −ω2.

Now we can finally prove:

Theorem: SL(2,Z) is generated by S and T .

Proof : Let τ0 be in the interior of F̃ . Then choose any element g ∈ SL(2,Z) with ḡ 6= 1.

Then there is an element g′ ∈ Ḡ so that g′g · τ0 ∈ F̃ . Moreover, this element must be in the
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interior of F̃ by Lemma 1 and and hence, by Lemma 2, g′g = 1 in PSL(2,Z). Therefore

ḡ ∈ Ḡ, which means Ḡ = PSL(2,Z). Moreover, S2 = −1, and hence S and T generate

SL(2,Z). ♠

1. The exact fundamental domain F must be chosen so that no two distinct points

on the boundary are G-related. So, for example, we could choose the part of the

boundary with Re(τ) ≥ 0.

2. By studying the possible fixed points, as above it follows that the only relations on

S and T are:

S2 = −1 (ST )3 = −1 (C.11)

(and all those that follow from these).

3. Given g ∈ SL(2,Z) it is possible to write the word in S, T giving g by applying the

Euclidean algorithm to (a, c) and interpreting the standard equations there in terms

of matrices. See Chapter 1, Section 8.

4. Although the keyhole region is the standard fundamental domain there is no unique

choice of fundamental domain. For example, one could equally well use any of the

images shown in Figure 32 (and of course there are infinitely many such regions).

Moreover, we could displace F → F + ε and still produce a fundamental domain.

5. The action of PSL(2,Z) is properly discontinuous on H, but not quite free. If we

consider finite-index subgroups that do not contain the stabilizer groups mentioned

above then the action will be free and the quotient space will be a nice Riemann

surface.

C.2 Expressing Elements Of SL(2,Z) As Words In S And T

The group SL(2,Z) is generated by

S :=

(
0 −1

1 0

)
& T :=

(
1 1

0 1

)
(C.12)

Here is an algorithm for decomposing an arbitrary element

h =

(
A B

C D

)
∈ SL(2,Z) (C.13)

as a word in S and T .

First, note the following simple

Lemma Suppose h ∈ SL(2,Z) as in (C.13). Suppose moreover that g ∈ SL(2,Z) satisfies:

g ·

(
A

C

)
=

(
1

0

)
(C.14)
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Then

gh = Tn (C.15)

for some integer n ∈ Z.

The proof is almost immediate by combining the criterion that gh ∈ SL(2,Z) has

determinant one and yet must have the first column (1, 0).

Now, suppose h is such that A > C > 0. Then (A,C) = 1 and hence we have the

Euclidean algorithm to define integers q`, ` = 1, . . . N + 1, where N ≥ 1, such that

A = q1C + r1 0 < r1 < C

C = q2r1 + r2 0 < r2 < r1

r1 = q3r2 + r3 0 < r3 < r2

...
...

rN−2 = qNrN−1 + rN 0 < rN < rN−1

rN−1 = qN+1rN

(C.16)

with rN = (A,C) = 1. (Note you can interpret r0 = C, as is necessary if N = 1.) Now, ♣N = 0 here? ♣

write the first line in the Euclidean algorithm in matrix form as:(
1 −q1

0 1

)(
A

C

)
=

(
r1

C

)
(C.17)

We would like to have the equation in a form that we can iterate the algorithm, so we need

the larger integer on top. Therefore, rewrite the identity as:

σ1

(
1 −q1

0 1

)(
A

C

)
=

(
C

r1

)
(C.18)

We can now iterate the procedure. So the Euclidean algorithm implies the matrix identity:

g̃

(
A

C

)
=

(
1

0

)
(C.19)

g̃ = (σ1T−qN+1) · · · (σ1T−q1) (C.20)

Now, to apply the Lemma we need g to be in SL(2,Z), but

det g̃ = (−1)N+1 (C.21)

We can easily modify the equation to obtained a desired element g. We divide the argument

into two cases:

1. Suppose first that N + 1 = 2s is even. Then we group the factors of g̃ in pairs and

write

(σ1T−q2`)(σ1T−q2`−1) = (σ1σ3)(σ3T−q2`σ3)(σ3σ1)T−q2`−1

= −ST q2`ST−q2`−1
(C.22)
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where we used that σ1σ3 = −iσ2 = S. Therefore, we can write

g̃ = g = (−1)s
s∏
`=1

(ST q2`ST−q2`−1) (C.23)

2. Now suppose that N + 1 = 2s+ 1 is odd. Then we rewrite the identity (C.19) as:

σ1g̃

(
A

C

)
=

(
1

0

)
(C.24)

so now we simply take

g = σ1g̃ = (−1)s+1(ST−q2s+1)
s∏
`=1

(ST q2`ST−q2`−1) (C.25)

Thus we can summarize both cases by saying that

g = (−1)b
N+1

2
c
N+1∏
`=1

(ST (−1)`q`) (C.26)

Then we can finally write

h =

(
A B

C D

)
= g−1Tn (C.27)

as a word in S and T for a suitable integer n. (Note that S2 = −1.) ♣It would be good

to give an algorithm

for determining n.

♣
Now we need to show how to bring the general element h ∈ SL(2,Z) to the form with

A > C > 0 so we can apply the above formula. Note that(
1 0

m 1

)(
A B

C D

)
=

(
A B

C +mA D +mB

)
(C.28)

while (
1 0

−m 1

)
= STmS−1 (C.29)

Thus, if A > 0 we can use this operation to shift C so that 0 ≤ C < A. In case A < 0 we

can multiply by S2 = −1 to reduce to the case A > 0. Finally, if A = 0 then

h =

(
0 ±1

∓1 n

)
(C.30)

and we write

STn =

(
0 −1

1 n

)
(C.31)

♣Need to

summarize the

result in a useful

way ♣
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D. Level k Theta Functions

D.1 Definition

Let us collect a few facts about theta functions: Recall that

Θµ,κ(z, τ) :=
∑

`=µmod2κ

q`
2/(4κ)y`

=
∑
n∈Z

qκ(n+µ/(2κ))2
y(µ+2κn)

=
∑
n∈Z

eiπτ(2κ)(n+µ/(2κ))2+2πi(2κ)z(n+µ/(2κ))

(D.1)

with q = e2πiτ and y = e2πiz. Here µ is an integer and κ is a positive half-integer (i.e. in
1
2Z+). Note that if we shift µ→ µ+ 2κs, where s is any integer, then Θµ,κ is unchanged.

Often people take µ to be in the fundamental domain −κ < µ ≤ κ, but one should

generally regard µ as an element of Z/2κZ. As functions of z these functions are doubly-

quasiperiodic:

Θµ,κ(z + ν, τ) = Θµ,κ(z, τ)

Θµ,κ(z + ντ, τ) = e−2πiκν2τ−4πiκνzΘµ,κ(z, τ)
(D.2)

Here ν is any integer. Note that the theta functions transform the same way for all

µ ∈ Z/2κZ. We will explain more about the geometrical meaning of these theta functions

in section **** below.

D.2 Modular Transformation Laws For Level k Theta Functions
♣Need to change

conventions k → κ

here ♣We will actually find it more convenient to work with

fµ,k(z, τ) :=
Θµ,k(z, τ)

η(τ)
(D.3)

Call the span of these functions Vk. It will be a representation of SL(2,Z) (and not

of PSL(2,Z)) and we aim to determine this representation. The involution z → −z
corresponding to the action of −1 ∈ SL(2,Z) can be diagonalized to decompose Vk into a

direct sum of even and odd subspaces

Vk ∼= V +
k ⊕ V

−
k (D.4)

So dimV +
k = k + 1 and dimV −k = k − 1. The transformation rule for the general level

k theta function in the odd space V −k was derived in an impressive computation by Lisa

Jeffrey [31]. Using the ideas from her paper it is possible to generalize the result to the

transformation laws for all the theta functions in Vk. The computation is slightly nontrivial

so we give the result here (as it does not seem to be available anywhere else).

We have a left action of SL(2,Z) on (z, τ): If

A =

(
a b

c d

)
(D.5)
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then

A · (z, τ) :=

(
z

cτ + d
,
aτ + b

cτ + d

)
(D.6)

Define

φk(A; (z, τ)) = exp 2πik
cz2

cτ + d
(D.7)

Then

φk(A1;A2 · (z, τ))φk(A2; (z, τ)) = φk(A1A2; (z, τ)) (D.8)

Now define a LEFT action of SL(2,Z) on Vk:

(ρ(A) · f)(z, τ) := (φk(A
−1; (z, τ)))−1f(A−1 · (z, τ)) (D.9)

Now, with respect to the basis fµ,k we have

ρ(A) · fµ,m :=
∑
ν

ρ(A)νµfν (D.10)

where again µ, ν are to be regarded as integers modulo 2k.

If a = 0 then A = S or S−1 where we define

S :=

(
0 −1

1 0

)
(D.11)

If c = 0 and a = 1 then A = Tm where it suffices to compute the matrix for

T :=

(
1 1

0 1

)
(D.12)

If c = 0 and a = −1 it suffices to compute the action of A = −1.

Straightforward computation gives:

ρ(−1)µν = δµ+ν,0 (D.13)

This is the charge conjugation matrix.

ρ(S)µν =
1√
2k

exp
(

2πi
µν

2k

)
(D.14)

ρ(T )µν = δµ,ν exp

(
2πi

[
µ2

4k
− 1

24

])
(D.15)

If ac 6= 0 then

ρ(A)µν =
1√
2k|c|

e
iπ
2k

b
a
ν2
e−

2πi
24

Φ(A)
∑

γmod(2kc),γ=µmod2k

exp

[
iπ

a

2kc

(
γ + (−1)t+1 ν

a

)2
]

(D.16)

Here Φ(A) is the Rademacher function, and t is the number of terms in any continued

fraction expansion of A. While A can admit many continued fraction expansions, we claim

that the number of terms modulo 2 is well defined, so (−1)t is a well-defined function of A.
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(See section ??.) It is this sign which constitutes the most important difference compared

to the expressions found by Lisa Jeffrey for the odd theta functions.

Note that

ρ(A)µ,ν = ρ(A)−µ,−ν (D.17)

for all A ∈ SL(2,Z). This must be since the charge conjugation representing −1 must

commute with all matrices. For the case (D.16) this can also be checked by changing

variables in the sum γ → −γ.

It remains to define t and the Rademacher function.

The Rademacher function is defined exactly as in [31]. The function Φ : SL(2,Z)→ Z
is defined by

Φ(A) :=

{
a+d
c − 12sign(c)s(d, |c|) c 6= 0
b
d c = 0

(D.18)

where s(d, c) is the Dedekind sum, defined for c > 0 by:

s(d, c) =
1

4c

c−1∑
k=1

cot
πk

c
cot

πdk

c
(D.19)

when d 6= 0 and s(0, 1) = 0. It is far from obvious that Φ is integer-valued, but this follows

from the remarkable formula

Φ(A12) = Φ(A1) + Φ(A2)− 3sign(c1c2c12) (D.20)

where A12 = A1A2.

Using the theory of continued fractions it is possible to show that any A ∈ SL(2,Z) is

of the form

A = TmtSTmt−1S · · ·Tm1S (D.21)

where - importantly - all the mi 6= 0. Because of relations in the group the integer t is only

well defined modulo 2.

E. Theta Functions And Holomorphic Line Bundles On Tori

When working with the Abelian Chern-Simons theory it is useful to have a general per-

spective on theta functions and their relation to sections of line bundles over tori. We

summarize the theory here.

For some mathematical treatments see

1. D. Mumford, Tata Lectures on Theta, vol. I, p.202. There is a nice description of the

transformations of theta functions here.

2. D. Mumford, M. Nori, and P. Norman, Tata Lectures on Theta, vol. III. They

interpret θ as a distinguished vector in a Fock space representation, and also interpret

θ as a distinguished matrix element in a Heisenberg representation.
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3. Another nice description within the framework of algebraic geometry can be found

in Griffiths and Harris, p.300 et. seq.

4. An excellent book devoted to the subject is Birkenhake and Lange,

5. The subject is treated from various viewpoints in hundreds of physics papers. We

are using [9] pp. 68 -69 and section 6 of [20].

E.1 Heisenberg Groups As Principal U(1) Bundles

Suppose that Λ is a lattice of rank 2n with an integer-valued symplectic form on it:

Ω : Λ× Λ→ Z (E.1)

This induces a symplectic form on the real 2n-dimensional vector space V = Λ⊗ R.

Using Ω we define a central extension

0→ U(1)→ Ṽ → V → 0. (E.2)

We can view Ṽ as the set of pairs (v, z) ∈ V × U(1) with the product given by a cocycle ♣Would be better

to change

convention and put

the central part as

the first factor, so

write elements as

(z, v) rather than

(v, z). That needs

to be changed

throughout the

following. ♣

(v, z)(v′, z′) = (v + v′, zz′c(v, v′)) (E.3)

such that
c(v, v′)

c(v′, v)
= e2πiΩ(v,v′). (E.4)

It is natural to take c(v, v′) = eiπΩ(v,v′), corresponding to a distinguished trivialization of

the principal U(1) bundle Ṽ → V .

Now we can construct a principal U(1) bundle over the torus V/Λ. To do this we split

the sequence (E.2) over Λ. That is, we choose a function ε : Λ→ U(1) with ♣Explain why such

a splitting exists. ♣

εvεv′ = e−iπΩ(v,v′)εv+v′ ∀v, v′ ∈ Λ (E.5)

Now (E.5) is precisely the condition we need so that v → (v, εv) defines a homomor-

phism Λ→ Ṽ embedding Λ in the group Ṽ .

Let us call Λε the image of this homomorphism. It now makes sense to take the

quotient Ṽ /Λε. This space is a principal U(1) bundle over V/Λ.

As a space our U(1) bundle can be written as (V × U(1))/Λ where the equivalence

relation is

(v, z) ∼ (v, z) · (λ, ελ) = (v + λ, ελe
iπΩ(v,λ) · z) (E.6)

Remarks:
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1. In the above extension z ∈ U(1) and so we constructed principal U(1) bundles. The

associated bundles are easily obtained in this description. Below it will be important

to describe holomorphic bundles over the torus. We can define associated C∗ or C
bundles simply by letting z be valued in C∗ or C in the above formulae! The extension

by C∗ contracts onto the extension by U(1). ♣This first remark

is out of place or

just not necessary.

♣2. Since Ω is integral on Λ×Λ the bilinear form eiπΩ(v,v′) is in fact a symmetric bilinear

form. In general, given a symmetric form

b : A×A→ R/Z (E.7)

on an abelian group A, a quadratic refinement of b is a function q : A → R/Z such

that

q(x+ y)− q(x)− q(y) + q(0) = b(x, y) (E.8)

Note that we may regard ε as a quadratic refinement of the symmetric

3. This gives a nice example of a compact phase space. T (V/Λ) is a symplectic manifold.

The quantization of such a phase space should produce a finite dimensional Hilbert

space, which, in the WKB approximation should be of dimension

dimH =

∫
T

Ωn

n!
(E.9)

Now any integral-valued antisymmetric form on Λ can be thought of as a matrix and

under change of basis of the lattice Ω→ AtrΩA, where A ∈ GL(2n,Z) we can put Ω

in the form: ♣Indicate the proof

♣
Ω = −ie1σ

2 ⊕−ie2σ
2 ⊕ · · · (E.10)

where eI , I = 1, . . . , n are integers. We can fix them uniquely by demanding that

e1|e2| · · · |en. This defines what is known as a symplectic basis. More on that below.

In this case dimH = e1 · · · en. In geometric quantization the associated line bundle

to our U(1) bundle is the pre-quantum line bundle.

Exercise

Show that another representation of the principal U(1) bundle can be given as follows.

Construct the Heisenberg representation

0→ R→ Heis(R× R)→ R× R→ 0 (E.11)

from the cocycle c((x, y), (x′, y′)) = xy′. This has a nice 3× 3 matrix representation1 x z

0 1 y

0 0 1

 (E.12)
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Topologically this is just R3, but with a noncommutative group law. Note that

0→ Z→ Heis(Z× Z)→ Z× Z→ 0 (E.13)

forms a discrete subgroup, just by taking x, y, z to be integers. Then R3/Z3 realized as

Heis(R× R)/Heis(Z× Z) is a U(1) bundle over a torus.

In this literature on string compactification this is referred to as the “twisted torus.”

E.2 A Natural Connection

The principal U(1) bundle (E.2) has a natural connection that is described as follows.

Given a path

pw0,v = {w0 + tv|0 ≤ t ≤ 1} (E.14)

in V from w0 to v and an initial lift of w0 ∈ V , say, (w0, z0) ∈ Ṽ we define the parallel

transported point in Ṽ to be

U(pw0,v) : (w0, z0)→ (w0 + v, c(v, w0)z0) (E.15)

By computing the parallel transport around a closed path where we translate w0 first by ♣CHECK THE

SIGN! DO WE

WANT c(w0, v)? ♣v1, then by v2, then by −v1, then by −v2 one checks that the curvature is in fact Ω.

Now, this connection descends to a connection the principal U(1) bundle Ṽ /Λε over

the torus V/Λ. The curvature is again given by Ω, now thought of as a 2-form on the ♣DEMONSTRATE

EXPLICITLY

THAT IT DOES

DESCEND ♣
torus. From this we can compute the first Chern class: (e1, . . . , en) ∈ H2(V/Λ;Z).

Moreover, if λ ∈ Λ then [pw0,λ] is a closed path in the torus and the holonomy around

the path is

e2πiΩ(λ,w0)ε−1
λ (E.16)

After a suitable change of cocycle (considered valued in C∗) by a coboundary this

connection will be the Chern connection on a Hermitian holomorphic line bundle below. ♣Explain this more

fully below. ♣

♣Comment on the

slight, but

important difference

when we have an

affine torus. ♣

E.3 Putting A Complex Structure On The Symplectic Tori

We would now like to construct holomorphic C∗-bundles and their associated holomorphic

complex line bundles over the torus. Therefore, we need to introduce a complex structure

on the torus. To do this we need to introduce a complex structure J on V :

J : V → V J2 = −1 (E.17)

which is compatible with Ω:

Ω(Jv, Jw) = Ω(v, w) (E.18)

Note that this means that

g(v, w) := Ω(Jv,w) = Ω(Jw, v) (E.19)

is symmetric.

We will further assume that g is positive definite.

Now, since V has a complex structure V ⊗R C ∼= V + ⊕ V − splits into +i and −i

subspaces of J . We work on the + subspace and define v+ = 1
2(1− J ⊗ i)v for v ∈ V . ♣Which one we call

(1, 0) and which

(0, 1) is a

convention that

matters below. ♣
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E.4 Lagrangian Decompositions

An isotropic subspace W of V is a linear subspace such that Ω vanishes when restricted

to it, that is, ∀w,w′ ∈W , Ω(w,w′) = 0.

A Lagrangian decomposition of (V,Ω) is an internal direct sum

V = W1 ⊕W2 (E.20)

where the Wi are maximal isotropic subspaces. Because Ω is nondegenerate, a Lagrangian

decomposition defines a nondegenerate pairing of W1 and W2, thus defining an isomorphism

W2
∼= W∨1 .

Above we introduced a symplectic basis in equation (E.10). Such a basis gives a

Lagrangian decomposition. It is convenient to introduce a notation for such a basis by

writing αI , I = 1, . . . , n for W1 and βJ , J = 1, . . . , n for W2 such that

Ω(αI , αJ) = 0

Ω(βI , βJ) = 0

Ω(αI , β
J) = eIδ

J
I

(E.21)

♣Need integral

structure of lattice

otherwise you could

just set eI = 1. ♣
If we expand v = qIαI + pIβ

I then

Ω =
∑
I

eIdpI ∧ dqI (E.22)

♣SIGN? ♣

E.5 The Space Of Complex Structures On The Torus: The Siegel Upper Half-

Plane

We now assume the invariants eI = 1.

Now we choose a basis of vectors ζI of type (1, 0). We extend J C-linearly to VC so ♣ (1, 0) vs. (0, 1) is

all mixed up in this

section. ♣that, by definition

J · ζI = iζI (E.23)

♣SIGN? Opposite

from convention in

PiTP 2008 ♣We can express the complex structure J in terms of the components of the period

matrix. The latter is defined by choosing a basis ζI of vectors of type (1, 0) of the form:

ζI := αI + τIJβ
J (E.24)

This gives an explicit isomorphism of V ∼= V + as complex vector spaces.

Now let us note some properties of the quadratic form τIJ . Note that

g(ζI , ζJ) = Ω(JζI , ζJ) = iΩ(ζI , ζJ) (E.25)

is both symmetric and antisymmetric in IJ and therefore must vanish. Therefore we learn

that τIJ is symmetric, and moreover g is of type (1, 1). Note that

g(ζI , ζ̄J) = 2ImτIJ (E.26)
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It is often useful to work with positive definite metrics. In this case ImτIJ is a positive

definite real quadratic form.

Definition: The space of complex N × N symmetric matrices with positive definite

imaginary part is the Siegel upper half plane HN .

Exercise

A choice of complex structure on a real symplectic vector space with g(v, v) > 0 is

equivalent to a choice of τ ∈ HN .

a.) Show how to express the complex structure in terms of the period matrix as follows:

The complex structure acts as:

J · αI = AI
′
IαI′ + CI′Iβ

I′

J · βI = BI′IαI′ +D I
I′ β

I′
(E.27)

We define components of vectors by

v = v1
IαI + vI2β

I =
(
v1
I v

I
2

)(αI
βI

)
(E.28)

so that J acts on the components as the matrix

J =

(
A B

C D

)
(E.29)

Compatibility of the complex structure implies that this defines a symplectic matrix.

Equating real and imaginary parts of (E.23), using the definition (E.27) we find the

matrix expression of J in the basis αI , β
I :

J =

(
−Y −1X Y −1

−Y −XY −1X XY −1

)
(E.30)

where τ = X+ iY are the real and imaginary parts of τ . One can check both J2 = −1

and J trΩJ = Ω.

b.) Show that the metric g in the α, β basis is:

g(v, w) =
(
v1
I v

J
2

)(XY −1X + Y −XY −1

−Y −1X Y −1

)(
w1
I

wJ2

)
(E.31)

Exercise

Show that HN = Sp(2N,R)/U(N).
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Exercise

It is useful to have formulae for the transformation from the integral symplectic basis

to the complex basis. (
ζI
āζI

)
=

(
1 τ

1 āτ

)(
α

¯

)
(E.32)

has inverse: (
α

¯

)
=
i

2

(
āτ −τ
−1 1

)
Y −1
IJ

(
ζJ
āζJ

)
(E.33)

Thus the complex projections of (E.28) are:

v(1,0) = − i
2

(vJ2 − v1
I āτgIJ)Y −1,JKζK

v(0,1) =
i

2
(vJ2 − v1

I τIJ)Y −1,JK āζK

(E.34)

Note that

v = v(1,0) + v(0,1) (E.35)

Now, the symplectic group Sp(2N,R) acts on the space of complex structures: J →
hJh−1. The corresponding action on the period matrix can be given as follows.

If we work with components of vectors, then the antiholomorphic coordinates are

vI2 − τ IJv1
J . But if the components transform by a symplectic matrix(

ṽ1

ṽ2

)
=

(
A B

C D

)(
v1

v2

)
(E.36)

then in the new complex structure (Cv1+Dv2)−τ(Av1+Bv2) are the new antiholomorphic

coordinate. But then we can write these as

(C − τA)v1 + (D − τB)v2 (E.37)

and so

τ̃ = −(D − τB)−1(C − τA) (E.38)

Exercise Automorphisms of Sp(2N,R)

There are many forms of the transformation law because we can use passive vs. active

transformations and because we can compose with automorphisms.
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The symplectic group is gtrJ g = J and hence ♣CHECK!! ♣(
A B

C D

)
→

(
D −C
−B A

)
(E.39)

is an automorphism, so composing we get

τ̃ = (A+ τC)−1(B + τD) (E.40)

Show by further automorphisms that we can write

τ̃ = (Aτ +B)(Cτ +D)−1 (E.41)

Prove that τ̃ is symmetric.

Now, if we are interested in the complex structures on a torus compatible with a

symplectic structure then we want our symplectic transformation to preserve the lattice.

The space of complex structures on the covering space is given by HN ∼= Sp(2N,R)/U(N).

However, we should identify complex structures which are simply related by change of basis

for the lattice:

Theorem The space of complex structures on R2N/Z2N is

Sp(2N,Z)\HN ∼= Sp(2N,Z)\Sp(2N,R)/U(N) (E.42)

Remark: Compare with the space of complex structures on R2N compatible with a

Euclidean structure. This space is O(2N)/U(N).

Finally, if we make integral symplectic transformations we just change the choice of

Lagrangian decomposition. But the line bundle and its space of sections is intrinsic to the

torus. This implies remarkable transformation properties on theta functions.

The (integer) symplectic group is generated by 3 kinds of transformations:(
A 0

0 Atr,−1

)
(E.43)

Rearranges p’s and q’s separately. (
1 B

0 1

)
(E.44)

adds some p’s to q’s. (
0 −1N

1N 0

)
(E.45)

Exchanges p’s and q’s.

For a proof that these generate the integral symplectic group see D. Mumford, Tata

Lectures on Theta, vol. I, p.202.
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E.6 Lagrangian Decomposition: Group-Theoretic Interpretation

Returning to the Heisenberg group Ṽ , one way to think about Ṽ is that it is the group of

operators of the form U(v) := exp[i(qI α̂I + pI β̂
I)] where

[α̂)I, β̂J ] = −2πiδ J
I (E.46)

*********************************

NEED TO ADD SOMETHING ABOUT THE RELATION TO SvN REPRESENTA-

TIONS OF THE HEISENBERG GROUP

*********************************

E.7 Hermitian Holomorphic Line Bundles

We would like to define a complex analytic group isomorphic to the Heisenberg group above

(where we centrally extend by C∗). To that end we introduce:

H(v+, w+) := Ω(Jv,w) + iΩ(v, w) = g(v, w) + iΩ(v, w) (E.47)

Note that H(iv+, w+) = iH(v+, w+) and H(v+, iw+) = −iH(v+, w+) so H is an

Hermitian form. Since H is a holomorphic function of v+, w+ we can define the holomorphic

extension by C∗:

(v+, z)(w+, z′) = (v+ + w+, zz′eπH(v+,w+)) (E.48)

defining a group Ṽ +. Note that the cocycles eiπΩ(v,w) and eπH(v+,w+) differ by a

coboundary since

eπg(v,w) = eπΩ(Jv,w) =
e
π
2

Ω(J(v+w),v+w)

e
π
2

Ω(Jv,v)e
π
2

Ω(Jw,w)
=

e
π
2
g(v+w,v+w)

e
π
2
g(v,v)e

π
2
g(w,w)

(E.49)

Thus (E.48) is isomorphic as a group to the C∗ extension we defined earlier.

Now, to define a holomorphic C∗ bundle over V/Λ = V +/Λ+, as before we must choose

a splitting, now defined by λ→ ε̃λ satisfying

ε̃λε̃µ = ε̃λ+µe
−πH(λ+,µ+) (E.50)

Then the C∗ bundle can be described as the group quotient Ṽ +/Λε̃

(v+, z) ∼ (v+, z)(λ+, ε̃λ) = (v+ + λ+, ε̃λe
πH(v+,λ+) · z) (E.51)

If z ∈ C∗ we have a holomorphic principal C∗ bundle over the complex torus, and if z ∈ C
we have the associated holomorphic principal line bundle.

In terms of our earlier discussion the multiplier system is defined by

eλ(v+) = ε̃λe
πH(v+,λ+) (E.52)

Sections can be lifted to entire functions on V + satisfying
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ϑ(v+ + λ+) = eλ(v+)ϑ(v+) (E.53)

******************************

INVARIANT NORM HERE: GET HERMITIAN METRIC ON THE HOLOMOR-

PHIC LINE BUNDLE

******************************

If d1 = d2 = · · · = dn = 1 there should be a unique such function up to a constant. In

the next section we will construct it.

Exercise

a.) Show explicitly that eλ(v+) satsify the cocycle constraints.

b.) Show that given ελ we can construct ε̃λ as

ε̃λ = ελe
π
2

Ω(Jλ,λ) = ελe
π
2
H(λ+,λ+) = ελe

π
2
g(λ,λ) (E.54)

Exercise

Show how by introducing a simple prefactor we can solve the equation (E.53) in terms

of classical theta functions.

First of all, using the Lagrangian splitting we see that we can write ελ in the form:

ελ = eiπλ2λ1+2πi(θ·λ2−φ·λ1) (E.55)

for some θ, φ.

Now define

B(v, w) = vtrY −1w (E.56)

on V + and compute

(H −B)(v, w) = −2ivw1 (E.57)

that is,

H(v, w) = vtrY −1w̄ (E.58)

Then

ε̃λe
πH(v+,λ+) e

π
2
B(v+,v+)

e
π
2
B(v++λ+,v++λ+)

(E.59)

is given by

e−iπλ
1τλ1−2πivλ1+2πi(θλ2−φλ1) (E.60)

Show that this is precisely the factor of automorphy of the classical theta function.

Thus, the theta functions of eq.(E.53) are related to the classical theta function by

exp[π2B(v+, v+)].
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E.7.1 Computing The First Chern Class

When L is a holomorphic there is yet another viewpoint: If s is a globally defined holomor-

phic section of L it will vanish on a holomorphic hypersurface D. Then the Poincaré dual

of D will represent c1(L). To get an explicit differential form one can choose an Hermitian

metric h on L: Thus, ‖ s ‖2= h(z, z̄)|s(z)|2 is globally well-defined as a C∞ function on

M . Then
1

2πi
∂∂̄ log ‖ s ‖2 (E.61)

is a closed (1, 1) form which represents c1(L).

To see this, near a point on D we can choose holomorphic coordinates (z1, . . . , zn) so

that D is defined by the simple equation z1 = 0.

Now recall that in one complex dimension:

∇2 log |z|2 = 4πδ2(z) (E.62)

Or, put differently, if ∂z = 1
2(∂x − i∂y) then

∂z∂z̄ log |z|2 = πδ2(z) (E.63)

and therefore, in these local coordinates

1

2πi
∂∂̄ log ‖ s ‖2= δ2(z)

dz1 ∧ dz̄1

2i
(E.64)

Note, however, that the LHS is globally well-defined. We have taken h(z, z̄) = 1 locally in

the coordinates. If it were different we would just change the representative of c1(L) by an

exact form.

E.7.2 A Basis Of Holomorphic Sections: Level κ Theta Functions

We define our level κ theta functions to be ♣Don’t use τIJ !!

That looks like the

inverse of τ . Need

to convert these

equations back to

τIJ . ♣
Θβ,κ(ξ, τ) =

∑
sI∈Z

e2πiκ(sI+ 1
2κ
βI)τIJ (sI+ 1

2κ
βI)e2πiξI(2κsI+βI) (E.65)

(these are simply related to the Riemann theta functions discussed earlier.)

I = 1, . . . , g.

Θβ,κ only depends on the projection of β to Zg/(2κZ)g. There are (2κ)g linearly

independent functions of ξ.

T = VR/VZ is a principally polarized variety (that is, the invariants di = 1 for the

symplectic form). Moreover, as we have seen, Θβ,κ(ξ, τ) is a section of a line bundle

L = L⊗2κ → T . If µ is a vector of integers:

Θβ,κ(ξ + µ, τ) = Θβ,κ(ξ, τ)

Θβ,κ(ξ + τµ, τ) = e−2πiκµIτ
IJµJ−4πiκξIµIΘβ,κ(ξ, τ)

(E.66)

Therefore,
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‖ Θβ,κ(ξ, τ) ‖2:= e−4πκ(ImξI)Y −1
IJ (ImξJ )Θβ,κ(ξ, τ)Θβ′,κ(ξ, τ) (E.67)

is invariant - it is a smoothly defined function on the torus. Now we compute the

representative of c1(L):

ω =
1

2πi
∂∂̄ log ‖ s ‖2= 2κdxIdyI (E.68)

where ξI = xI + τ IJyJ , with xI , yI real.

For κ = 1
2 we get the basic symplectic form on the torus with volume 1.

*************************************************

*************************************************

E.8 Modular Transformation Laws

E.9 The Heat Equation

HEAT EQUATION

MORE MATERIAL IN:

Freed-Moore-Segal, 2006, [20], section 6.

F. Hodge Theory And Analytic Torsion

Analytic torsion, also known as Ray-Singer torsion is a topological invariant of a closed

manifold M of dimension n. But it is expressed in terms of the determinants of Laplacians

on differential forms.

F.1 Some Hodge Theory

On any manifold we have the DeRham complex: d : Ω∗(M) → Ω∗(M). We refer to

the degree k of the differential forms as the “fermion number” because of the relation to

supersymmetric quantum mechanics of a particle moving on M . So the fermion number

operator F is F = k acting on Ωk(M).

If we give M a Riemannian metric we can speak of L2-forms. These form the Hilbert

space of the susy quantum mechanics.

If, in addition, M has a Riemannian metric we can define the Hodge star operator:

∗ : Ωk(M)→ Ωn−k(M) (F.1)

Acting on Ωk(M) the Hodge dual satisfies

α ∧ ∗β =
1

k!
gµ1ν1 · · · gµkνkαµ1···µkβν1···νkvol (g) (F.2)

and this equation suffices to define it.

It is useful to bear in mind that if ω1 ∈ Ωk(Mn1) and ω2 ∈ Ωj(Mn2) and g = g1 ⊕ g2

and the give the product manifold M1 ×M2 orientation vol (g1) ∧ vol (g2) then

∗(ω1 ∧ ω2) = (−1)j(n1−k)(∗1ω1) ∧ (∗2ω2) (F.3)
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Also note that

∗2 = sign(det g)(−1)k(n−k) (F.4)

on k-forms. Here we will focus on Riemannian metrics, which are positive definite. There-

fore

∗2 = (−1)k(n−k) = (−1)F (−1)nF = (−1)(n+1)F =

{
(−1)F n = 0(2)

+1 n = 1(2)
(F.5)

For a one-parameter family of metrics g(s) we have the derivative

∗̇ ∗+ ∗ ∗̇ = 0 (F.6)

so

u = ∗̇∗−1 = − ∗−1 ∗̇ (F.7)

Also

d† = (−1)nF+1 ∗ d∗ = (−1)nF+1δ (F.8)

The positive definite Hamiltonian

H = dd† + d†d = (−1)nF+1(δd+ (−1)ndδ) =

{
−(∗d ∗ d+ d ∗ d∗) n = 0(2)

−(−1)F (∗d ∗ d− d ∗ d∗) n = 1(2)
(F.9)

Figure 33: Orthogonal decomposition of domain and range associated to an operator T between

inner product spaces.

If, V,W are inner-product spaces and T : V → W is a (reasonable) linear operator

then T restricts to an isomorphism between (kerT )⊥ and (kerT †)⊥ as illustrated in 33.

Applying this to the DeRham complex in three dimensions we have the picture:

EXPLAIN ∗ AS ISOMETRY AND SPECIAL CASE OF 3-MANIFOLDS:

1. d and d† as supersymmetry operators.

2. Nonzero spectrum of d†d on Ω0 is spectrum of dd† on Ω3. Call it (λ
(0)
n )2

3. On Ω1 we have dd† with spectrum (λ
(0)
n )2 and we diagonalize ∗d with µ

(1)
n , so d†d

has spectrum (µ
(1)
n )2.

4. On Ω2 we have dd† with spectrum (µ
(1)
n )2 and d†d with spectrum (λ

(0)
n )2.
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Figure 34: A picture of the Hodge decomposition of the DeRham complex on a Riemannian 3-

fold. The horizontal arrows are isomorphisms between Hilbert spaces. The Hodge ∗ operator is an

isometry that flips the picture about the vertical in the center of the figure. This leads to a useful

simplification of the analytic torsion.

****************************

FIGURE ILLUSTRATING THE HODGE DECOMPOSITION – check Group Theory

notes

****************************

F.2 Analytic Torsion

Analytic torsion is based on the integral

τ =

∫ ∞
0

dt

t
TrF (−1)F e−tH (F.10)

where the trace is on the DR complex Ω∗(M).

The basic idea is that if λ and λ′ have positive real parts then∫ ∞
0

dt

t

(
e−λt − e−λ′t

)
= log

λ′

λ
(F.11)

So the difference of expressions (F.10) for two different metrics is the difference of∑
k

(−1)kk log Det′(∆k) (F.12)

for the two metrics. On the other hand, (F.10) makes sense by itself. As we will now show,

it is metric-independent and hence defines a topological invariant.

The definition depends a priori on a metric. Take a family g(s) and differentiate wrt

s:

τ̇ = −
∫ ∞

0
dtTrF (−1)F Ḣe−tH (F.13)

Ḣ = −(−1)nF (∗̇d ∗ d+ ∗d∗̇d+ (−1)nd∗̇d ∗+(−1)nd ∗ d∗̇)
= −(−1)nF (uδd− δud+ (−1)nduδ − (−1)ndδu)

(F.14)
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Now try to write −TrF (−1)F Ḣe−tH in the form TrF (−1)(n+1)Fue−tH(· · · ) by cycling

d and δ when necessary. Note that [d,H] = 0 and [δ,H] = 0.

Meanwhile we need

For n = 0(2):

[F (−1)F , d] = d(−1)F+1(2F + 1) (F.15)

because ((f + 1)(−1)f+1 − f(−1)f ) = (−1)f+1(2f + 1)

[F (−1)F , δ] = δ(−1)F+1(2F − 1) (F.16)

because ((f − 1)(−1)f−1 − f(−1)f ) = (−1)f−1(2f − 1)

For n = 1(2):

[F, d] = d (F.17)

[F, δ] = −δ (F.18)

First take n = 0(2). Then we have

−TrF (−1)F Ḣe−tH = TrF (−1)F (uδd− δud+ duδ − dδu)e−tH

= − d

dt

(
Tr(−1)Fue−tH

) (F.19)

Now we can do an integral by parts. Near t = 0 we have Tr(−1)Fue−εH . This is a

regularized version of Tr(−1)Fu. The latter is formally zero since ∗ is an isometry of both

the even and odd subcomplexes of the DeRham complex, so we are taking the trace of an

antisymmetric operator.

Now consider n = 1(2).

−TrF (−1)F Ḣe−tH = TrF (uδd− δud− duδ + dδu)e−tH

= − d

dt

(
Tr(−1)Fue−tH

) (F.20)

We integrate by parts again. To deal with the lower limit note that u commutes with (−1)F ,

and also takes Ωk → Ωk. If it can be diagonalized then it has the same eigenvalues on Ωk

and Ωn−k so (−1)Fu has opposite eigenvalues and hence, at least formally, Tr(−1)Fu = 0.

For the case of a 3-manifold

τ = − log det ∆(1) + 2 log det ∆(2) − 3 log det ∆(3)

= log
∏
n

(µ(1)
n )2 − 2 log

∏
n

(λ(0)
n )2 (F.21)

G. Orientation, Spin, Spinc, Pin±, And Pinc Structures On Manifolds

G.1 Reduction Of Structure Group: General Discussion

Given two compact Lie groups G1, G2 and a homomorphism φ : G1 → G2 we can define

a functor Fφ from principal G1 bundles on M to principal G2 bundles on M by taking

principal G1 bundle G1 → P →M to (P ×G1 G2)→M . Recall that (P ×G1 G2) is the set
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of pairs (p, g) ∈ P ×G2 with equivalence relation (ph, g) = (p, φ(h)g) for h ∈ G1, and this

clearly admits a free right G2 action.

Definition If G2 → P2 → M is a principal G2 bundle, a reduction to G1 under

φ : G1 → G2 is a principal G1 bundle G1 → P1 →M together with an isomorphism ψ such

that we have the commutative diagram:

(P1 ×G1 G2)
ψ //

%%

P2

��
M

(G.1)

Working through the definitions one can give a description in terms of transitions

functions on patch overlaps Uαβ. If hαβ : Uαβ → G1 are the transition functions of P1 then

there is a bundle isomorphism of P2, as a principal G2 bundle to a bundle with transition

functions φ(hαβ ) : Uαβ → G2.

Examples

1. If φ : H → G is the inclusion of a subgroup then given a G-bundle P → M , H acts

freely, so we can consider G/H → P/H → M , a bundle of homogeneous spaces. In

this case a section of the bundle P/H gives a reduction of P to an H bundle, which

is in fact a subbundle. As a special case, take H = {1}. This is the familiar fact that

a global section of a principal G bundle trivializes the bundle.

2. Take H = O(n), G = GL(n,R). A metric gives a reduction of the frame bundle to

the orthonormal frame bundle BO(M). Clearly the bundle of orthonormal frames is

a subbundle of the frame bundle.

3. Suppose M is a Riemannian manifold, H = SO(n), G = O(n), and φ is the inclusion.

Then BO(M)/H is the orientation double cover. If M is orientable then the orien-

tation bundle has a section. Indeed, if M is connected BO(M) has two components

and there are two sections. A choice of section gives a reduction of the bundle to an

SO(n) bundle of oriented frames. The choice of section is the choice of orientation

of M .

4. Now suppose φ is a covering map, i.e. φ : G̃→ G is surjective with kernel K. Then a

“reduction” of a principal G bundle P to a principal G̃ bundle P̃ is an isomorphism

P̃ /K
ψ //

""

P

��
M

(G.2)

Note the word “reduction” in the general definition is misleading since P̃ is really

a covering of P . Put differently, a “reduction of structure group” of a principal G
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bundle P to G̃ is the same thing as a principal G̃ bundle P̃ that covers P :

P̃ → P →M (G.3)

so that the fiber above every point m ∈M “looks like” the covering

1→ K → G̃→ G→ 1 (G.4)

5. A choice of spin structure on an oriented manifold is a special case of the previous re-

mark, (G.2) for the case φ : Spin(n)→ SO(n). In order to classify spin structures we

begin by classifying principal Z2 bundles over BSO(M) by z ∈ H1(BSO(M);Z2). The

spin structures are those which restrict to the fibers to the double cover Spin(n) →
SO(n). The double cover Spin(n) → SO(n) corresponds to zs ∈ H1(SO(n);Z2) ∼=
Z2. Accordingly, the spin structures are the double covers of BSO(M) which restrict

to the fibers of BSO(M) → M to give the class zs. Note that the difference of two

spin structures z1 − z2 is therefore trivial on the fibers, and hence pulls back from a

class in H1(M ;Z2). Thus, the spin structures on M form a torsor for H1(M ;Z2).

6. We can proceed in this way with other structures. For a manifold M we can speak of

Pinc, Spinc,Pin±,Spin structures based on the above concept applied to the homo-

morphisms

φ : Pinc → O(n) (G.5)

φ : Spinc → O(n) (G.6)

φ : Pin± → O(n) (G.7)

φ : Spin → O(n) (G.8)

(G.9)

Note that these homomorphisms are in general neither injective nor surjective. For a

BLOTZ structure on an oriented manifold we apply the analogous homomorphisms

to SO(n) for the bundle of oriented frames.

G.2 Obstructions To Spin And Pin Structures

It is worthwhile translating the above somewhat abstract description into the language of

transition functions for the tangent bundle of a manifold X. Let {Uαβ} be a coordinate atlas

for X. Using the metric we can form orthonormal frames and these will have transition

functions

gαβ : Uαβ → O(n) (G.10)

if dimRX = n. If we can modify these with cocycles

g̃αβ = hαgαβh
−1
β (G.11)

with hα : Uα → O(n) so that g̃αβ : Uαβ → SO(n) then the manifold is orientable. The

only obstruction to orientability is provided by a Cech 2-cochain det gαβ : Uαβ → Z2 which
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defines a cohomology class w1(X) ∈ H1(X;Z2). Note that if X is simply connected then

H1(X;Z2) = 0 and hence it must be orientable.

When X is orientable we can take gαβ : Uαβ → SO(n). If we choose a good cover,

meaning that all the intersections Uαβ··· are contractible then, on each overlap Uαβ we

can choose lifts g̃αβ : Uαβ → Spin(n). The only problem is that the cocycle condition

for these lifts might fail. Because we have chosen lifts and the kernel of the covering

Spin(n)→ SO(n) is just the group {±1} we know for sure that on Uαβγ

g̃αβ(x)g̃βγ(x)g̃γα(x) := ξαβγ ∈ {±1} ⊂ Spin(n) ∀x ∈ Uαβγ (G.12)

The signs ξαβγ define a Cech 3-cocycle and this defines a cohomology class in H2(X;Z2).

It is one (very concrete) definition of w2. Note that any modification of the lifts gαβ by

a cocycle, or different choice of lift g̃αβ only changes {ξαβγ} by a coboundary. Almost by

definition, this is the only obstruction to the existence of a spin structure.

1. The simplest nontrivial example is the case of spin structures on the circle. The

circle is one-dimensional so we take n = 1. Then SO(1) is the trivial group and

Spin(1) ∼= Z2. Thus, a spin structure on the circle is literally a double-cover of the

circle. There are two such: The trivial one, and the nontrivial one. In physics they

are called the Neveu-Schwarz and Ramond spin structures, respectively. Note that

the trivial double cover extends to a double cover of the disk, but the nontrivial

double cover of the circle does not extend over the disk.

Somewhat confusingly, with respect to a natural trivialization, the spinors in the

Neveu-Schwarz spin structures should be regarded as anti-periodic functions on the

circle, while those in the Ramond spin structure should be regarded as periodic.

One way to see this is simply to consider the Euclidean metric on the disk with

orthonormal frame e1 = dr and e2 = rdθ. Then ω12 = −dθ is the spin connection.

Now consider the covariant spinor equation

Dµψ = ∂µψ +
1

4
ωabµ γ

abψ = 0 (G.13)

and in the spin bundle over the disk we can take the constant spinor representation

γ1 = iσ1 γ2 = iσ2 (G.14)

Then the general covariant spinor is

ψ =

(
c1e
−iθ/2

(
1

0

)
+ c2e

iθ/2

(
0

1

))
(G.15)

*********************************************************

THIS IS STILL A CONFUSING POINT SINCE THOSE WAVEFUNCTIONS DO

NOT EXTEND OVER THE DISK. ABOVE SPINOR FUNCTIONS ARE RELA-

TIVE TO A TRIVIALIZATION OF K1/2 THAT DOES NOT EXTEND OVER

THE DISK. STILL NEED TO EXPLAIN MORE FULLY.
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THERE MIGHT BE SOME GOOD COMMENTS IN WITTEN’S WORK ON su-

perstring perturbation theory.

********************************************************* ♣THE

FOLLOWING

TWO EXAMPLES

PRESUME THAT

X IS FOUR

DIMENSIONAL ♣

2. An example: BSO(2) = BU(1) = CP∞. w2 is the reduction mod two of c1, which is

the cochain dual to the 2-cell. So explain why c1 mod two is an obstruction to the spin

structure. On CP 2 c1 = 3x. The complexified tangent bundle admits a reduction

of the SO(4) = SU(2) × SU(2)/Z2 structure group to U(2) = SU(2) × U(1)/Z2.

Restricting to a CP 1 ⊂ CP 2 the tangent bundle splits as O(2) ⊕ O(1) where O(2)

is the tangent bundle of CP 1 and O(1) is the normal bundle. The structure group

is further reduced to U(1) × U(1). Clearly, the principal U(1) bundle associated to

the normal bundle O(1) does not admit a two-fold covering restricting to a double

covering of U(1) over U(1).

3. The obstruction to a Spinc structure is W3, the image of w2 under the Bockstein

map. Therefore, it vanishes when w2(X) ∈ H2(X;Z2) has an integral lift. Using the

fact that, for all σ ∈ H2(X;Z)∫
σ
w2(X) = σ · σ mod 2 (G.16)

where σ ·σ is the oriented integral intersection number one can show that indeed such

an integral lift exists. See [?] for the details. The analogous statement fails in the ♣Also look up proof

in Gompf, Stipsicz,

4-Manifolds and

Kirby Calculus ♣
unorientable case: RP2×RP2 does not admit a Pinc structure. Moreover, there are

♣Give proof. ♣
orientable five-dimensional manifolds which are not Spinc. A simple example is the

space of symmetric SU(3) matrices, which is diffeomorphic to SU(3)/SO(3). See [?]

for an explanation.

G.3 Spinc Structures On Four-Manifolds

The group Spinc(4) is defined to be

Spinc(4) := (Spin(4)× U(1)) /Z2 = (SU(2)× SU(2)× U(1)) /Z2 (G.17)

where we divide by the group Z2 embedded as (−1,−1,−1). The bundle of oriented ON

frames of X, OrFr(X) is a principal SO(4) bundle and a spin-c structure is - by definition

- a reduction of structure group to a principal Spinc(4) bundle defined by the obvious

homomorphism Spinc(4) → SO(4). Working out the definition this means that a spin-c

structure is defined by a principal Spinc(4) bundle P with a projection P → OrFr(X)

which along the fibers looks like the exact sequence

1→ U(1)→ Spinc(4)→ SO(4)→ 1 (G.18)

A spin-c structure exists when w2(X) has an integral lift. As mentioned above, this is

indeed true for every compact orientable four-manifold.
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The group homomorphism Spinc(4)→ U(2)×U(2) given by [(vL, vR, ζ)] 7→ (ζvL, ζvR)

defines an isomorphism

Spinc(4) ∼= {(uL, uR)|detuL = detuR} ⊂ U(2)× U(2) (G.19)

and the latter presentation makes it obvious that there are two inequivalent rank 2 rep-

resentations W± of Spinc(4) simply defined by the fundamental representations of each of

the two U(2) factors. Given a spin-c structure there are therefore two associated complex

rank two bundles W± → X and we can identify

W± = S± ⊗ L (G.20)

in the discussion of section ?? above. Conversely such a pair of bundles W± defines a

spin-c structure. Consequently the space of spin-c structures is a torsor for the group of

line bundles, since give a line bundle L we can always take

W± →W± ⊗ L (G.21)

so that

c1(detW±)→ c1(detW±) + 2c1(L) (G.22)

Note that given an almost complex structure on X there is a canonical spin-c structure

W+ = Ω0,0(X)⊕ Ω0,2(X) W− = Ω0,1(X) (G.23)

G.4 ’t Hooft Flux

At several points in the notes we used the second Stiefel-Whitney class w2(P ) where P

is a principal SO(3) bundle. In general, an SO(n) bundle P over a manifold M has a

characteristic class w2(P ) ∈ H2(M ;Z2). One way to define it follows the discussion of spin

structures above: Choose a good cover {Uα} of M and a trivialization of P on this cover.

On patch overlaps Uαβ choose lifts g̃αβ : Uαβ → Spin(n) and measure the failure of the

cocycle condition on Uαβγ to define a class in H2(M ;Z2). If w2(P ) is nonzero then there

is no reduction of structure group of P from SO(n) to Spin(n).

A simple example of an SO(n) bundle that does not lift to a Spin(n) bundle is obtained

by considering M to be a two-dimensional compact surface. Choose a point p ∈ M and a

small disk around p. Define an SO(n) bundle by taking the transition function around the

boundary of the disk to define a nontrivial closed loop in SO(n).

H. Connections, Parallel Transport, And Holonomy

******************************************

GIVE DEFINITION OF CONNECTION IN TERMS OF PATH-LIFTING PROP-

ERTY

Our convention for concatenating curves:

f1 ? f2(t) :=

{
f1(2t) 0 ≤ t ≤ 1

2

f2(2t− 1) 1
2 ≤ t ≤ 1

(H.1)
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*******************************************

In the case of principal bundles and vector bundles we can express that property in

terms of a local differential equation, thereby establishing the relation to locally-defined

matrix-valued one-forms.

Example 1: The most elementary example is obtained by taking B = R and E = R×Cn,

with p : E → B simply being projection onto the first factor, i.e. p(x,~v) = x. Now, given

a path ℘ in B given by x(t), 0 ≤ t ≤ 1 we can define a path-lifting rule, i.e., a connection,

by choosing a function of x valued in n × n complex matrices. Let us call it A(x). Then

the path-lifting rule is

1. If ℘ is a path from ℘ : x0  x1, choose an element of the fiber e0 = (x0, ~v0) above

the initial point.

2. Then, solve the ordinary differential equation, with boundary condition provided by

the lift e0 of the initial point:

d

dt
~v(t) = A(x(t))

dx

dt
~v(t) ~v(0) = ~v0. (H.2)

The rule for the lifted path (determined by the choice A(x)) is then

P(℘)(t) := (x(t), ~v(t)) (H.3)

See Figure ??.

The reason that this rule is indeed compatible with composition of paths is that the

equation (H.2) is invariant under reparametrization t→ f(t) of the time t, so long as f(t)

is differentiable and f ′(t) > 0. Using this fact and the existence and uniqueness of solutions

to first order linear ODE’s we have

P(℘1 ? ℘2) = P(℘1) ? P(℘2) (H.4)

Remarks

1. We assume here that ℘ is a piecewise-differentiable path, i.e. x(t) is a continuous

function which is differentiable on intervals. (But the derivative can be discontinuous

at isolated points.)

2. We assume that A(x) is nonsingular on the path.

3. Note that since the differential equation is invariant under complex conjugation, if

A(x) is real then if ~v0 is real the solution ~v(t) will be real.

♣WE SHOULD

REALLY CHANGE

CONVENTION ON

OUR PATH

ORDERED

EXPONENTIAL

SO THAT

U(℘1 ∗ ℘2) =

U(℘1)U(℘2). ♣

The path ordered exponential

– 204 –



As a matter of fact, one can write an “explicit” solution of the differential equation

(H.2) and this representation can be useful. The solution is can be written as follows.

Define an n× n complex matrix:

U(℘t) := 1+

∫ t

0
A(x(t1))ẋ(t1)dt1+

∞∑
m=2

∫ t

0
dt1

∫ t1

0
dt2 · · ·

∫ tm−1

0
dtmA(x(t1))ẋ1 · · ·A(x(tm))ẋm

(H.5)

then we have

~v(t) = U(℘t)~v0. (H.6)

To prove this, note that by explicit differentiation

d

dt
U(℘t) = A(x(t))ẋ(t)U(℘t) (H.7)

and note that U(℘0) = 1.

Remarks

1. U(℘t) is an operator, independent of the choice of lift ~v0 of the initial point.

2. Matrix multiplication of U(℘) is contravariant with respect to composition of paths:

U(℘1 ? ℘2) = U(℘2)U(℘1) (H.8)

3. For the piecewise continuous path ℘t ? ℘̄t it is clear that the parallel transport takes

(x0, ~v0)→ (x0, ~v0). Therefore U(℘t ? ℘̄t) = 1n×n. It follows that U(℘t) is an invertible

matrix.

4. U(℘t) is invariant under reparametrizations of the path x(t) by t → f(t) where

f ′(t) > 0. It therefore makes sense to write

U(℘t) = 1 +

∫ x(t)

x0

A(x1)dx1 +

∞∑
m=2

∫ x(t)

x0

A(x1)dx1

∫ x1

x0

dx2 · · ·
∫ xm−1

x0

A(xm)dxm

(H.9)

This expression has a further useful representation by introducing the (left) time

ordered product of matrices defined by

T` (A(x(t1)), . . . , A(x(tm))) := A(x(tσ(1))) · · ·A(x(tσ(m))) (H.10)

where σ ∈ Sm is a permutation such that

tσ(1) ≥ · · · ≥ tσ(m) (H.11)

Note that if all the times are distinct then the permutation is unique. If some times

coincide then σ is not uniquely determined, but any two permutations lead to the

same RHS for (H.10). Using this notation we can write:

U(℘t) = 1 +

∞∑
m=1

1

m!

∫ t

0
dt1ẋ1 · · ·

∫ t

0
dtmẋmT`[A(x(t1)), · · · , A(x(tm))] (H.12)
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which motivates the notation

U(℘t) := Pexp

∫ t

0
dt1ẋ1A(x(t1)) (H.13)

5. Warning: Do not confuse the path-ordered exponential with the ordinary exponen-

tial:

exp

∫ t

0
dt1ẋ1A(x(t1)) (H.14)

If A(x) is a family of commuting matrices then the exponential and the path-ordered

exponential will be the same. In general they are different.

6. If one reversed the order of all the inequalities in (H.11) then (H.10) would define the

(right) time-ordered product and the multiplication rule would be covariant. This is

the matrix we would apply to the differential equation

d

dt
~v(t) = ~v(t)A(x(t))

dx

dt
~v(0) = ~v0. (H.15)

where ~v(t) is a row vector. ♣Should have more

detail about left- vs.

right- path ordered

exponentials and

how they are

related. And more

detail on zig-zag

invariance. ♣

Now we are not going to see interesting monodromy around closed paths in the above

example, because π1(R, x0) = 0, but a small modification of the above example produces

interesting examples.

Example 2: We now take B = S1 which we regard as both the unit circle in the complex

plane and the quotient R/Z given by identifying x ∼ x+ 1. Now we take

E = S1 × Cn (H.16)

and the projection p is simply projection onto the first factor: p(z,~v) = z. Now let A(x)

be a matrix-valued function as before but now impose the condition that it be periodic:

A(x + 1) = A(x). Consider a path ℘ on S1 with ℘(0) = z0. The fiber above z0 is the

set of points (z0, ~v) where ~v ∈ Cn. As always, to lift the path ℘ to a path P(℘) in E

we must choose a lift e0 = (z0, ~v0) of the initial point of the path. Now, to write the

differential equation we also lift the path z(t) by choosing some initial point x0 so that

z(t) = exp[2πix(t)], with x(0) = x0. Of course, if ℘ is a closed path so that z(1) = z0

then x(t) need not be closed, but rather x(1) = x0 + n, where n is the winding number of

℘. Now we consider exactly the same differential equation (H.2), and we produce a family

(x(t), ~v(t)). It now makes sense to pass from x(t) to z(t) precisely because A(x) is periodic

in x, so now the lifted path is:

P(℘)(t) = (z(t), ~v(t)) (H.17)

Even though z(1) = z(0) = z0 and A(x(1)) = A(x0 + n) = A(x(0)) are single-valued,

there is no reason for ~v(t) to be single valued. Rather, the monodromy of the connection

determined by A around the path ℘ can be thought of as an invertible linear transformation

~v0 → U(℘)~v0. (H.18)
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To be more explicit, let us take n = 2 and ℘ given by simple path with winding number

1. Say, for simplicity, it has lift x(t) = t. Suppose moreover that

A = θ

(
0 1

−1 0

)
(H.19)

is constant in x. Then the differential equation (H.2) is easily solved to give

~v(t) =

(
cos(θt) sin(θt)

− sin(θt) cos(θt)

)
~v0 (H.20)

where ~v0 ∈ R2. Clearly, ~v(1) is not ~v0, in general.

Remark: Note that since A(x) is invariant under x → x + 1 it would make sense

to define Ã(z) as A(x) for any x such that z = exp[2πix]. However, this is not the most

convenient definition if we want the differential equation (H.2) to look the same in terms

of z. Rather, if we define Ã(z) so that Ã(z)dz = A(x)dx, that is, so that

Ã(z) :=
1

2πi
e−2πixA(x) (H.21)

then the equation (H.2) is equivalent to

d

dt
~v(t) = Ã(z(t))

dz

dt
~v(t) ~v(0) = ~v0. (H.22)

That is, A should transform under change of coordinates as a 1-form.

Figure 35: Illustrating the argument that for a flat connection on a domain in C the parallel trans-

port only depends on the homotopy class of the curve with fixed endpoints. Using the homotopy,

divide the region between the two curves into small regions by dividing the domain of the homotopy

into sufficiently small squares. Then the monodromy around each small square is computed by the

connection and its covariant derivatives: But these are all zero.

Example 3: Let B be an open path-connected domain in C. For example, B might be

C−{z1, . . . , zm}, i.e., C with some set of points deleted. We can also view it as the extended

complex plane with the point at infinity also deleted: B = CP1 −{z1, . . . , zm,∞}. Thus it
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is most definitely not simply connected for m ≥ 1. Again let E = B×Cn for some positive

integer n. A path in B can be represented by z(t). Our path lifting rule will be similar to

Example 1: Choose a pair of n × n matrix-valued functions on B, call it (Az, Az̄) where

each matrix in the pair is a single-valued and nonsingular function of (z, z̄). 44 Then the

lifted path will be (z(t), ~v(t)) where the differential equation is now:

d

dt
~v(t) +

(
Az(z(t), z̄(t))

dz

dt
+Az̄(z(t), z̄(t))

dz̄

dt

)
~v(t) = 0 ~v(0) = ~v0. (H.23)

We can again “solve” the differential equation with the path-ordered exponential, and

again there will be quite interesting monodromy. Note that we put both terms on the same

side of the equation (thus A is related to the previous examples by a sign flip). This sign

convention turns out to be more useful.

As an example of the monodromy let us consider a small loop based at z0, written as

z(t) = z0 + ε(t), where for fixed t, the complex number ε(t) will be taken to be small. In

particular, the loop will be homotopically trivial, so there is a small disk D with basepoint

z0 such that ∂D is the image of ℘. Then the leading nontrivial contribution to U(℘) will

be appear at order O(ε2) and one can show that

U(℘) = 1 + αFzz̄(z0, z̄0) +O(ε3) (H.24)

where

α =

∫ 1

0
dtε̇(t)ε̄(t) (H.25)

is ((2i) times) the Euclidean area enclosed by the small loop at z0 and

Fzz̄ := ∂zAz̄ − ∂z̄Az + [Az, Az̄] (H.26)

One way to see that α is proportional to the area enclosed by the loop is is to write

α =

∮
℘
dεε̄ =

∫
D
dε ∧ dε̄ (H.27)

and the latter integral is 2i times the Euclidean area enclosed by the loop. One can show

that in the full expansion of (H.24) in powers of ε(t) all the terms involve products of Fzz̄
and its (covariant) derivatives. ♣Need to justify

that more fully. ♣
The expression Fzz̄ is known as the curvature of the connection. It is more properly

regarded as a locally matrix valued 2-form F = Fzz̄dz ∧ dz̄.
A particularly important class of connections are the flat connections, defined to be

the connections with zero curvature. In this case, given a flat connection, the monodromy

matrix U(℘) for a closed path only depends on the homotopy class of ℘ in B. This is easy

to show using (H.24) and the path composition property. From (H.24) the monodromy

around a small loop must be trivial. But now if F (t; s) is a homotopy from the closed

loop ℘1(s) to ℘2(s) then we can divide up the square I2 into many small squares, and the

monodromy around each of these must be trivial, therefore, the monodromy around the

full square must be trivial. Therefore U(℘1 ? ℘̄2) = 1 and hence U(℘1) = U(℘2). ♣Need more

explanation ♣
44We are not assuming any relation between the complex conjugate (Az)

∗ and Az̄.
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In the special case that Az̄ = 0 and Az is a holomorphic function of z the property that

U(℘) only depends on the homotopy class can be seen more directly from the path-ordered

exponential:

U(℘t) = 1 +

∫ z(t)

z0

A(z1)dz1 +

∞∑
n=2

∫ z(t)

z0

dz1

∫ z1

z0

dz2 · · ·
∫ zn−1

z0

dznA(z1) · · ·A(zn) (H.28)

and now the assertion follows from Cauchy’s theorem. Here dzi is short for ż(ti)dti etc.

Figure 36: When ε1 and ε2 are small the entire contribution to the monodromy comes from the

curvature of the connection, and the leading term is determined by the area of the loop times the

curvature element in the plane spanned by the loop (in the tangent space) at ~x0.

Example 4: Now take B to be an open domain in Rm for any m > 0 and E = B × CN ,

where m and N are in general completely unrelated. Choose coordinates xµ, µ = 1, . . . ,m

on CN and let Aµ(x) be a collection of m complex N ×N matrix-valued functions on B.

We assume they are single-valued and nonsingular. In close analogy to the above examples,

this data suffices to define a connection on the fibration p : E → B given by projection on

the first factor: Suppose ℘ : [0, 1] → B is a (piecewise differentiable) path in B from ~x0

to ~x1. Then we choose a lift (~x0, ~v0) ∈ E in the fiber above ~x0 and solve the differential

equation
d

dt
~v(t) +Aµ(~x(t))

dxµ(t)

dt
~v(t) = 0 ~v(0) = ~v0 (H.29)

and P(℘)(t) = (~x(t), ~v(t)) is the lift. In general there will be interesting monodromy,

already for small homotopically trivial paths near any point ~x0. The expressions are simple

generalizations of (H.24) and (H.26). Indeed, any infinitesimal curve can be thought of as

sitting in some plane passing through ~x0 and then it is simply a matter of changing back

from complex to real coordinates. Alternatively, we can consider a small path given by a

composition of four open paths going around a square in the xµ − xν plane:

℘1(t) = ~x0 + ε1(t)~eµ

℘2(t) = (~x0 + ε1~eµ) + ε2(t)~eν

℘3(t) = (~x0 + ε2~eν) + ε1(1− t)~eµ
℘4(t) = ~x0 + +ε2(1− t)~eν

(H.30)
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and then ℘ = ℘1 ? ℘2 ? ℘3 ? ℘4. Here ~eµ is a unit vector pointing in the xµ direction and

εi := εi(t = 1). See Figure 36. A simple computation shows that (H.24) and (H.26) are

generalized to

U(℘) = 1− ε1ε2Fµν(~x0) + · · · (H.31)

Fµν := ∂µAν − ∂νAµ + [Aµ, Aν ] (H.32)

and the higher order terms in (H.31) are all of order εa1ε
b
2 with a > 0 and b > 0 and a+b > 2.

Remark: It can be shown that the coefficients of the higher order terms in (H.31) are

polynomials in Fµν and its covariant derivatives in the µ and ν direction. In general, the

covariant derivative of any matrix-valued function Φ(x) in the λ direction is

DλΦ := ∂λΦ + [Aλ,Φ] (H.33)

♣Is there a simple

proof of that? Or a

way to generate the

series? I am

guessing it is

eε1Dµeε2Dν e−ε1Dµe−ε2Dν

♣Exercise

Solve (H.23) for B = C∗, N = 1, and Az = µ
z and Az̄ = 0, where µ is a complex

number. Compute the monodromy of this connection around some simple closed curves in

B.

Exercise

Give a careful derivation of equations (H.24),(H.26), (H.31), and (H.32).

Exercise

Show that if the matrices Aµ(x) are anti-hermitian, i.e. (Aµ(x))† = −Aµ(x) then

Pexp

∫ t

0
Aµ(x(t1))

dxµ

dt1
dt1 (H.34)

is unitary.

Exercise Gauge transformations

Let A(x) be a matrix-valued n×n complex matrix on R and and x 7→ g(x) a differen-

tiable map from R to GL(n,C). Define a new matrix-valued function Ã(x) by

A(x) = g(x)−1Ã(x)g(x) + g(x)−1 d

dx
g(x) (H.35)
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a.) Show that

d+ Ã = g(x)(d+A)g(x)−1 (H.36)

where d = dxµ ∂
∂xµ 1N×N is a first order differential operator and A = dxµAµ.

b.) Show that, for any piecewise-differentiable path x(t) from x0 to x1 we have

Pexp

[
−
∫ 1

0
Ã(x(t))ẋ(t)dt

]
= g(x1)Pexp

[
−
∫ 1

0
A(x(t))ẋ(t)dt

]
g(x0)−1 (H.37)

c.) Show by direct computation that, if F̃µν is computed from Ãµ then

Fµν(x) = g(x)−1F̃µν(x)g(x) (H.38)

d.) Show that the commutator of matrix-valued first order differential operators gives

the curvature:

[Dµ, Dν ] = Fµν (H.39)

Use this to give another proof of the gauge transformation rule of part (c).

e.) Suppose Φ(x) and Φ̃(x) are matrix valued functions of xµ related by Φ̃(x) =

g(x)Φ(x)g(x)−1. Show by direct computation that

D̃λΦ̃(x) = g(x)DλΦ(x)g(x)−1 (H.40)

where D̃λ is the covariant derivative computed with Ãλ.

f.) Show that [Dµ,Φ] = DµΦ. Use this to give another proof of the gauge transforma-

tion rule in (e).

I. Chern-Weil Theory And Chern-Simons Forms

I.1 Characteristic classes

We do not have space here to do justice to this important subject. Here is the telegraphic

version:

Roughly, characteristic classes are a way of measuring the twisting of vector bundles

and principal bundles.

A characteristic class is, by definition, a rule for assigning cohomology classes to (iso-

morphism classes of) principal bundles. When π : P → M is a principal bundle with

structure group G then the characteristic classes are integral cohomology classes on M . So

a characteristic class is a map from the set of isomorphism classes of principal bundles over

M to H∗(M ;Z). If P → M is a principal bundle we let ξ(P ) denote the corresponding

cohomology class. Moreover, this map should be natural, that is:

f∗(ξ(P )) = ξ(f∗(P )) (I.1)

Note that such characteristic classes form a ring.

Because of the property (I.1) characteristic classes can be defined in terms of the

cohomology classes of the classifying space BG. If θ ∈ H∗(BG;Z) and f : M → BG is a
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classifying map for P so that P = f∗(EG) then we can take ξ(P ) = f∗(θ). Moreover, all

characteristic classes arise in this way.

When the bundle P is endowed with a connection we can construct DeRham represen-

tatives of the characteristic classes. Although we lose torsion information, the construction

is very useful, and occurs very frequently in physics. It leads to topological terms in

Yang-Mills actions and, via the secondary characteristic classes, known as Chern-Simons

forms, to many of the most interesting and important examples of the interactions between

geometry and physics.

I.2 Basic forms

Definition A basic form on a bundle P →M is a form ω which is a pullback from a form

ω̃ from the base: ω = π∗(ω̃).

Proposition. Suppose P is a principal G bundle for a compact and connected group

G. Then ω ∈ Ω∗(P ) is basic iff it satisfies:

a.) ι(ξ(X))(ω) = 0

b.) L(ξ(X))(ω) = 0

for all X ∈ g

Proof: Work locally, with coordinates (x, g). Then we can expand all forms on the

total space in terms of dxµ, and ea, where Θ = eaTa.

The verticality equation ι(ξ(X))(ω) = 0 means that ω has no vertical components.

That is, in local coordinates it has the form:

ω = ωµ1...µk(x, g)dxµ1···µk (I.2)

Next, the Lie derivative condition shows that the coefficient functions must be independent

of g. ♠
Remark: More generally, if G is not connected, condition (b) above should be formu-

lated as the condition that

R∗g(ω) = ω ∀g ∈ G (I.3)

I.3 Invariant polynomials on the Lie algebra

Let g be a Lie algebra over F = R or C. An polynomial of degree k on g is a totally

symmetric multilinear function:

℘ : g⊗k → F (I.4)

The symmetric polynomials are elements of Symkg∗, and together ⊕kSymkg∗ form an

algebra. The product of two polynomials ℘1 and ℘2 of degrees k1, k2 is

(℘1·℘2)(v1, . . . , vk1+k2) :=
1

(k1 + k2)!

∑
σ∈Sk1+k2

℘1(vσ(1), . . . , vσ(k1))℘2(vσ(k1+1), . . . , vσ(k1+k2))

(I.5)
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An invariant polynomial is a polynomial which is Ad(G) invariant. The invariant

polynomials form a subring of S∗(g∗) denoted I(G)∗ or InvGS
∗(g)

Remark: An invariant polynomial is completely determined by its values on the di-

agonal ℘(v, v, . . . , v). Proof: Substitute v =
∑
vixi in terms of a basis with indeterminates

xi. We will abuse notation and refer to this diagonal value as ℘(v). Thus ℘(gvg−1) = ℘(v).

Theorem If G is a compact simple Lie group the ring of invariant polynomials is a

polynomial ring on the Casimirs

InvGS
∗(g) ∼= R[C1, C2, . . . , C`] (I.6)

where ` is the rank of G and Ci are of degree ki, the exponents of G.

Proof: An invariant polynomial is determined by its value on the diagonal ℘(v), and

by Ad-invariance it is determined by its value on a Cartan subalgebra t ⊂ g. Conversely,

any W -invariant polynomial on t defines an invariant polynomial on g. Here W is the Weyl

group. Since W is a finite group we can always average a polynomial on t to get one which

is W -invariant. It turns out that the ring of W -invariant polynomials is in fact itself a

polynomial ring: See C. Chevalley, “Invariants of finite groups generated by reflections,”

Amer. J. Math. 77(1955)778. ♠

I.3.1 Examples

Example 1: Lie(GL(n,C)) = Matn(C). The ring of invariant polynomials is generated by

the Chern polynomials Ck defined by

det(xI +
1

2πi
A) =

∑
j

Cj(A, . . . , A)xn−j (I.7)

Example 2: GL(n,R)

Example 3: U(N)

Example 4: G = SO(2r)....

For G = SO(2r) an important new invariant polynomial appears - the Pfaffian:

Pfaff(m) =
1

2rr!

∑
σ∈S2r

sign(σ)mσ(1)σ(2)mσ(3)σ(4) · · ·mσ(2r−1)σ(2r) (I.8)

for an antisymmetric matrix is a polynomial in the matrix elements such that (Pfaff(m))2 =

detm.

Example 5: G = SO(2r + 1).

Example 6: G = USp(2r).

Exercise

Show that Pfaff(gmg−1) = det(g)Pfaff(m) for any g ∈ O(2r).
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I.4 The Chern-Weil homomorphism

Now suppose that π : P →M is a principal G-bundle with connection Θ and fieldstrength

F̄ ∈ Ω2(P ; g). Let ℘ be an invariant polynomial on g.

Then we may consider

℘(F̄ ) (I.9)

If ℘ is homogeneous of degree k, ℘(F̄ ) is a differential form of degree 2k on P .

A typical example to keep in mind is the trace in some representation ρ:

℘k,ρ(F̄ ) := Trρρ(F̄ )k (I.10)

(we will often drop the ρ in this notation).

Proposition: The form ℘(F̄ ) = π∗(℘̄) is a basic form.

Proof Clearly, ℘(F̄ ) is horizontal, i.e. ι(ξ(X))℘(F̄ ) = 0, since ι(ξ(X))(F̄ ) = 0. More-

over,

R∗g(℘(F̄ )) = ℘(R∗g(F̄ )) = ℘(gF̄ g−1) = ℘(F̄ ) (I.11)

and thus it does not vary along the fiber ♠

Proposition: ℘̄(F̄ ) is a closed differential form on the base M . Moreover it is natural.

Proof Note that:

d℘(F̄ , · · · , F̄ ) = k℘(dF̄ , F̄ , · · · , F̄ ) (I.12)

But now we use the Bianchi identity

DF̄ = dF̄ + [Θ, F̄ ] = 0 (I.13)

Now note that ℘([Θ, F̄ ], F̄ , · · · , F̄ ) = 0 because ℘ is Ad-invariant. (Recall that Θ is valued

in g, and use the infinitesimal version of Ad-invariance.) Then π∗ has no kernel (on the

DeRham complex!) so d℘̄(F̄ ) = 0. ♠
To prove naturality:

Note that if f : P1 → P2 is a bundle map covering f̄ : M1 → M2, and Θ1 = f∗(Θ2) is

the pulled-back connection then ℘(F̄1) = f∗(℘(F̄2)) so ℘̄(F̄1) = f∗(℘̄(F̄2)). In particular,

the cohomology class of ℘̄(F̄ ) only depends on the isomorphism class of (P,Θ). ♠
Finally note that if ℘ is of degree k then ℘̄(F̄ ) ∈ Ω2k(M) is of degree 2k. Moreover,

the product of symmetric polynomials maps to the product of cohomology classes. Thus,

we have the definition:

Definition: The Chern-Weil homomorphism is the homomorphism of graded rings:

I∗(G)→ H∗DR(M) (I.14)

taking ℘ to [℘̄(F̄ )].

Remarks:
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1. Consider the natural connection on the Hopf fibration. Since u(1) is Abelian, any ♣NEED TO

EXPLAIN ♣
polynomial on the Lie algebra is invariant. The fieldstrength F̄ is a basic form, which

had a nontrivial integral on the S2 base.

2. Another way to understand the fact the form is basic is to work purely downstairs,

with local patches. In each patch Uα, TrF kα is gauge invariant. Therefore, comparing

connections across path boundaries Fα = gαβFβg
−1
αβ , and hence TrF kα is in fact a

globally well-defined 2k-form on M . In our work below we will sometimes work

directly in terms of F defined on the base. Recall that in local coordinates Θ =

g−1dg + g−1Ag and F̄ = g−1Fg.

3. More generally, any gauge invariant quantity, e.g. the Yang-Mills action density,

TrF ∗ F made out of the connection will be globally well-defined on the base.

Exercise

Let α, β be degree j, k differential forms valued in g. Show that

dTr(α ∧ β) = Tr

[
DA(α) ∧ β + (−1)kα ∧DA(β)

]
(I.15)

where

DAα = dα+Aα− (−1)kαA

DAβ = dβ +Aβ − (−1)jβA
(I.16)

Using this and the Bianchi identity verify directly that

dTrF k = kTr(DAF )F k−1 = 0 (I.17)

I.5 Dependence on connection: Construction of characteristic classes

Now, a crucial property of the Weil homomorphism is that the image in fact does not

depend on the choice of connection on P :

Now we show that the cohomology classes [℘̄(F̄ )] are in fact independent of the choice

of connection on P .

Let us begin with the main special case, and work locally on the base. Thus, we

consider the dependence of the basic forms TrFn on the choice of connection. Recall that

under an infinitesimal variation:

δF = DA(δA) (I.18)
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and therefore

δTrFn = nTr(δF )Fn−1

= nTr

(
DA(δA)Fn−1

)
= nd

(
TrδAFn−1

) (I.19)

where we have used the Bianchi identity DAF = 0.

More formally, if we have a linear path of connections: A(t) = (1−t)A0+tA1 = A0+tα,

α ∈ Ω1(M ; adP ), then

TrFn1 − TrFn0 =

∫ 1

0
dt
d

dt
TrF (A(t))n

= n

∫ 1

0
dtTrDA(t)(α)F (A(t))n−1

= d

[
n

∫ 1

0
dtTrαF (A(t))n−1

]

= d

[
n

∫ 1

0
dtTrα

(
F0 + tDA0α+ t2α2

)n−1
]

(I.20)

Note that the expression

n

∫ 1

0
dtTrα

(
F0 + tDA0α+ t2α2

)n−1

(I.21)

is globally well defined, since it only involves tensorial quantities. Therefore, the DeR-

ham cohomology class of the closed globally well-defined form TrF (A)n on M is indepen-

dent of connection.

The same manipulations work for an arbitrary invariant polynomial of degree n:

d

dt
℘(F (A(t)) = n℘(DA(t)α, F (A(t)), . . . , F (A(t)))

= nd

(
℘(α, F (A(t)), . . . , F (A(t)))

) (I.22)

and integrating gives

℘(F (A1))− ℘(F (A0)) = d

[
n

∫ 1

0
℘(α, F (A(t)), . . . , F (A(t)))

]
(I.23)

and hence the cohomology class is unchanged.

As we have shown, [℘(F )] is natural, and hence, given an invariant polynomial ℘ we

can produce a characteristic class by the rule:

ξ : P → [℘̄(F̄ )] (I.24)
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where we can use any connection on P . That is, the Chern-Weil homomorphism is inde-

pendent of connection.

Remark: It follows that integrals over closed cycles (including the whole manifold, if

M is closed) are “topological invariants.” This is the source of many topological terms in

Yang-Mills actions.

I.6 The Borel Theorem

Now we can close the loop of ideas by tying together the invariant polynomials with the

cohomology of the classifying spaces, through the Borel theorem:

Theorem. Let G be a compact connected Lie group. Then

H∗(BG; Λ) = (H∗(BT,Λ))W (I.25)

where W is the Weyl group, T is a maximal torus, and Λ is any ring in which |W | is

invertible.

The superscript W means we take the invariants under the action of the Weyl group.

If Λ = R then we can construct this ring using Ad-invariant polynomials on the Lie

algebra:

I∗(G) = S∗(g∗)W (I.26)

Then

Theorem: If G is a compact Lie group

I∗(G) ∼= H∗(BG;R) (I.27)

Reference for Borel’s theorem:

1. A. Borel, “Topology of Lie Groups and Characteristic Classes,” Bull. Amer. Math.

Soc. 61(1955) 397

2. J. Dupont, Curvature and Characteristic Classes, Lecture Notes in Mathematics

640 Springer 1978

************************************

Discuss the question: If all the characteristic classes are trivial is the bundle trivial?

PROPER INTEGRAL NORMALIZATIONS OF THE CLASSES!!!!!

************************************

I.7 Secondary characteristic classes: The Chern-Simons forms

Let us return to the expression:

℘(F (A1))− ℘(F (A0)) = d

[
n

∫ 1

0
dt℘(α, F (A(t)), . . . , F (A(t)))

]
(I.28)
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giving the dependence of the Chern-Weil form on the choice of connection. We will now

examine the forms which trivialize the difference in greater detail. For simplicity we will

consider ℘ to be the trace in some representation of g.

The secondary characteristic class is defined by the form which trivializes the differ-

ence:

Definition. The relative Chern-Simons form between two connections is the form:

CS2n−1(A1, A0) := n

∫ 1

0
dtTrα

(
F0 + tDA0α+ t2α2

)n−1

(I.29)

where A1 = A0 + α.

Note that

dCS2n−1(A1, A0) = TrFn1 − TrFn0 (I.30)

Examples

CS1(A1, A0) = Trα (I.31)

CS3(A1, A0) = Tr(2αF0 + αDA0α+
2

3
α3) (I.32)

CS5(A1, A0) = Tr

(
3αF 2

0 +
3

2
α{F0, DA0α}+ 2F0α

3

+ α(DA0α)2 +
3

2
α3DA0α+

3

5
α5

) (I.33)

Remarks

1. Often Chern-Simons forms are expressed in terms of a single connection A. We can

make sense of this if A is a connection on a trivial bundle. Then we may take A0 = 0,

and A1 = A in all the above formulae. Much of the physics literature is very sloppy

about this point, writing CS(A) when A is a nontrivial connection. Such sloppiness

can lead to mistakes. Beware! ♣Well. If you

expontiate, then

you CAN define for

a single connection,

and this is

important to the

rest of the lectures

!!!! ♣

2. Having said that, there is a way to define the Chern-Simons form CS(A) for a single

connection as a well-defined form on the total space of the principal bundle P →M ,

because the connection form is globally well-defined on the total space of P . For a

more elaborate discussion see Appendix A of [22]. ♣Why does Dan use

this more

complicated

argument? ♣3. We can then define the Chern-Simons action by choosing a section s : M → P away

from a set of measure zero and defining
∫
M s∗CS(A). This will be ambiguous because

we can choose different sections and therefore
∫
M s∗CS(A) is only defined modulo Z.
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4. Warning: For many applications, the Chern-Simons form is considered only to be

defined modulo exact forms. Note that CS → CS + d(∗) leaves the key property

(I.20) unchanged.

Exercise

Note that when M is not closed
∫
M TrFn depends on connection

Exercise

Show that:

CS3(A+ α+ β,A) = CS3(A+ α,A) + CS3(A+ α+ β,A+ α)− d
(
Trαβ

)
(I.34)

In particular:

d

dt
CS(A+ α(t), A) = 2Trα̇(F (A+ α))− d

(
Trαα̇

)
(I.35)

This is often written as:

δCS(A) = 2TrδA ∧ F (A)− d(Tr(AδA)) (I.36)

in the case we have a trivial bundle.

In particular, consider a principal G-bundle on a 3-manifold M . What is the variation

of the “Chern-Simons action” ∫
M

TrAdA+
2

3
A3 (I.37)

Exercise

Compute the variation of CS3(Aα)− CS3(Aβ) across patch boundaries.

Exercise

Show that CS(Ag1, A
g
0) = CS(A1, A0)

Let us now consider the A-dependence of the Chern-Simons forms themselves.
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The following general remark is useful: Supoose we have a family S of connections

A(s, x). It is useful to introduce a bigrading on Ωp,q(M × S) so that (p, q) forms are in

Ωp(M)⊗Ωq(S). We can form a connection A(s, x) on π∗P →M×S such that the covariant

derivative is

dM + dS +A(s, x) (I.38)

Note that the connection form only has components of type (1, 0). This is an example

of what is called the “universal connection.” (For more on this, see below.) Let F the

the curvature of this universal connection. It has components of type (2, 0) and (1, 1).

Specifically

F = F (A) = F (A) + dSA(s, x) (I.39)

Now TrFn is closed on the total space,

(dM + dS)TrFn = 0, (I.40)

so if we decompose into (p, q) types:

TrFn = ωn,0 + ωn−1,1 + · · ·+ ω0,n (I.41)

and set d = dM , δ = dS then we get the “descent equations:”

dωn,0 = 0

dωn−1,1 + δωn,0 = 0

dωn−2,2 + δωn−1,1 = 0

...
...

(I.42)

Figure 37: A triangle of connections in A(P ).

Let us now consider a simplex 4 of connections:

A0 + t1α1 + t2α2 (I.43)

with 0 ≤ t2 ≤ t1 ≤ 1, as in 37.

Let A1 = A0 +α1, A2 = A1 +α2. We form the universal connection on π∗(P )→M×4
and compute the curvature:

F (A) = F (A0) + t1DA0α1 + t2DA0α2 + (t1α1 + t2α2)2 + dt1α1 + dt2α2 (I.44)
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Using the descent equations we can write∫
4
δωn−1,1 = −d

∫
4
ωn−2,2 = −d

∫
4

TrF (A)n (I.45)

On the other hand, we can apply Stokes’ theorem to the triangle to write∫
4
δωn−1,1 =

∫
∂4

ωn−1,1 =

∫
∂4

TrF (A)n = CS2n−1(A1, A0)+CS2n−1(A2, A1)+CS2n−1(A0, A2)

(I.46)

Putting these together we obtain the result:

CS2n−1(A0, A1) + CS2n−1(A1, A2) + CS2n−1(A2, A0)

= dM

(∫
∆

SymTr(dt1α1, dt2α2, (F (A0) + t1DA0α1 + t2DA0α2 + (t1α1 + t2α2)2)n−2

)
(I.47)

So, for example:

CS3(A1, A0) + CS3(A2, A1) + CS3(A0, A2) = d
(
Trα1α2

)
(I.48)

with A1 = A0 + α1, A2 = A1 + α2.

Similarly:

CS5(A1, A0) + CS5(A2, A1) + CS5(A0, A2) =

3d

[∫
4

Tr
(
F + t1Dα1 + t2Dα2 + (t1α1 + t2α2)2

)
(α1α2 − α2α1)

]
(I.49)

Figure 38: Triangle of connections in A(P ) used to compute the gauge-dependence of the Chern-

Simons form CS(A, 0).

As an application suppose A is a connection on a trivializable bundle so that there is a

basepoint connection A0 = 0. Then it makes sense to define CS(A) := CS(A, 0). Although

dCS(A) is gauge invariant, CS(Ag) will not be gauge invariant.

We can take A1 = g−1dg and A2 = Ag, for some globally defined connection 1-form A,

in the above formula. Note that this means we have a linear path A(t) = g−1dg+ tg−1Ag,

from A1 to A2. Since, quite generally CS(Ag1, A
g
0) = CS(A1, A0) for any pair of connections,

we have

CS2n−1(Ag, g−1dg) = CS2n−1(A, 0) (I.50)
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Therefore, our identity becomes:

CS2n−1(Ag)− CS2n−1(A) = CS2n−1(g−1dg)− dM (α2n) (I.51)

with

α2n =

∫
4

SymTr

[
dt1α1, dt2α2,

(
(t21 − t1)α2

1 + (t22 − t2)α2
2 + (t1t2 − t2)[α1, α2]+ + t2g

−1F (A)g
)n−2

]
(I.52)

where α1 = g−1dg and α2 = g−1Ag and

CS2n−1(g−1dg) = (−1)n−1n!(n− 1)!

(2n− 1)!
Tr(g−1dg)2n−1 (I.53)

This formula is useful in discussing physical actions with Chern-Simons terms and

topics such as the descent formalism for anomalies, and “anomaly inflow.” See below.

One can also derive this using the formalism of the “Cartan homotopy operator.” See

1. Nakahara, sec. 11.5.3

2. B. Zumino, Les Houches lectures

3. Alvarez-Gaumé and Ginsparg, Ann. Phys.

Exercise

Show that if A is a flat connection on a bundle P , not necessarily trivializable, then

CS(Ag, A) = (−1)n−1n!(n− 1)!

(2n− 1)!
Tr(g−1DAg)2n−1 (I.54)

where g−1DAg = g−1(dg +Ag − gA) = Ag −A.

Exercise Generalizing Polyakov-Wiegmann

Put A = 0h in (I.51) and derive the Polyakov-Wiegmann formula and its generaliza-

tions.

Exercise

Let E = M ×CN be a trivial vector bundle and let P and Q be orthogonal projection

operators to possibly nontrivial subbundles.

Compute CS(Pd⊕Qd, d) where d is the trivial connection on E.

– 222 –



I.7.1 Other paths to Chern-Simons

A more conceptual description of Chern-Simons forms is the following. Consider an arbi-

trary path γ of connections, A(t). Using the pullback bundle from M × I → M we get a

bundle π∗(P )→M × I, and the family of connections defines a connection:

dM + dt
∂

∂t
+A(t) (I.55)

on π∗(P ). It is useful to introduce a bigrading on Ωp,q(M × I) so that (p, q) forms

are in Ωp(M)⊗ Ωq(I). Locally, our connection form A(t) is of type (1, 0). Let us call the

connection corresponding to the covariant derivative (I.55) A. Because of the t-dependence

in A(t), the curvature F (A) has components of type (2, 0) as well as (1, 1):

F (A) = F (A(t)) + dt ∧ ∂A
∂t

(I.56)

(note that ∂A
∂t ∈ Ω1(M ; adP ). ) Now, we can define a more general Chern-Simons form:

CSγ :=

∫
I

TrF (A)n (I.57)

for any path γ. If γ(0) = A0 and γ(1) = A1 then this satisfies

dMCSγ = TrF (A1)n − TrF (A0)n (I.58)

The Chern-Simons forms above were defined by choosing the linear path between A0 and

A1.

An example where this is important arises when one considers a path of gauge trans-

formations g(t), 0 ≤ t ≤ 1 defining a path from A to Ag, with g = g(1). Note that this

path differs from the linear path.

Suppose we have two paths A0 +α1(t) and A0 +α2(t). Since the space of connections

is an affine space we can find a homotopy α(s, t) between these paths.

Thus: α(0, t) = α1(t), α(1, t) = α2(t), and α1(1) = α2(1) = α. Then

CSγ1 − CSγ2 = d

∫
I×I

TrF (A)n (I.59)

where the integral over I × I is over a surface in the infinite-dimensional vector space

Γ(Ω(M ; adP )) spanning the two paths, oriented appropriately.

*****************************************

*****************************************

STILL NEEDED:

1. VALUE OF
∫
M3

CS(A) AS ELEMENT OF R/2πZ .

2. CAREFUL NORMALIZATIONS OF INVARIANT FORM ON LIE ALGEBRAS.

3. CHERN-SIMONS AS QUADRATIC REFINEMENT: GOES IN DIFFL COHO

SECTION.
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J. Some Material On Lie Groups And Lie Algebras

J.1 The Structure Of The General Compact Lie Group

If G is a Lie group then the connected component of the identity, denoted G1 is a normal

subgroup. 45 Therefore G/G1 is a group, but this is just the group of connected components

of G so we have

1→ G1 → G→ π0(G)→ 1 (J.1)

In general G is not a direct product: G is not isomorphic, as a group, to G1 × π0(G). As ♣Give example

where it does not

split ♣a simple example: O(2) = SO(2) o Z2. As a manifold it is a product of two circles, but

the Z2 factor acts by the nontrivial automorphism R(θ)→ R(−θ).

Now π0(G) can be any finite group, whatsoever (after all, we could take G to be that

finite group!).

Now let us focus on G1. It is a connected compact Lie group. The universal cover G̃1

is also a connected, Lie group, although it might be noncompact. One can show that π1 of

any Lie group whatsoever is Abelian 46 and therefore, assuming π1 is finitely generated, it

is, noncanonically, a product of a finite group and a lattice Zd. The lattice must act on Rd

to give U(1)d and “so” (we are not giving a completely rigorous argument here, but the

conclusion is true) G1 is of the form

G1
∼= (Gss × U(1)r) /Z (J.2)

where Gss is compact, connected, semisimple, and simply connected Lie group and Z ⊂
Gss×U(1)r is a subgroup of the center, and is a finite Abelian group. In turn Gss has the

form

Gss =
∏
i

Gssi (J.3)

where Gssi are compact, connected, simple, and simply connected Lie groups. The list of

these groups, together with their centers and outer automorphism groups is given in

45Proof : If g ∈ G1 let g(t) be a path connecting g to 1G. If h ∈ G then h−1g(t)h connects h−1gh to 1G.
46Proof : Given two paths g1(t), g2(t) consider the continuous function F (t, s) = g1(t)g2(s).
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g G̃(g) Z(g)

Ar SU(r + 1) Zr+1

Br Spin(2r + 1) Z2

Cr USp(2r) Z2

D2s+1 Spin(4s+ 2) Z4

D2s Spin(4s) Z2 × Z2

E6 E6 Z3

E7 E7 Z2

E8 E8 1

F4 F4 1

G2 G2 1

*********************

ALSO GIVE DYNKIN DIAGRAMS AND AUTOMORPHISM GROUP OF THOSE

AND EXPLAIN ITS RELATION TO THE OUTER AUTOMORPHISMS OF G.

*********************

WHAT CAN WE SAY ABOUT THE POSSIBLE EXTENSIONS?

If our group has positive dimension then the existence of an extension automatically

implies a canonical homomorphism ω̄ : π0(G)→ Out(G1).

**************

J.2 Dual Coxeter Number

The dual Coxeter number of the simple Lie algebras is given by 47

47Warning: For nonsimply laced algebras there is also a Coxeter number, and it differs from the dual

Coxeter number.
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g G̃(g) h(g)

Ar SU(r + 1) r + 1

Br Spin(2r + 1) 2r − 1

Cr USp(2r) r + 1

Dr Spin(2r) 2r − 2

E6 E6 12

E7 E7 18

E8 E8 30

F4 F4 9

G2 G2 4

K. Categories: Groups and Groupoids

A rather abstract notion, which nevertheless has found recent application in string theory

and conformal field theory is the language of categories. Many physicists object to the high

level of abstraction entailed in the category language. Some mathematicians even refer to

the subject as “abstract nonsense.” (Others take it very seriously.) However, it seems to be

of increasing utility in the further formal development of string theory and supersymmetric

gauge theory. It is also essential for reading any of the literature on topological field theory.

We briefly illustrate some of that language here. Our main point here is to introduce a

different viewpoint on what groups are that leads to a significant generalization: groupoids.

Moreover, this point of view also provides some very interesting insight into the meaning of

group cohomology. Related constructions have been popular in condensed matter physics

and topological field theory.

Definition A category C consists of

a.) A set Ob(C) of “objects”

b.) A collection Mor(C) of sets hom(X,Y ), defined for any two objects X,Y ∈ Ob(C).
The elements of hom(X,Y ) are called the “morphisms from X to Y .” They are often

denoted as arrows:

X
φ→ Y (K.1)

c.) A composition law:

hom(X,Y )× hom(Y,Z)→ hom(X,Z) (K.2)

(ψ1, ψ2) 7→ ψ2 ◦ ψ1 (K.3)

Such that

1. A morphism φ uniquely determines its source X and target Y . That is, hom(X,Y )

are disjoint for distinct ordered pairs (X,Y ).
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2. ∀X ∈ Ob(C) there is a distinguished morphism, denoted 1X ∈ hom(X,X) or

IdX ∈ hom(X,X), which satisfies:

1X ◦ φ = φ ψ ◦ 1X = ψ (K.4)

for all morphisms φ ∈ hom(Y,X) and ψ ∈ hom(X,Y ) for all Y ∈ Ob(C). 48

3. Composition of morphisms is associative:

(ψ1 ◦ ψ2) ◦ ψ3 = ψ1 ◦ (ψ2 ◦ ψ3) (K.5)

An alternative definition one sometimes finds is that a category is defined by two sets

C0 (the objects) and C1 (the morphisms) with two maps p0 : C1 → C0 and p1 : C1 → C0.

The map p0(f) = x1 ∈ C0 is the range map and p1(f) = x0 ∈ C0 is the domain map. In

this alternative definition a category is then defined by a composition law on the set of

composable morphisms

C2 = {(f, g) ∈ C1 × C1|p0(f) = p1(g)} (K.6)

which is sometimes denoted C1p1 ×p0 C1 and called the fiber product. The composition law

takes C2 → C1 and may be pictured as the composition of arrows. If f : x0 → x1 and

g : x1 → x2 then the composed arrow will be denoted g ◦ f : x0 → x2. The composition

law satisfies the axioms

1. For all x ∈ X0 there is an identity morphism in X1, denoted 1x, or Idx, such that

1xf = f and g1x = g for all suitably composable morphisms f, g.

2. The composition law is associative. If f, g, h are 3-composable morphisms then

(hg)f = h(gf).

Remarks:

1. When defining composition of arrows one needs to make an important notational

decision. If f : x0 → x1 and g : x1 → x2 then the composed arrow is an arrow

x0 → x2. We will write g ◦ f when we want to think of f, g as functions and fg when

we think of them as arrows. ♣Is this dual

notation really a

good idea?? ♣
2. It is possible to endow the data X0, X1 and p0, p1 with additional structures, such as

topologies, and demand that p0, p1 have continuity or other properties.

3. A morphism φ ∈ hom(X,Y ) is said to be invertible if there is a morphism ψ ∈
hom(Y,X) such that ψ ◦ φ = 1X and φ ◦ ψ = 1Y . If X and Y are objects with an

invertible morphism between them then they are called isomorphic objects. One key

reason to use the language of categories is that objects can have nontrivial automor-

phisms. That is, hom(X,X) can have invertible elements other than just 1X in it.

When this is true then it is tricky to speak of “equality” of objects, and the language

of categories becomes very helpful. As a concrete example you might ponder the

following question: “Are all real vector spaces of dimension n the same?”

48As an exercise, show that these conditions uniquely determine the morphism 1X .
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Here are some simple examples of categories:

1. SET: The category of sets and maps of sets. 49

2. TOP: The category of topological spaces and continuous maps.

3. TOPH: The category of topological spaces and homotopy classes of continuous

maps.

4. MANIFOLD: The category of manifolds and suitable maps. We could take topo-

logical manifolds and continuous maps of manifolds. Or we could take smooth man-

ifolds and smooth maps as morphisms. The two choices lead to two (very different!)

categories.

5. BORD(n): The bordism category of n-dimensional manifolds. Roughly speaking,

the objects are n-dimensional manifolds without boundary and the morphisms are

bordisms. A bordism Y from an n-manifold M1 to and n-manifold M2 is an (n+ 1)-

dimensional manifold with a decomposition of its boundary ∂Y = (∂Y )in q (∂Y )out
together with diffeomorphisms θ1 : (∂Y )in →M1 and θ2 : (∂Y )out →M2.

6. GROUP: the category of groups and homomorphisms of groups. Note that here

if we took our morphisms to be isomorphisms instead of homomorphisms then we

would get a very different category. All the pairs of objects in the category with

nontrivial morphism spaces between them would be pairs of isomorphic groups.

7. AB: The (sub) category of abelian groups.

8. Fix a group G and let G-SET be the category of G-sets, that is, sets X with a

G-action. For simplicity let us just write the G-action Φ(g, x) as g ·x for x a point in

a G-set X. We take the morphisms f : X1 → X2 to satisfy satisfy f(g ·x1) = g ·f(x1).

9. VECTκ: The category of finite-dimensional vector spaces over a field κ with mor-

phisms the linear transformations.

One use of categories is that they provide a language for describing precisely notions

of “similar structures” in different mathematical contexts. When discussed in this way it

is important to introduce the notion of “functors” and “natural transformations” to speak

of interesting relationships between categories.

In order to state a relation between categories one needs a “map of categories.” This

is what is known as a functor:

Definition A functor between two categories C1 and C2 consists of a pair of maps Fobj :

Obj(C1)→ Obj(C2) and Fmor : Mor(C1)→Mor(C2) so that if

x
f // y ∈ hom(x, y) (K.7)

49We take an appropriate collection of sets and maps to avoid the annoying paradoxes of set theory.
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then

Fobj(x)
Fmor(f)// Fobj(y) ∈ hom(Fobj(x), Fobj(y)) (K.8)

and moreover we require that Fmor should be compatible with composition of morphisms:

There are two ways this can happen. If f1, f2 are composable morphisms then we say F is

a covariant functor if

Fmor(f1 ◦ f2) = Fmor(f1) ◦ Fmor(f2) (K.9)

and we say that F is a contravariant functor if

Fmor(f1 ◦ f2) = Fmor(f2) ◦ Fmor(f1) (K.10)

In both cases we also require 50

Fmor(IdX) = IdF (X) (K.11)

We usually drop the subscript on F since it is clear what is meant from context.

Exercise

Using the alternative definition of a category in terms of data p0,1 : X1 → X0 define

the notion of a functor writing out the relevant commutative diagrams.

Exercise Opposite Category

If C is a category then the opposite category Copp is defined by just reversing all arrows.

More formally: The set of objects is the same and

homCopp(X,Y ) := homC(Y,X) (K.12)

so for every morphism f ∈ homC(Y,X) we associate fopp ∈ homCopp(X,Y ) such that

f1 ◦Copp f2 = (f2 ◦C f1)opp (K.13)

a.) Show that if F : C → D is a contravariant functor then one can define in a natural

way a covariant functor F : Copp → D.

b.) Show that if F : C → D is a covariant functor then we can naturally define another

covariant functor F opp : Copp → Dopp

Example 1: Every category has a canonical functor to itself, called the identity functor

IdC .

50Although we do have Fmor(IdX) ◦Fmor(f) = Fmor(f) for all f ∈ hom(Y,X) and Fmor(f) ◦Fmor(IdX) =

Fmor(f) for all f ∈ hom(X,Y ) this is not the same as the statement that Fmor(IdX) ◦ φ = φ for all

φ ∈ hom(F (Y ), F (X)), so we need to impose this extra axiom.
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Example 2: There is an obvious functor, the forgetful functor from GROUP to SET.

This idea extends to many other situations where we “forget” some mathematical structure

and map to a category of more primitive objects.

Example 3: Since AB is a subcategory of GROUP there is an obvious functor F :

AB→ GROUP.

Example 4: In an exercise below you are asked to show that the abelianization of a group

defines a functor G : GROUP→ AB.

Example 5: Fix a group G. Then in the notes above we have on several occasions used

the functor

FG : SET→ GROUP (K.14)

by observing that if X is a set, then FG(X) = Maps[X → G] is a group. Check this is a

contravariant functor: If f : X1 → X2 is a map of sets then

FG(X1) FG(X2)
FG(f)oo (K.15)

The map FG(f) is usually denoted f∗ and is known as the pull-back. To be quite explicit:

If Ψ is a map of X2 → G then f∗(Ψ) := Ψ ◦ f is a map X1 → G.

This functor is used in the construction of certain nonlinear sigma models which are

quantum field theories where the target space is a group G. The viewpoint that we are

studying the representation theory of an infinite-dimensional group of maps to G has been

extremely successful in a particular case of the Wess-Zumino-Witten model, a certain two

dimensional quantum field theory that enjoys conformal invariance (and more).

Example 6: Now let us return to the category G-SET. Now fix any set Y . Then in the

notes above we have on several occasions used the functor

FG,Y : G-SET→ G-SET (K.16)

by observing that if X is a G-set, then FY (X) = Maps[X → Y ] is also a G-set. To check

this is a contravariant functor we write:

[g · (f∗Ψ)](x1) = (f∗Ψ)(g−1 · x1)

= Ψ(f(g−1 · x1))

= Ψ(g−1 · (f(x1)))

= (g ·Ψ)(f(x1))

= (f∗(g ·Ψ))(x1)

(K.17)

and hence Ψ→ g ·Ψ is a morphism of G-sets.

This functor is ubiquitous in quantum field theory: If a spacetime enjoys some sym-

metry (for example rotational or Poincaré symmetry) then the same group will act on the

space of fields defined on that spacetime.

Example 7: Fix a nonnegative integer n and a group G. Then the group cohomology we

discussed above (take the trivial twisting ωg = IdA for all g) defines a covariant functor

Hn(G, •) : AB→ AB (K.18)
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To check this is really a functor we need to observe the following: If ϕ : A1 → A2 is a

homomorphism of Abelian groups then there is an induced homomorphim, usually denoted

ϕ∗ : Hn(G,A1)→ Hn(G,A2) (K.19)

You have to check that Id∗ = Id and

(ϕ1 ◦ ϕ2)∗ = (ϕ1)∗ ◦ (ϕ2)∗ (K.20)

Strictly speaking we should denote ϕ∗ by Hn(G,ϕ), but this is too fastidious for the present

author.

Example 8: Fix a nonnegative integer n and any group A. Then the group cohomology

we discussed above (take the trivial twisting ωg = IdA for all g) defines a contravariant

functor

Hn(•, A) : GROUP→ AB (K.21)

To check this is really a functor we need to observe the following: If ϕ : G1 → G2 is a

homomorphism of Abelian groups then there is an induced homomorphim, usually denoted

ϕ∗

ϕ∗ : Hn(G2, A)→ Hn(G1, A) (K.22)

Example 9: Topological Field Theory. The very definition of topological field theory is

that it is a functor from a bordism category of manifolds to the category of vector spaces

and linear transformations. See chapter 5 for some discussion. For much more about this

one can consult a number of papers. Two online resources are:

http://www.physics.rutgers.edu/∼gmoore/695Fall2015/TopologicalFieldTheory.pdf (very

similar to the present notes).

https://www.ma.utexas.edu/users/dafr/bordism.pdf

Note that in example 2 there is no obvious functor going the reverse direction. When

there are functors both ways between two categories we might ask whether they might be,

in some sense, “the same.” But saying precisely what is meant by “the same” requires

some care.

Definition If C1 and C2 are categories and F1 : C1 → C2 and F2 : C1 → C2 are two functors

then a natural transformation τ : F1 → F2 is a rule which, for every X ∈ Obj(C1) assigns

an arrow τX : F1(X)→ F2(X) so that, for all X,Y ∈ Obj(C1) and all f ∈ hom(X,Y ),

τY ◦ F1(f) = F2(f) ◦ τX (K.23)
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Or, in terms of diagrams.

F1(X)
F1(f) //

τX
��

F1(Y )

τY
��

F2(X)
F2(f) // F2(Y )

(K.24)

Example 1: The evaluation map. Here is another tautological construction which never-

theless can be useful. Let S be any set and define a functor

FS : SET→ SET (K.25)

by saying that on objects we have

FS(X) := Map[S → X]× S (K.26)

and if ϕ : X1 → X2 is a map of sets then

FS(ϕ) : Map[S → X1]× S →Map[S → X2]× S (K.27)

is defined by FS(ϕ) : (f, s) 7→ (ϕ ◦ f, s). Then we claim there is a natural transformation

to the identity functor. For every set X we have

τX : FS(X) = Map[S → X]× S → Id(X) = X (K.28)

It is defined by τX(f, s) := f(s). This is known as the “evaluation map.” Then we need to

check

FS(X)
τX //

FS(ϕ)

��

X

ϕ

��
FS(Y )

τY // Y

(K.29)

commutes. If you work it out, it is just a tautology.

Example 2: The determinant. 51 Let COMMRING be the category of commutative

rings with morphisms the ring morphisms. (So, ϕ : R1 → R2 is a homomorphism of Abelian

groups and moreover ϕ(r · s) = ϕ(r) · ϕ(s).) Let us consider two functors

COMMRING→ GROUP (K.30)

The first functor F1 maps a ring R to the multiplicative group U(R) of multiplicatively

invertible elements. This is often called the group of units in R. If ϕ is a morphism of

rings and r ∈ U(R1) then ϕ(r) ∈ U(R2) and the map ϕ∗ : U(R1)→ U(R2) defined by

ϕ∗ : r 7→ ϕ(r) (K.31)

is a group homomorphism. So F1 is a functor. The second functor F2 maps a ring R

to the matrix group GL(n,R) of n × n matrices such that there exists an inverse matrix

51This example uses some terms from linear algebra which can be found in the “User’s Manual,” Chapter

2 below.
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with values in R. Again, if ϕ : R1 → R2 is a morphism then applying ϕ to each matrix

element defines a group homomorphism ϕ∗ : GL(n,R1) → GL(n,R2). Now consider the

determinant of a matrix g ∈ GL(n,R). The usual formula

det(g) :=
∑
σ∈Sn

ε(σ)g1,σ(1) · g2,σ(2) · · · gn,σ(n) (K.32)

makes perfect sense for g ∈ GL(n,R). Moreover,

det(g1g2) = det(g1) det(g2) (K.33)

Now we claim that the determinant defines a natural transformation τ : F1 → F2. For each

object R ∈ Ob(COMMRING) we assign the morphism

τR : GL(n,R)→ U(R) (K.34)

defined by τR(g) := det(g). Thanks to (K.33) this is indeed a morphism in the cate-

gory GROUP, that is, it is a group homomorphism. Moreover, it satisfies the required

commutative diagram because if ϕ : R1 → R2 is a morphism of rings then

ϕ∗(det(g)) = det(ϕ∗(g)). (K.35)

Example 3: Natural transformations in cohomology theory. Cohomology groups provide

natural examples of functors, as we have stressed above. There are a number of interesting

natural transformations between these different cohomology-group functors. ♣Can we explain an

elementary example

with group

cohomology as

developed so far???

♣Definition Two categories are said to be equivalent if there are functors F : C1 → C2

and G : C2 → C1 together with isomorphisms (via natural transformations) FG ∼= IdC2
and GF ∼= IdC1 . (Note that FG and IdC2 are both objects in the category of functors

FUNCT(C2, C2) so it makes sense to say that they are isomorphic.) ♣Should explain

example showing

category of

finite-dimensional

vector spaces over a

field is equivalent to

the catetgory of

nonnegative

integers. ♣

Many important theorems in mathematics can be given an elegant and concise formu-

lation by saying that two seemingly different categories are in fact equivalent. Here is a

(very selective) list: 52

Example 1: Consider the category with one object for each nonnegative integer n and the

morphism space GL(n, κ) of invertible n × n matrices over the field κ. These categories

are equivalent. That is one way of saying that the only invariant of a finite-dimensional

vector space is its dimension.

Example 2: The basic relation between Lie groups and Lie algebras the statement that the

functor which takes a Lie group G to its tangent space at the identity, T1G is an equivalence

of the category of connected and simply-connected Lie groups with the category of finite-

dimensional Lie algebras. One of the nontrivial theorems in the theory is the existence of

a functor from the category of finite-dimensional Lie algebras to the category of connected

52I thank G. Segal for a nice discussion that helped prepare this list.
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and simply-connected Lie groups. Intuitively, it is given by exponentiating the elements of

the Lie algebra.

Example 3: Covering space theory is about an equivalence of categories. On the one

hand we have the category of coverings of a pointed space (X,x0) and on the other hand

the category of topological spaces with an action of the group π1(X,x0). Closely related

to this, Galois theory can be viewed as an equivalence of categories.

Example 4: The category of unital commutative C∗-algebras is equivalent to the category

of compact Hausdorff topological spaces. This is known as Gelfand’s theorem.

Example 5: Similar to the previous example, an important point in algebraic geometry

is that there is an equivalence of categories of commutative algebras over a field κ (with

no nilpotent elements) and the category of affine algebraic varieties.

Example 6: Pontryagin duality is a nontrivial self-equivalence of the category of locally

compact abelian groups (and continuous homomorphisms) with itself.

Example 7: A generalization of Pontryagin duality is Tannaka-Krein duality between the

category of compact groups and a certain category of linear tensor categories. (The idea

is that, given an abstract tensor category satisfying certain conditions one can construct a

group, and if that tensor category is the category of representations of a compact group,

one recovers that group.)

Example 8: The Riemann-Hilbert correspondence can be viewed as an equivalence of

categories of flat connections (a.k.a. linear differential equations, a.k.a. D-modules) with

their monodromy representations. ♣This needs a lot

more explanation.

♣

In physics, the statement of “dualities” between different physical theories can some-

times be formulated precisely as an equivalence of categories. One important example of

this is mirror symmetry, which asserts an equivalence of (A∞)-) categories of the derived

category of holomorphic bundles on X and the Fukaya category of Lagrangians on X∨.

But more generally, nontrivial duality symmetries in string theory and field theory have a

strong flavor of an equivalence of categories.

Exercise Playing with natural transformations

a.) Given two categories C1, C2 show that the natural transformations allow one to

define a category FUNCT(C1, C2) whose objects are functors from C1 to C2 and whose

morphisms are natural transformations. For this reason natural transformations are often

called “morphisms of functors.”
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b.) Write out the meaning of a natural transformation of the identity functor IdC to

itself. Show that End(IdC), the set of all natural transformations of the identity functor

to itself is a monoid.

Exercise Freyd’s theorem

A “practical” way to tell if two categories are equivalent is the following:

By definition, a fully faithful functor is a functor F : C1 → C2 where Fmor is a bijection

on all the hom-sets. That is, for all X,Y ∈ Obj(C1) the map

Fmor : hom(X,Y )→ hom(Fobj(X), Fobj(Y )) (K.36)

is a bijection.

Show that C1 is equivalent to C2 iff there is a fully faithful functor F : C1 → C2 so that

any object α ∈ Obj(C2) is isomorphic to an object of the form F (X) for some X ∈ Obj(C1).

Exercise

As we noted above, there is a functor AB→ GROUP just given by inclusion.

a.) Show that the abelianization map G → G/[G,G] defines a functor GROUP →
AB.

b.) Show that the existence of nontrivial perfect groups, such as A5, implies that this

functor cannot be an equivalence of categories.

In addition to the very abstract view of categories we have just sketched, very concrete

objects, like groups, manifolds, and orbifolds can profitably be viewed as categories.

One may always picture a category with the objects constituting points and the mor-

phisms directed arrows between the points as shown in Figure 39.

As an extreme example of this let us consider a category with only one object, but

we allow the possibility that there are several morphisms. For such a category let us look

carefully at the structure on morphisms f ∈ Mor(C). We know that there is a binary

operation, with an identity 1 which is associative.

But this is just the definition of a monoid!

If we have in addition inverses then we get a group. Hence:

Definition A group is a category with one object, all of whose morphisms are invertible.
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Figure 39: Pictorial illustration of a category. The objects are the black dots. The arrows are

shown, and one must give a rule for composing each arrow and identifying with one of the other

arrows. For example, given the arrows denoted f and g it follows that there must be an arrow

of the type denoted f ◦ g. Note that every object x has at least one arrow, the identity arrow in

Hom(x, x).

To see that this is equivalent to our previous notion of a group we associate to each

morphism a group element. Composition of morphisms is the group operation. The in-

vertibility of morphisms is the existence of inverses.

We will briefly describe an important and far-reaching generalization of a group af-

forded by this viewpoint. Then we will show that this viewpoint leads to a nice geometrical

construction making the formulae of group cohomology a little bit more intuitive.

K.1 Groupoids

Definition A groupoid is a category all of whose morphisms are invertible.

Note that for any object x in a groupoid, hom(x, x) is a group. It is called the auto-

morphism group of the object x.

Example 1. Any equivalence relation on a set X defines a groupoid. The objects are the

elements of X. The set Hom(a, b) has one element if a ∼ b and is empty otherwise. The

composition law on morphisms then means that a ∼ b with b ∼ c implies a ∼ c. Clearly,

every morphism is invertible.

Example 2. Consider time evolution in quantum mechanics with a time-dependent Hamil-

tonian. There is no sense to time evolution U(t). Rather one must speak of unitary evolu-

tion U(t1, t2) such that U(t1, t2)U(t2, t3) = U(t1, t3). Given a solution of the Schrodinger

equation Ψ(t) we may consider the state vectors Ψ(t) as objects and U(t1, t2) as morphisms.

In this way a solution of the Schrodinger equation defines a groupoid. ♣Clarify this

remark. ♣

Example 3. Let X be a topological space. The fundamental groupoid π≤1(X) is the

category whose objects are points x ∈ X, and whose morphisms are homotopy classes of
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paths f : x→ x′. These compose in a natural way. Note that the automorphism group of

a point x ∈ X, namely, hom(x, x) is the fundamental group of X based at x, π1(X,x).

Example 4. Gauge theory: Objects = connections on a principal bundle. Morphisms

= gauge transformations. This is the right point of view for thinking about some more

exotic (abelian) gauge theories of higher degree forms which arise in supergravity and string

theories.

Example 5. In the theory of string theory orbifolds and orientifolds spacetime must be

considered to be a groupoid. Suppose we have a right action of G on a set X, so we have

a map

Φ : X ×G→ X (K.37)

such that

Φ(Φ(x, g1), g2) = Φ(x, g1g2) (K.38)

Φ(x, 1G) = x (K.39)

for all x ∈ X and g1, g2 ∈ G. We can just write Φ(x, g) := x · g for short. We can then

form the category X//G with

Ob(X//G) = X

Mor(X//G) = X ×G
(K.40)

We should think of a morphism as an arrow, labeled by g, connecting the point x to the

point x · g. The target and source maps are: ♣FIGURE

NEEDED HERE! ♣

p0((x, g)) := x · g p1((x, g)) := x (K.41)

The composition of morphisms is defined by

(xg1, g2) ◦ (x, g1) := (x, g1g2) (K.42)

or, in the other notation (better suited to a right-action):

(x, g1)(xg1, g2) := (x, g1g2) (K.43)

Note that (x, 1G) ∈ hom(x, x) is the identity morphism, and the composition of morphisms

makes sense because we have a group action. Also note that pt//G where G has the trivial

action on a point realizes the group G as a category, as sketched above.

Example 6. In the theory of string theory orbifolds and orientifolds spacetime must be

considered to be a groupoid. (This is closely related to the previous example.)

Exercise
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For a group G let us define a groupoid denoted G//G (for reasons explained later)

whose objects are group elements Obj(G//G) = G and whose morphisms are arrows defined

by

g1
h // g2 (K.44)

iff g2 = h−1g1h. This is the groupoid of principal G-bundles on the circle.

Draw the groupoid corresponding to S3.

K.2 Tensor Categories

To define a TFT we need the further notion of a tensor category. Note that given a category

C, the Cartesian products C × C, C × C × C, ... are also categories in a natural way.

Definition A tensor category (also known as a monoidal category) is a category with

a functor ⊗ : C × C → C such that there is an isomorphism A of the two functors

⊗ ◦ ⊗12 : C × C × C → C and ⊗ ◦ ⊗23 : C × C × C → C satisfying the pentagon identity,

and such that there is an identity object 1C together with natural transformations of

functors C → C:

ιL : 1C ⊗ · → Id (K.45)

ιR : · ⊗ 1C → Id (K.46)

These data are subject to a number of natural compatibility conditions: ♣Do we require the

existence of a dual

object? ♣To give an example of the compatibility conditions we consider the the first condition

on the natural transformation A: for all objects x, x′, x′′ in C0 we have an isomorphism:

Ax,x′,x′′ : (x⊗ x′)⊗ x′′ → x⊗ (x′ ⊗ x′′) (K.47)

which satisfies the pentagon identity: ♣FIX xy matrix ♣

((x1 ⊗ x2)⊗ x3)⊗ x4

tt

// (x1 ⊗ x2)⊗ (x3 ⊗ x4)

**
(x1 ⊗ (x2 ⊗ x3))⊗ x4

--

x1 ⊗ (x2 ⊗ (x3 ⊗ x4))

x1 ⊗ ((x2 ⊗ x3)⊗ x4))

44

(K.48)

It is then a theorem (the “coherence theorem”) that x0 ⊗ x1 · · · ⊗ xn is well-defined up

to isomorphism no matter how one brackets the products. The conditions on the natural

transformations ιL and ιR are fairly obvious.

Example The category VECTκ is a tensor category. What is the tensor unit 1VECTκ ?

Let σ : C × C → C × C be the exchange functor that switches factors on objects and

morphisms.
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Definition A symmetric monoidal category is a monoidal category with an isomorphism Ω

of ⊗◦ σ with ⊗ which squares to one. Again, there are many rather obvious compatibility

conditions with A, ιL and ιR.

Again, this means that for all objects x, y we have an isomorphism

Ωx,y : x⊗ y → y ⊗ x (K.49)

so that Ωy,x ◦ Ωx,y = 1x⊗y.

Remark: An important generalization for conformal field theory and for quasiparticle

statistics in 2+1 dimensions is the notion of a braided tensor category where there is an

isomorphism Ω, but it does not square to 1.

Finally, we need the notation of a (symmetric) tensor functor. This is a functor F :

C → D between symmetric tensor categories together with an isomorphism 1D → F (1C)

and an isomorphism of the two functors C × C → D given by F ◦ ⊗ and ⊗ ◦ F × F .

K.2.1 Z2-graded vector spaces

A Z2 graded vector space is a vector space with a decomposition V = V0 ⊕ V1, where the

subscripts are understood as elements of Z2. In the category of Z2-graded vector spaces

we can introduce two different kinds of tensor categories. For Z2 graded vector spaces we

can and will use the graded tensor product. Then there is an isomorphism

Ω : V ⊗W →W ⊗ V (K.50)

but we must be careful to apply the Koszul sign rule: If v, w are homogeneous elements

then

Ω(v ⊗ w) = (−1)|v|·|w|w ⊗ v (K.51)

This rule has the important consequence that if we have any collection (Vα)α∈I of super-

vector spaces (where the subscript α denotes different supervector spaces and should not

be confused with the Z2 grading) then there is a single canonical tensor product

⊗αVα

without the need to specify any ordering.

K.2.2 Category Of Representations Of A Group

Let G be a group. Then then there is a category whose objects are representations and

morphisms are intertwiners of representations (i.e. maps between representations that

commute with the G action.

Now let G be a compact group and restrict to the subcategory of finite-dimensional

representations. Call this Rep(G). This is a tensor category. Moreover, there is a set of

“simple” objects, the irreducible representations Vλ such that all objects are isomorphic to

direct sums of simple objects. The tensor functor is determined by the “fusion rules”

Vλ ⊗ Vµ ∼= Dρ
λµ ⊗ Vρ (K.52)

where Dρ
λµ is a finite-dimensional real vector space of degeneracies.
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L. Bordism

This mathematical topic is important background for topological field theories. There is a

classic book on the subject:

Milnor and Stasheff, Characteristic Classes, PUP

More technical details can be found in the book of R. Stong.

In addition we have used some material from the very nice lecture notes of Dan Freed

:

D. Freed, “Bordism Old And New,”

https://www.ma.utexas.edu/users/dafr/M392C-2012/index.html

L.1 Unoriented Bordism: Definition And Examples

Here we give the official definition of a bordism:

Definition Let Y0, Y1 be two closed (d− 1)-dimensional manifolds. A bordism from Y0 to

Y1 is

1. A d-manifold X together with a disjoint partition of its boundary:

∂X = (∂X)0 q (∂X)1 (L.1)

2. A pair of embeddings θ0 : [0, 1) × Y0 → X and θ1 : (−1, 0] × Y1 → X, which are

diffeomorphisms onto their images such that the restrictions θ0 : {0} × Y0 → (∂X)in

and θ1 : {0} × Y1 → (∂X)out are homeomorphisms.

The reason for the extra level of complexity in this definition compared to what we said

earlier is that this extra data facilitates the gluing of bordisms to produce a new bordism.

It is easy to see that bordism is an equivalence relation and that disjoint union defines

an abelian group structure on the space of bordism equivalence classes Ωn of n-manifolds.

The zero element of the abelian group is the equivalence class of the empty set ∅n and any

closed n-manifold X is its own inverse since [0, 1] ×X can be considered as a bordism of

X qX with ∅. So 2[X] = 0 in Ωn.

Examples

1. There is only one nontrivial zero-dimensional manifold, the point, and we have just

seen that the disjoint union of two points is null-bordant, hence Ω0
∼= Z/2Z. Note

that if we dropped the manifold condition on X then the letter Y would define a

bordism of two points (equivalent to zero) with one point, and hence the bordism

group would be trivial. Thus, the manifold condition is important.

2. Ω1 = 0, because the only closed connected one-manifold is the circle, and this clearly

bounds a disk.
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3. One can show that Ω2
∼= Z/2Z with generator [RP2]. Here is the argument (taken

from D. Freed’s notes “Bordism Old And New,” on his homepage). The classification

of compact surfaces shows that they are characterized by two invariants: Orientability

and the Euler character. Oriented surfaces are clearly bordant to zero. Note well! The

Eulcer character is not a bordism invariant! Unorientable surfaces are all obtained by

connected sums with RP2. The connected sum of two copies of RP2 is a circle bundle

over the circle. Take [0, 1] × S1 and quotient by {(0, z)} ∼ {(1, z̄)} (where we view

S1 as the unit complex numbers). Note that we can replace the S1 by the disk D2

and use the same identification {(0, z)} ∼ {(1, z̄)} to produce a bordism of the Klein

bottle to zero. Next we claim that RP2 descends to a nontrivial bordism class. For, if

it had a bordism to zero ∂X = RP2 then triangulation of X gives a triangulation of

the double X ∪RP2 X with Euler character 2χ(X)− 1. On the other hand, the Euler

character of a closed 3-fold is zero. Now, the general connected unorientable surface

is a connected sum of n copies of RP2. Separate these in pairs and choose a bordism

of the pairs to zero to identify the bordism class with an element nmod2 of Z/2Z.

4. To describe all bordism groups Ωd it is useful to note that Cartesion product of

manifolds is compatible with the bordism equivalence relation and this makes Ω∗ ∼=
qd≥0Ωd into a Z-graded ring, with the grading given by the dimension. Thom proved

that

Ω∗ ∼= R[x2, x4, x5, x6, x8, x9, x10, x11, x12, x13, x14, x16, x17, ...] (L.2)

where R = Z/2Z and there is precisely one generator xk of degree k so long as k is

not of the form 2j − 1. The even degree generators are the bordism classes of RPk

and the odd ones are a quotient of (Sm × CP`)/Z2 where the Z2 acts as (antipodal

map, complex conjugation).

5. Moreover, to any manifold there is a series of cohomology classes wi(Y ) ∈ H i(Y ;Z/2Z)

known as Stiefel-Whitney classes. They are associated with the twisting of the tan-

gent bundle. (For example, w1(Y ) measures whether Y is orientable or not.) The

Stiefel numbers of a manifold is the sequence of elements of Z/2Z:

〈wi1(Y ) ∪ · · ·wik(Y ), [Y ]〉 (L.3)

and two manifolds are bordant iff all their Stiefel numbers agree. For the last two

items see the excellent book by Milnor and Stasheff, Characteristic Classes. 53

L.2 The Bordism Category Bord〈d−1,d〉

Now, we can define a bordism category Bord〈d−1,d〉.

1. Objects: Closed (d− 1)-manifolds, usually denoted Y .

2. hom(Y0, Y1) is the set of homeomorphism classes of bordisms X : Y0 → Y1. A

homeomorphism of bordisms X,X ′ is a homeomorphism of manifolds with boundaries

which takes (∂X)in → (∂X ′)in and commutes with the collars θ0, θ1.

53If we cover the chapter on characteristic classes we will prove these two results.
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The composition of morphisms in the bordism category is by gluing. Since we identify

bordisms by homeomorphism the bordism X = [0, 1] × Y from Y → Y is the identity

morphism 1Y . The category Bord〈d−1,d〉 is a symmetric tensor category: The tensor product

is disjoint union, and the empty manifold ∅d−1 is the tensor unit.

L.3 The Oriented Bordism Category BordSO
〈d−1,d〉

We are often interested in oriented bordism.

To define an oriented bordism we modify the definition of bordism slightly. Now,

Y0, Y1, X are all oriented. The embeddings θ0 and θ1 are required to be orientation pre-

serving and we identify bordisms X and X ′ by oriented diffeomorphisms.

The condition that θ0 and θ1 are orientation preserving must be treated with care. Note

that if we are given a sum of oriented real vector spaces there is no natural orientation on

the direct sum. However, if we are given an exact sequence

0→ V1 → V2 → V3 → 0 (L.4)

Then there is a canonical isomorphism DETV3
∼= DETV1 → DETV2 so if two of the three

spaces are oriented, we can determine an orientation on the third by requiring this canonical

isomorphism to be orientation preserving. In particular, an orientation on a submanifold

and the ambient manifold determines an orientation on the normal bundle. When defining

θ0, θ1 we orient [0,+1) and (−1, 0] with the standard orientation on R, + ∂
∂x and then we

take the product orientation on [0,+1)× Y and (−1, 0]× Y .

Definition To every oriented bordism X : Y0 → Y1 there is a dual oriented bordism

X∨ : Y ∨1 → Y ∨0 . Let us write it out carefully, since it can cause confusion. Y ∨ denotes Y

with the opposite orientation. X∨ is the manifold with the same orientation. However, we

exchange ingoing and outgoing boundaries. Moreover,

θ∨0 (t, y1) = θ1(−t, y1) ∀t ∈ [0,+1) & y1 ∈ Y1 (L.5)

θ∨1 (t, y0) = θ0(−t, y0) ∀t ∈ (−1, 0] & y0 ∈ Y0 (L.6)

Note that the relation between θ∨0 and θ1 involves an orientation-reversing transformation

t→ −t and hence we require orientation reversal on Y since X∨ has the same orientation as

X. Forgetting about orientations we also obtain a notion of dual bordism for the unoriented

case.

Once again we can define oriented bordism groups ΩSO
n , for n ≥ 0, the oriented bordism

ring ΩSO
∗ and the oriented bordism category BordSO

〈d−1,d〉.

Example 1 Let us consider the oriented bordism group ΩSO
0 . There are two kinds of points

pt+ and pt−, and five basic connected oriented bordisms, shown in figure 40. Accordingly,

ΩSO
0
∼= Z. The isomorphism takes the difference of the number of + and − points.

Example 2 In dimensions 1 and 2 we again have zero bordism groups.
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Figure 40: Five connected bordisms in the oriented bordism category. Ingoing boundaries are on

the left and outgoing boundaries are on the right.

A summary of the main factors on the oriented bordism ring ΩSO
∗ is the following.

(See Milnor and Stasheff. Several further references are provided in Freed’s notes, near

Theorem 2.24.) 54

Theorem

1. All torsion elements in ΩSO
∗ have order two.

2. ΩSO
∗ /torsion is a ring with one generator in degrees 4k, k ≥ 1.

3. There is an isomorphism

ΩSO
∗ ⊗Q ∼= Q[y4, y8, · · · ] (L.7)

under which y4k corresponds to the oriented bordism class of CP2k.

4. There are characteristic classes of the tangent bundle of Y , the Stiefel-Whitney classes

wi(Y ) ∈ H i(Y ;Z2) and the Pontryagin classes pi(Y ) ∈ H4i(Y ;Z) (the latter depend-

ing on the orientation of Y ) such that Y1 and Y2 and bordant iff all the Stiefel-Whitney

and Pontryagin numbers are the same. We defined the Stiefel-Whitney classes above

and the Pontryagin numbers are similarly the collection

〈pi1(Y ) ∪ · · · ∪ pik(Y ), [Y ]〉 ∈ Z (L.8)

L.4 Other Bordism Categories

We can go on an consider other forms of bordism:

1. Framed bordism. (Closely related to the stable homotopy of spheres, by the

Pontryagin-Thom construction.)

2. Spin and Pin± bordism.

3. Riemannian bordism.

54If we cover the chapter on characteristic classes we will prove some of these results.
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Accordingly, there are generalizations of the bordism cateogry. In general, if we take

into account a structure S we denote the bordism category by BordS〈d−1,d〉, where it is

understood that the bordisms are identified by homeomorphisms preserving the structure

S. Thus, the oriented bordism category is denoted by BordSO
〈d−1,d〉 (because the structure

group of the tangent bundle is SO(d−1) and SO(d), respectively). Similarly we can define

a Riemannian bordism category BordRiem
〈d−1,d〉, and so on.

M. Some Sources From Course Notes

Material on theta functions and Heisenberg algebras:

GMP7-06, section 6

GMP-Ch8-AssociatedBundles-2010, section 11.

Invariant norm, first Chern class for level k theta functions: GMP9-06, section 3.3.

Also group cohomology. Some Dijkgraaf-Witten theory. GRP-THEORY-Lect1

Topological Field Theory and Categories:

GMP 2015.
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