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Introduction

Today I’ll be talking about some interesting subtleties in the
quantization of Maxwell’s theory and some of its generaliza-
tions.

Of course, there are many different generalizations of Maxwell’s
theory. I will discuss abelian gauge theories whose field-
strengths are differential forms F ∈ Ω`(M).

More technically - the result applies to the class of “gen-
eralized abelian gauge theories” – these are theories where
the space of gauge-invariant field configurations “A/G” is
a generalized differential cohomology group in the sense of
Hopkins & Singer.

In particular “A/G” is an abelian group.

These kinds of theories arise naturally in supergravity and
superstring theories, and indeed play a key role in the theory
of D-branes and in recent claims of moduli stabilization in
string theory.
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Summary of the Results

1. Manifestly electric-magnetic dual formulation of the Hilbert
space of generalized Maxwell theory.

2. The Hilbert space can be decomposed into electric and
magnetic flux sectors, but the operators that measure elec-
tric and magnetic fluxes don’t commute and cannot be si-
multaneously diagonalized.

This is surprising and nontrivial!

3. Group theoretic approach to the theory of a self-dual field.

4. In particular: the K-theory class of a RR field cannot be
measured!
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Generalized Maxwell Theory

Begin with generalized Maxwell theory on a spacetime M
with dimM = n.

It has a fieldstrength F ∈ Ω`(M)

Action S = πR2
∫

M
F ∗ F

If M = X × IR we have a Hilbert space H.

Grade the Hilbert space by ( topological class of ) magnetic flux:

H = ⊕mHm m ∈ H`(X,ZZ).

Electro-magnetic duality: An equivalent theory is based on
a dual potential with FD ∈ Ωn−`(M) and

RRD = h̄

⇒ there must also be a grading by ( topological class of) electric
flux:

H = ⊕eHe e ∈ Hn−`(X,ZZ),
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Electric and Magnetic Flux Sectors

Can we simultaneously decompose H into electric and mag-
netic flux sectors?

H ?= ⊕e,m He,m.

\ response should be “yes!”

For the scalar field this is just decomposition into momentum
and winding!

Measure magnetic flux:
∫
Σ1
F where Σ1 ∈ Z`(X)

Measure electric flux:
∫
Σ2
∗F where Σ2 ∈ Zn−`(X)

Canonical momentum conjugate to A is Π ∼ (∗F )X .

[
∫

Σ1

F,

∫
Σ2

∗F ] ∼ [
∫

Σ1

F,

∫
Σ2

Π]

= [
∫

X

ω1F,

∫
X

ω2Π]

= ih̄

∫
X

ω1dω2 = 0

where ωi are closed forms Poincaré dual to Σi.
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Fallacy in the argument

But! the above period integrals only measure the flux mod-
ulo torsion.

The fluxes e,m are elements of abelian groups. These groups
in general have nontrivial torsion subgroups.

The above discussion misses a very interesting uncertainty
principle
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Differential Cohomology

The space of gauge-inequivalent fields is described by differ-
ential cohomology, or Deligne-Cheeger-Simons theory.

We denote this space by Ȟ`(M).

Definition: By “generalized Maxwell theory” we mean a
field theory such that the space of gauge inequivalent fields
is Ȟ`(M) for some `.

Our next goal is to get a clear picture of the space Ȟ`(M),
based on two exact sequences.
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Structure of the Differential Cohomology Group

Fieldstrength exact sequence:

0 →

flat︷ ︸︸ ︷
H`−1(M ; IR/ZZ) → Ȟ`(M)

fieldstrength−→ Ω`
ZZ(M) → 0

Characteristic class exact sequence:

0 → Ω`−1(M)/Ω`−1
ZZ (M)︸ ︷︷ ︸

Topologically trivial

→ Ȟ`(M) char.class−→ H`(M ;ZZ) → 0

The space of differential characters has the form:

Ȟ` = T × Γ× V

T : Connected torus of topologically trivial flat fields:

W`−1(M) = H`−1(M,ZZ)⊗ IR/ZZ

Γ: Discrete (possibly infinite) abelian group of topological
sectors: H`(M,ZZ).

V : Infinite-dimensional vector space of “oscillator modes.”
V ∼= Imd†.

gmoore
Rectangle

gmoore
Rectangle

gmoore
Line

gmoore
Line

gmoore
Line

gmoore
Line

gmoore
Line



Example: Loop Group of U(1)

Configuration space of a periodic scalar field on a circle:

Ȟ1(S1) = Map(S1, U(1)) = LU(1)

• Topological components: Winding number ∈ H1(S1,ZZ) ∼=
ZZ

• Flat fields: The torus T of constant maps: H0(S1, IR/ZZ) ∼=
IR/ZZ

• Vector space: V = Ω0/IR are the loops admitting a loga-
rithm:

Ȟ1(S1) = T× ZZ× V

This corresponds to the explicit decomposition,

ϕ(σ) = exp
[
2πiφ0 + 2πiwσ +

∑
n 6=0

φn

n
e2πinσ

]
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The space of flat fields

H`−1(M ; IR/ZZ) is a compact abelian group...

- it is not necessarily connected!

Connected component of the identity

W`−1(M) = H`−1(M,ZZ)⊗ IR/ZZ

Group of components = H`
T (M ;ZZ):

0 →W`−1(M) → H`−1(M, IR/ZZ) → H`
T (M ;ZZ) → 0.

Example: M = Lk, ` = 2, W1 = 0,

H2(M ;ZZ) = H2
T (M ;ZZ) = ZZk

H1(M ; IR/ZZ) ∼= ZZk

These are discrete Wilson lines:

χr(γ) = e2πir/k = ωr
k r ∈ ZZk

defines the topologically nontrivial flat fields.
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Poincaré-Pontryagin Duality

1. There is a very subtle product on differential characters
inducing the structure of a graded ring:

Ȟ`1(M)× Ȟ`2(M) → Ȟ`1+`2(M).

Denote it: [Ǎ1] ∗ [Ǎ2].

= [A1dA2] on topologically trivial fields.

2. If M is compact and oriented, and dimM = n then
evaluation on the fundamental cycle [M ] – the “holonomy
around M” - defines an integration map∫ Ȟ

M

: Ȟn+1(M) → IR/ZZ

3. Poincaré-Pontryagin duality: We have a perfect pairing

Ȟ`(M)× Ȟn+1−`(M) → IR/ZZ

〈[Ǎ1], [Ǎ2]〉 :=
∫ Ȟ

M

[Ǎ1] ∗ [Ǎ2]
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Examples of the Pairing:

Example 1 : Chern-Simons terms

If dimM = 2p+ 1, and [Ǎ] ∈ Ȟp+1(M), then∫ Ȟ

M

[Ǎ] ∗ [Ǎ] ∈ IR/ZZ

For topologically trivial fields∫ Ȟ

M

[A] ∗ [A] =
∫ H

M

AdA modZZ

Example 2: Cocycle on the Loop Group

Recall Ȟ1(S1) = LU(1):

ϕ = exp(2πiφ) φ : IR → IR

φ(s+ 1) = φ(s) + w w ∈ ZZ is the winding number.

〈ϕ1, ϕ2〉 =
∫ 1

0

φ1 dφ
2

ds
ds− w1φ2(0) modZZ

Note! This is (twice!) the cocycle which defines the basic
central extension of LU(1).

But the pairing is more subtle in topologically nontrivial sectors!
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Hamiltonian Formulation of Generalized Maxwell Theory

Spacetime: M = X × IR.

Generalized Maxwell fields: [Ǎ] ∈ Ȟ`(M).

S = πR2

∫
M

F ∗ F

Hilbert space: H = L2(Ȟ`(X))

This breaks manifest electric-magnetic duality.

There is a better way to characterize the Hilbert space.



Heisenberg Groups

Theorem A: Let G be a topological abelian group. Central
extensions, G̃, of G by U(1) are in one-one correspondence
with continuous bimultiplicative maps s : G × G → U(1)
which are alternating (and hence skew).

1. s is alternating: s(x, x) = 1.

2. s is skew : s(x, y) = s(y, x)−1.

3. s is bimultiplicative:

s(x1+x2, y) = s(x1, y)s(x2, y) & s(x, y1+y2) = s(x, y1)s(x, y2)

If x ∈ G lifts to x̃ ∈ G̃

s(x, y) = x̃ỹx̃−1ỹ−1

Definition: If s is nondegenerate then G̃ is a Heisenberg
group.

Theorem B: (Stone-von Neuman theorem). If G̃ is a Heisen-
berg group then the unitary irrep of G̃ where U(1) acts
canonically is unique up to isomorphism.
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Heisenberg group for generalized Maxwell theory

Define:

G̃ := Heis
(
Ȟ`(X)× Ȟn−`(X)

)

via the group commutator:

s
(
([Ǎ1], [ǍD

1 ]), ([Ǎ2], [ǍD
2 ])

)
= exp

[
2πi

(
〈[Ǎ2], [ǍD

1 ]〉−〈[Ǎ1], [ǍD
2 ]〉

)]
.

Claim: The Hilbert space of the generalized Maxwell theory
is the unique irrep of the Heisenberg group G̃

N.B! This formulation of the Hilbert space is manifestly
electric-magnetic dual.
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Explicit representation

For Heisenberg groups of the form

1 → U(1) → Heis(S × Ŝ) → S × Ŝ → 1

where Ŝ= Pontryagin dual, an explicit representation is given
by H = L2(S):

H = L2(S) is a representation of S: ∀s0 ∈ S

(Ts0ψ)(s) := ψ(s+ s0).

H = L2(S) is also a representation of Ŝ: ∀χ ∈ Ŝ

(Mχψ)(s) := χ(s)ψ(s)

But!
Ts0Mχ = χ(s0)MχTs0 .

If S = Ȟ`(X), then PP duality ⇒ Ŝ = Ȟn−`(X):

⇒ The unique irrep of G̃ is isomorphic to

H ∼= L2(Ȟ`(X))

Dual frame: S = Ȟn−`(X) and Ŝ = Ȟ`(X) ⇒

H ∼= L2(Ȟn−`(X))
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Defining Electric Flux

Return to our question:

Can we simultaneously decompose H into electric and mag-
netic flux sectors?

H ?= ⊕e,m He,m.

Need to understand grading by electric flux more deeply.

Diagonalizing (∗F )X means diagonalizing Π, but Π is the
generator of translations.

Definition: A state of definite topological class of electric
flux is an eigenstate under translation by flat fields

∀φf ∈ H`−1(X, IR/ZZ),

ψ(Ǎ+ φ̌f ) = exp
(

2πi
∫ H

X

eφf

)
ψ(Ǎ)

The topological classes of electric flux are labelled by

e ∈ Hn−`(X,ZZ).
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Group theoretic approach to flux sectors

Electric flux sectors diagonalize the flat fieldsH`−1(X, IR/ZZ).

Magnetic flux sectors diagonalize dual flat fieldsHn−`−1(X, IR/ZZ).

These groups separately lift to commutative subgroups of
G̃ := Heis(Ȟ` × Ȟn−`).

However they do not commute with each other!

UE(ηe) := translation operator by ηe ∈ H`−1(X, IR/ZZ)

UM (ηm) := translation operator by ηm ∈ Hn−`−1(X, IR/ZZ)

Then we have the uncertainty relation:

[Ue(ηe),Um(ηm)] = T (ηe, ηm) = exp
(

2πi
∫

X

ηeβηm

)
T : torsion pairing, β= Bockstein: β(ηm) ∈ Hn−`

T (X,ZZ).
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Uncertainty Relation

[Ue(ηe),Um(ηm)] = T (ηe, ηm) = exp
(

2πi
∫

X

ηeβηm

)
T : torsion pairing, β: Bockstein.

⇒ Translations by W`−1(X) and by Wn−`−1(X) commute

⇒ we can simultaneously diagonalize:

H = ⊕ē,m̄Hē,m̄.

However: The pairing does not commute on the subgroups
of all flat fields.

It descends to the “torsion pairing” or “link pairing”:

H`
T (X)×Hn−`

T (X) → IR/ZZ

This is a perfect pairing, so it is maximally noncommutative
on torsion.
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Example: Maxwell theory on S3/ZZk × IR

H1(Lk; IR/ZZ) ∼= H2(Lk;ZZ) = ZZk is all torsion

Acting on the Hilbert space the flat fields generate a Heisen-
berg group extension

0 → ZZk → Heis(ZZk × ZZk) → ZZk × ZZk → 0

This has unique irrep P= clock operator, Q = shift operator

PQ = e2πi/kQP

States of definite electric and magnetic flux

|e〉 =
1√
k

∑
m

e2πiem/k|m〉

This example already appeared in string theory in Gukov, Ranga-

mani, and Witten, hep-th/9811048. They studied AdS5×S5/ZZ3, and in
order to match nonperturbative states concluded that in the
presence of a D3 brane one cannot simultaneously measure
D1 and F1 number.
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Remarks

• The pairing of topologically nontrivial flat fields has no
tunable h̄, and is always noncommuting, even in the large
volume limit.

This is a quantum effect which does not disappear in the large
volume, or h̄→ 0 limit.

• Using an elaborate configuration of superconductors and
Josephson junctions one can possibly test this uncertainty
principle in the laboratory [work in progress with A. Kitaev and

K. Walker]



Self-dual fields

Now suppose dimM = 4k + 2, and ` = 2k + 1.

We can impose a self-duality condition

F = ∗F

For the non-self-dual field we represent

Heis(Ȟ`(X)× Ȟ`(X))

Proposal: For the self-dual field we represent:

Heis(Ȟ`(X))

Attempt to define this Heisenberg group via

strial([Ǎ1], [Ǎ2]) = exp 2πi〈[Ǎ1], [Ǎ2]〉.

It is skew and and nondegenerate, but not alternating!

strial([Ǎ], [Ǎ]) = (−1)
∫

X
ν2k m

(Gomi 2005).
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ZZ2-graded Heisenberg groups

Theorem A′: Skew bimultiplicative maps classify ZZ2-graded
Heisenberg groups.

ZZ2 grading in our case:

ε([Ǎ]) =
{

0
∫
ν2k m = 0 mod 2

1
∫
ν2k m = 1 mod 2

Theorem B′: A ZZ2-graded Heisenberg group has a unqiue
ZZ2-graded irreducible representation.

This defines the Hilbert space of the self-dual field.

Remark: One can show that the nonself-dual field at a spe-
cial radius, R2 = 2h̄, decomposes into

Hnsd
∼= ⊕αHsd,α ⊗Hasd,α

The subscript α is a sum over “generalized spin structures”
- a torsor for 2-torsion points in H2k+1(X;ZZ)⊗ IR/ZZ.

Example: Self-dual scalar: k = 0. By bosonization ψ = eiφ.
The ZZ2-grading is just fermion number! α labels R and NS
sectors.

⇒ SD theory generalizes VOA theory
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Ramond-Ramond fields

• The (gauge equivalence class) of a RR field in type II theory is
in differential K-theory, Ǩ(X), an analog of Ȟ(X). Many
structures are formally the same:

0 →

flat︷ ︸︸ ︷
K−1,B(M ; IR/ZZ) → Ǩ0,B̌(M) → Ω(M ;R)0dH ,ZZ → 0

0 → Ω(M ;R)−1/Ω(M ;R)−1
dH ,ZZ︸ ︷︷ ︸

Topologically trivial

→ Ǩ0,B̌(M) → K0,B(M) → 0

∃ a perfect pairing: 〈[Č1], [Č2]〉 =
∫ Ǩ [Č1] ∗ [Č2]

The RR field is self-dual ⇒

⇒ The Hilbert space is the unique ZZ2-graded irrep of the
ZZ2-graded Heisenberg group

Heis(Ǩ(X))

⇒ the full K-theory class is not measurable!

Rather, the Hilbert space is a representation of the “quan-
tum K-theory”

0 → U(1) → QK(M ; IR/ZZ) → K(M ; IR/ZZ) → 0
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Open Problems

1. If one cannot measure the complete K-theory class of RR
flux what about the D-brane charge?

a.) If no, we need to make an important conceptual revision
of the standard picture of a D-brane

b.) If yes, then flux-sectors and D-brane charges are classi-
fied by different groups ⇒ tension with AdS/CFT and geo-
metric transitions.

2. What happens when X is noncompact?

3. What is the physical meaning of the fermionic sectors in
the RR Hilbert space?

4. How is this compatible with noncommutativity of 7-form
Page charges in M-theory?
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