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Glorious History Of
4d Field Theory & Four-Manifold Topology

Instantons (BPST) (1975) mmp
Donaldson invariants (1982) mmmp

TQFT (1988) mmp
Seiberg-Witten Invariants (1994)

mm) Revolution of 1995




But not all questions are answered...
X: d =4, Smooth, compact, oriented, 0X = 0.

For simplicity: Connected & (X)) =0

Essential in Donaldson & Seiberg-Witten theory:
X admits an almost complex structure

&=) b;(X) is odd

Misses half’”’ the world of four-manifolds!

We'll relax that condition in the final part of the talk.



Generalizations Of The
Donaldson-Witten Paradigm

Other 4d N=2 theories

5d theories
6d theories

Coupling to background supergravity...

These might lead to truly new invariants
that are independent of the
Donaldson/SW invariants ...




... Or not ...

Today’s talk: Some of these
generalizations lead to
Interesting issues in QFT,
analytic number theory,

and topology.

So it is worth thinking about.
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Witten’s Homomorphism

Spin(4) x SU(2)R
( (_11 _1: —1 ))

((—1,—1,—1)) = u, acts trivially on vectormultiplets

oy:S0(4) -

Twisted SYM based on ¢y,
gives function Zy,: H,(X) — C
Zy, only depends on:

1. oriented diffeomorphism type of X
2. A choice of ‘t Hooft flux



For otherd = 4, N = 2 theories one
must
choose other tangential structures
to define the twisted theory.

N = 2" one must choose a spin-c structure

(Labastida-Marino; Manschot-Moore)

Z:H,(X) — C only depends on
1. oriented diffeomorphism type of X
2. A choice of ‘t Hooft flux

AND 3. an ultraviolet” spin-c structure




What is the general tangential structure?

WIP with Vivek Saxena and Ranveer Singh
gives generalization of top twisting to
arbitrary renormalizable Lagranglan

Goal: Further generalization to
arbitrary class S theories.



Basic Data For A Renormalizable
Lagrangian d=4 N=2 Theory

~

( : ss cpt Lie group, T = 0
p:G - End(R): quaternionic

= G/:=(p(G)) < 0(p)

GOV = (G x Spin(4) x SU(2)R x G/



Structure Group Of The Physical Theory
GOV = (G x Spin(4) x SUR)R x G

Choice of subgroup CP"S < z(Geover)
(acting trivially on R )

Fields of the physical theory are based on a bundle
PPhYS with connection VP™S for structure group

Gphys — G"cover/CphyS



FPhYs. (Sheaf) of all fields
1. (Pphys, Vphys)
2. Flat gerbe (1-form symmetry field)

3. Masses, couplings, hypermultiplet fields



Transfer Of Structure Group
©:G; = Gy Homomorphism of groups

= Can map a principal G4 bundle Py > M
to a principal G, bundle . P; > M

lransition functions g,z: Uyg = G1 map to new
transition functions (p(gaﬁ): Uap = G

@.(P1) = Py Xg, G
B(p: BG]_ — BGZ



@, extends to category of
bundles with connection:

Vi on P,

= V2= (P*(Vl) on (p*(Pl)

Hol(V3,v) = ¢(Hol(V4,7))



(G x Spin(4) x SU(2)R x G')

Dy / D, De Dy

G Spin(4) SU(2)R G
P1,*(Pphy5, Vphys) .= (P;,A) Dynamical gauge field bundle

(p2).(PPMYS, vPhYS) = (Fr(X), VEC)
D3« (Pphys, Vphys) := R-symmetry bundle & connection

p4,*(PphyS, Vphys) := Flavor bundle & connection



The Untwisted Theory Does
Not Need A Spin Structure

Only need a principal bundle with structure group:

GPYS = (G x Spin(4) x SU(2)R x G)/cr™s

Choose (p; X p3)(CP™*) = ((—1,-1,-1))
c Z( Spin(4) x SU(2)%)

Such bundles can very well exist
onh nonspin manifolds



Role of the gerbe b is to allow
introduction of ‘t Hooft flux

Best done via slab/sandwich/quiche/SymTFT picture

(see e.g. Dan Freed’s StringMath2022 talk)

b has char. class u(b) € H? (X, Cgrb)
Cg?‘b .— pl(CphyS)



Existence of PP"YS puts A Condition On
" 1-Form Symmetry Fields”

p =Dy Pu
Generic hm masses = G/ = T/ = [[, U(1)

(p4,u)*( Pphys) =L, = C(u) — Cl(Lu)

u(b) + wo(X) + c(w) = 0 € H*(X, Z,, )

Generalizes several special cases in the literature:

[Moore-Witten, Labastida-Marino,Manschot-Moore, Aspman-Furrer-Manschot]



e—S

j:phys C

" |

bk / = T,:

—_— C
Dynamical fields are the fiber of i

In general the fibration is nontrivial



Topological Twisting Via
Transfer Of Structure Group

Upgrade ¢y to @™: G — GPMS
eine (PP195,790%) = (). (P, 7)

Such that Z(Vtw'bd‘) is invariant under
continuous deformations of VtW-2¢X

because for such backgrounds
3 Q suchthat Q% =0



We construct explicit:

tw

%
G = (G x Spin(4) X T/) /CY —0n GPMYS



Z'™" only depends on

1. Diffeomorphism type of X

2. ‘t Hooft flux = u(b)
3. Generalized Spin-c structure’:

Principal bundle P¢ for
(Spin(4) x T/)/CtWbek

p1.P° = Fr(X)



Just like generalized symmetries & their ‘t Hooft anomalies ...

Topological twisting data should
be an RG invariant, so it should be

possible to extract F*V from the
LEET SW theory

will allow us to find twisting data
for general class S theories.



Conjecture:

Anyd = 4, N = 2 theory (with generic
masses) admits a topological twisting
defining a function Z: H,(X) » C
that is only a function of

1. Oriented diffeomorphism type of X

2. Iso class of background gerbes for B%C

3. "Generalized Spin-c structure’
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QA,uzl/)u Ql/)uz_Duqb Qp=0

A€ AMP) ¢ eQ°(X,ad P, ® C)

An important viewpoint in
the section on families below

Baulieu & Singer, 1988

G —equivariant cohomology of A (P;)

G = Aut(P;) Group of gauge transformations



Q —closed observables: O(pt) = Tr(qbz('pt))
{(K,Q}=d=> 0,=K0

O(Zj) = f O; only depends on [Zj] € H;j(X)
2]

Function on H,(X): Zy (X) = <€0(2)>

tw

Witten (1988):

Zy independent of metric g,,,, on X



Witten (1988) & Atiyah& Jeffrey(1990)

Zyw (Z) path integral localizes to
an integral over

M < A(P1)/§
M ={A€AP)FA*=0}G

FTt :=1(F+*F)
2



Donaldson Invariants
Donaldson: u: H,(X) - H*(M)

Zp:H,(X) - Q

ZD(Z) =f e %)

M

M dependson g,, , but Z, does not



Main Statement
ZW — ZD —. ZDW

Zpy only depends on

1. oriented diffeomorphism type of X
2. A choice of ‘t Hooft flux



Evaluation Of Zp, (2)

Zpw independent of g,,, on X

Consider metric L*g,, inthe limit L — oo

= Use Seiberg-Witten LEET

—_— ] ] Witten 94
ZDW - ZCoul + ZSW 9

Moore-Witten 97

b =1: J:oriented line H**(X) c H*(X)



One can deduce ZS{W from Z/

Moore- Witten, 1997

Coul

So start with Z/

Coul



Zf Integral over the Coulomb branch of
Coul vacua on R*,

G = SU(2): parametrized by u = (Tr¢?),
Measure is computed using SW LEET for U(1) VM

V90



u-Plane Integral

SW94: Coulomb branch has a
modular parametrization:

95 +95 1 1 5 1

- 209292 8 2
— L 2TIT

q=2¢€

Coulomb branch = UHP /T°(4)

:—q 4-|——q4_|_



Im(7)
Foo TFoo T2 Foo T3 Foe
S];-‘OO T?SFoo
— 2 0 z 1 3 2 s 3 z

o) =

» Re(7)

( g) mod4} c SL(2,7)



% A
7zl (5) = j drdt H (1) 5= 6 (7,7,3)

F(T0(4))

Comes from the

A1 =
(T, 7, %) photon path integral

Not holomorphicin T (or u)
Continuously metric dependent.

G/ (t,7,%) : Isa mock Jacobi form

G. Korpas, J. Manschot, G. Moore, I. Nidaiev (2019)



Zgu® ~ ) [H@DE (@ D)]y0

CUSps

» Re(7)

1 -1 Qo FL 1 38§24 : 3 I

Cusps= oo U 7 =0 [Monopolel] U =2 [Dyon|



Singula
top

Restore it with

Zsw ()

rities at u = +A? spoil
ological invariance.

integral over "Higgs branch vacua”

= ) SO £

CESPIinc(X)

SW/(c)

fe(2) + Trigo

= 7. Seiberg-Witten invariants

nometric function of X

computed from Zéoul (2)



What Do The Other (Lagrangian)
Theories Compute?

The path integral for topologically
twisted Lagrangian theories localizes to
intersection theory on M

M moduli stack of the
Nonabelian Seiberg-Witten equations

[Labastida-Marino 1997; Losev-Shatashvili-Nekrasov1997 ]

(instanton moduli space is a special case)



Nonabelian Monopole Equations

aka Nonabelian Seiberg-Witten Equations

GY = (G x Spin(4) x T/ ) /CV

Dy (P, VW) = (Fr(X), Vi) is fixed

R=V@V*, whereV isacomplex representation of G

V& ST : Representation of GtV

V: Associated bundle: M € I'(V)

Ft =q(M,M) y-DM =0



| Need an orientation on M

Discussions with D. Freed and M. Hopkins
seek to describe the 5d invertible theory
whose Hilbert space
is the orientation line of M.



Freed-Hopkins construct a KO class T on
A(P1)/G that restricts to the tangent bundle

on the instanton moduli stac

using elaborate topological met
compute w;(T) fori = 1,2

<)

nods

Il turns out to be cohomological

N WL(X),WL(P),I — 1, cen ) 4
a surprise since w;(T)
mod-two indices in KO theory.

And is consistent with a mod-two index computation

| worked out with E. Witten (January

2024).
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“K-Theoretic Donaldson Invariants’

4
/

-

" L
Jan Manschot .| Gregory Moore

Runkai Tao




N = 15D SYM

GPYS = (SU(2)9 x Spin(4) x SUQ)R x U(1))/Z,
Vectormultiplet: V = (4, g, 14)
](I) o t'r Fz = V(I) —_ (A(I)’ O-(I), ) Seiberg 1995

AD 3 connection on PW:
a principal U(1) — bundle over X:



Electric Coupling Of Instanton Particle

fA(’)/\]U)— f AW A tr F?
X5 X5

Supersymmetrization gives entire 5d SYM
action coupled to background V)

Slv;v ] :fxst‘lm/\trF2 + [ oW trF+F + -

(D . ,=2
o Ysd sym



K

S= 5 iAD A tr(F AF)
m
: i 1
8:2 dor\frr[ ADA F”m)\ilan—Zl)\ilf”m)\ FTQ{Q+2A4ABD(g+LA<I) ABD g
7 X5

1
+ O—(I) (Qanan, + Dm(TDm(T + §DABDAB 4 _.i/\AF-m D.m)\A 1+ 'i)\A {O’,_ )\4]>
+ oD, P 426D D, o + oD Dy 4 ioAD) ;T D, 2

+ioaa ™D, A )‘ﬂ .



s fXSA(’)/\trFZ globally well-defined?
Yes!

(PW, A1) corresponds to an element of H2(Xs)

CS(A) corresponds to an element of H*(X:)

H?(X:) x H*(Xs) = HY(pt) = R/Z



s [y AD A trF? globally well-defined?

Well.... almost ...

When w, (P;) # 0 instanton particles have
fractional charge so the exponentiated
electric coupling can have an anomaly

Expect: Cancelled by anomaly in the
fermion determinant.
(Discussion with Freed & Hopkins)



Now take Xz = X, x S1!

0 ~ ¢, AY) const. on X,
P & FW pulled back from X,

We have a partial topological twist based on
transfer of structure group

©: Z, xS0(4) - (Spin(5) x SU(2)®)/Z,

Background fields: ¢, (V%)

Topological on X, but a nontopological, spin, theory on S*

Q% = 0,



SQM With Target M’

Topological on X, =
Can shrink X, =
Describe the twisted theory in terms of
SQM with target space
the moduli stack of instantons
[INekrasov, 1996}



Potential Global Anomalies

5D: Pfaff(y-DX4x51) not well-defined on A /G

1D: Pfaff(y-Ds1) not well-defined on LM

Anomaly if M (X,) is not spin
[Witten '85; Atiyah ‘85]

All controlled by the same”
6d mod-two index in KO theory



A computation with E. Witten
gives a useful formula for it.

Special case of our result:
X admitsan ACSand G = PSU(2N):

M is spin iff w,(P;) - w,(TX,) =0
Note: Independent of instanton number k .

Compatible with more general formula
from Freed-Hopkins for w;(T).



Line Bundle On M

j AD A D = j AWD A tr F2
X, xS1 X, xS1

4 4

= SQM(M’) couples to a
“line bundle with connection” £®O - M

H%(X,) X H*(X4 X A(P)/G) —» H*(A(P)/G)

w/ Kim, Manschot, Tau, Zhang:

Z.,: Global anomaly : w,(P;) - n) % 0
n) = ¢, (PV) € H3(X,, Z)



(Conjectural) Anomaly Cancellation

wz(P9) - (w2 (X4) +nlP) =0

Pfaff(y - Dgi) - e $4"

Conjecture AW:
"U(1) gauge field” of a Spin-c structure on M

One can show
X, admitsan ACS = M is spin-c



When global anomalies cancel, the
partition function is a function of

1. Oriented diffeomorphism type of X,
2. ‘t Hooft flux
3. n) = ¢, (PWD)
4. R =R A4y
R

R* =exp| —8m°— i 6
Ysa,ym




Z(R, n(’)) =
Dk 07ez Ty {(=1)" exp(—R D (1) )}
di = dimg M = 4h'k — dim G X2

In good cases, the Witten index is the
L* index of the Dirac operator D . )

= K-theoretic Donaldson invariants’’

[Nekrasov, 1996; Losev, Nekrasov, Shatashvili, 1997]



K-THEORETIC DONALDSON INVARIANTS VIA INSTANTON
COUNTING

LOTHAR GOTTSCHE, HIRAKU NAKAJIMA. AND KOTA YOSHIOKA

To Friedrich Hirzebruch on the occaston of his eightieth birthday

ABSTRACT. In this paper we study the holomorphic Euler characteristics of determinant

2 OO 6 * line bundles on moduli spaces of rank 2 semistable sheaves on an algebraic surface X,
¢ which can he viewed as K -theoretic versions of the Donaldson invariants. In particular

if X is a smooth projective toric surface, we determine these invariants and their wall-

crossing in terms of the K-theoretic version of the Nekrasov partition function (called

5-dimensional supersymmetric Yang-Mills theory compactified on a circle in the physics

literature). Using the results of [43] we give an explicit generating function for the wall-

crossing of these invariants in terms of elliptic functions and modular forms.

VERLINDE FORMULAE ON COMPLEX SURFACES I:
K-THEORETIC INVARIANTS

L. GOTTSCHE, M. KOOL, AND R. A. WILLIAMS

ABSTRACT. We conjecture a Verlinde type formula for the moduli space of

Higgs sheaves on a surface with a holomorphic 2-form. The conjecture spe-

2 O 1 9 ° cializes to a Verlinde formula for the moduli space of sheaves. Our formula
* interpolates between A -theoretic Donaldson invariants studied by the first

named author and Nakajima-Yoshioka and K -theoretic Vafa-Witten invari-

ants introduced by Thomas and also studied by the first and second named

authors. We verify our conjectures in many examples (e.g. on K3 surfaces).



What We Add

We study Z(R,n")) using both
the Coulomb branch integral

and,

for X, a toric Kahler manifold,
toric localization.



Total partition function is a sum of two terms

Z/(R,n W) = Zgoy (R, n®) + Zgy (R, V)

Zéoul(ik,n(’)): Coulomb branch integral

of the 4d theory from reduction
Xe =X, xSt - X,

J

J
One can deduce Z¢,,, from Z._



Coulomb Branch For X = X, x S?

For 5d SYM gauge group of rank 1:
Coulomb branch = C

parametrized by :

U= (TrzPexp ¢ (cdx>+iA) )
Sl

“1-form symmetry” g:U — —U



Modular Parametrization Of U —plane

The Coulomb branch is a branched double cover
of the modular curve for ' (4)

U2 =4 (R*-2R2u(t) + 1)

— 0
u(r) 9. (7)2 9, (7)2 Hauptmodul for I'”(4)

X sr i > -
/ \ Similar to Aspman,
' , Furrer & Manschot




U? =4 (R*—-2R*u(r) + 1)

= § is also the deck transformation
of the double cover

Zéou]("]e)n) =f Qcout
Cy

0Oy = (—1D)W2PD-(wW200400) q

= 7/

con = 0 when there is a global anomaly



drdt— C" W \1,—
Tt L ¢

ZL (R ) = 2 |

FTO(4)

V(1) =

779

C(T :R) Suitably modular invariant and
’ L] AN ,’
holomorphic contact term

n
q;]( () Photon partition function
2



9, _k? .
LIJ](T, Z) — 2 (_ Ek] ) q 7 e—27u k-z (_1)k-K

0T
keEH?2(X,Z)

E,{=E7"f<\/lm‘[ <k+ Imz)j)

Imrt

Not holomorphic.

Continuously metric dependent

(1) 0%F
z—>nT((T,1R) {(t,R) ~




Measure As A Total Derivative

(I
n
Zso (R,n1) = L dtdt H (1) ¥/ (r,T ()

3 suitably modularAlnvar_lant i(}\] — pJ
and nonsingular G/ (z, T) 0T

(It can be hard to find explicit formulae

for G’ one needs the theory of mock
modular forms....)



iR = ) $duI()6 @)

1=1,2,3

PPPPPPPY



U,C,G’ are functions of T and of R

Subtle order of limits: R > 0 vs. Imt > o

Example: u(t) ~ %q_% + gq% — %q% + 0O (q%)
U?=4(R*—-2R*u(t) +1)

U->+2 VS U — oo



s u(z) + -+

4d physics

U+ 2 U—2
72 >u(t) + - 72
®

5d physics
U~0

5d physics




, 2 5d physics

ad phySICS7V

4

=ilog(1/R) + -



ZCoul (:R' n(l))
= 22 [V(TrfR) C(zr, R)™ G(T’R)] 0
. 1

If we first expand the expressions in |[.... |
in R around R = 0 then take the constant g°
term at each order in R we find remarkable
and nontrivial agreement with GNY.



Examples Of Explicit Results
X = CIP4

Zcoul(n,R) = [ v(t,R) C(t,R)™ G(x, fR)]qO

. S(TR) 2 1

et ™ y g2 8
G(t,R) = — 9.(0) z (—1) 1
(D) | — el iR g2

dx

(7)x? + x*

{(t,R) = (?92 (1)U3 (T)) f \/1 >
0 _



Examples Of Explicit Results

Wall Crossing Formula:

Coul Coul

7] 7l = [v C”z('D”’(T,lR)]qO

2

/ k
@],]' _ Z (Slg . S}{ )q—Te—Znik-n {(T,R) (_1)k-K

S,{ = sign(VImT (k + fm ¢(z, R) ) -])

Imrt



Using toric localization and the 5d instanton
partition function we derived exactly the same
formula for wall-crossing @ oo

This would be another entire seminar....



Using the wall-crossing behavior of ZCOul(R, n)
at the strong coupling cusps allows

one to derive ZSI,W = partition function for by > 1

1+R
PR = (1—722)%”2"')% 2 SW(e) (1 373)

Tl
2

Z(R,n) = Terms in the power

series with R with d = )%:G mod 4

Agrees with, and generalizes, GKW Conjecture 1.1



E; Theory

R
R* =exp| —87m*— +i0
9sd,ym

gédjsym = oo corresponds to the E;
5d superconformal theory [Seiberg 1995]

And our formulae above indeed have
special properties at R* = 1.



Moving Up To Six Dimensions

All this should generalize to (anomaly-free)
6d SYM theories on X, X [t

Index(DL(z)) — Ell(c(M))

Anomaly free = Moduli space of
nonabelian Seiberg-Witten equations

Relation to tmf[2d (0,1) theory]
Gukov, Pei, Putrov, and Vafa?
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Family Donaldson Invariants

There Is an Interesting generalization to
Invariants for families of four-manifolds.

Mentioned by Donaldson long ago.
A modest amount of work has been done
in the math literature .




Families Of Metrics

Couple twisted theory to a
family of metrics: g,,,,(x; s)

s € P : Parameters of the family.

Zpw (G (x;s)) isindependent of s.

A suitable coupling to background supergravity
gives a partition function which is a closed

differential form Zil___l-pdsi1 A--dstp



Periods of Z]-ll__.l-pds"1 A---ds' are

the family Donaldson invariants.
No restriction on b.". No assumption of ACS.

Does it see the other half of the world
of four-manifolds?



Universal Family

P = Met(X)/Dif f+(X)

Met(X) oy
Met(X) oy

T, (Diff+(X)): 4d mapping class group



Donaldson-Witten a la Baulieu-Singer
G —equivariant cohomology of A (P;)
_ g
(27 (AP)) ® 5™ (Lieg))
QAM:l/)M Ql/),uz_Duqb Q¢p=0

Atiyah & Jeffrey + Baulieu & Singer

Zpyw : Pushforward in G —equivariant cohomology.



Ga = Dif f7(X)

G4 —equivariant cohomology of MET (X)

Qg =%y Q¥,, =70, +7d, Qd*=0

These arise from truncated twisted
N=2 superconformal gravity

dH : Ghost field



Action e is a closed equivariant class

inthe G X G,; — equivariant
cohomology of MET (X) X A(P)

Push-forward in G —equivariant cohomology
isa G; —equivariant class on MET (X)

Thanks to heroic computations by JC and VS
we have explicit actions e ™ obtained by
coupling to truncated & twisted
N = 2 conformal supergravity



Coupling To Twisted Truncated
Background Supergravity

S[g, ¥, @] = Spw + [ Vg (PHA,, + PHZ, + PHIPY Y, )

Ty" = {QAw} Aw= Imr,]( ok X )) +

Ly = TI]Kwu XPGK‘F

Y,LLV = Im TI] X[I,l,p X{?’] + .-



- Met(X)
Y= birrt o
some nontrivial element of o (Dif f* (X))

nontrivial 1-cycle from

dguv . ..\
ids fxvol(g) - (AHV)

Q(Auv) — vaYM 4 ...



This raises several questions:

A"V is NOT Q-closed!!!

Does our period integral localize to
moduli spaces of instantons?

Does tree-level exactness (of LEET) persist?



Questions & Future Directions

Topological data for twisting the general d=4 N=2 theory?

Invertible theory governing orientation of nonabelian SW moduli

Global anomalies of 5D SYM ...

Generalization to elliptic invariants from 6d theorieson X X E

Puzzles concerning the family generalization of Donaldson invariants

Other puzzles and directions | did not have time to mention ....
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