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Preliminaries

1. This talk is intended to provide primary source
material for a hypothetical historian of science interested
in RCFT, MTC, and nonabelions.

2. It will be focused (mostly) on my work and my
role in these developments 1986-1989. The
account will be biased.

3. Memory is notoriously unreliable.

4. We all have a tendency to inflate our importance,
particularly in recollection of past achievements



Preliminaries

5. History is fragile: Written documents get lost or
destroyed: Floods, fires, mold. Emails get lost or deleted.
Magnetic tape decays....

6. But total loss of memory is a loss of identity, as in
Alzheimer’s patients. The same is true for the scientific
community. | commend the organizers for creating this

series of talks.

7. 1 thought it might be valuable to take a look backward
and reflect on the road traveled.
Thank you for providing this opportunity.



0 Prehistory: A. 2dCFT and B. String Theory

0 Three Roads To RCFT: 1986-1987

e Princeton: Fall 1987- January 1988

° Braiding & Fusion & S & T: Moore & Seiberg Spring 1988
9 Chern-Simons Theory: July 1988- July 1989

G MTC & Anyons: August 1989 — November 1989



Prehistory A: 2dCFT 1980-1986

1. Friedan’s thesis

2. Minimal Models: BPZ: 1983
3. WZW model

4. Modular invariance



ANNALS OF PHYSICS 163, 318-419 (1985)

Nonlinear Models in 2 + ¢ Dimensions*

DaANIEL HARRY FrIEDANT

Lawrence Berkeley Laboratory, University of California, Berkeley, California 9472
Received February 10, 1984 \
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Conformal models related to solutions of Einstein’s equations

Leads to the idea that the space of 2d field theories is some
amazing generalization of the space of manifolds



Nuclear Physics B241 (1984) 333-380
© North-Holland Publishing Company

INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL
QUANTUM FIELD THEORY

A A BELAVIN,AM POLYAKOV and AB ZAMOLODCHIKOV

L D Landau Institute for Theoretical Physics, Academy of Sciences, Kosygina 2, 117334 Moscow,
USSR

Receved 22 November 1983

We present an investigation of the massless, two-dimensional, interacting field theories Therr
basic property 1s their invanance under an infinite-dimensional group of conformal (analytic)
transformations It 1s shown that the local fields formng the operator algebra can be classified
according to the irreducible representations of Virasoro algebra, and that the correlation functions
arc built up of the *“conformal blocks” which are completely determuned by the conformal
mvanance Exactly solvable conformal theones associated with the degenerate representations are
analyzed In these theones the anomalous dimensions are known exactly and the correlation
functions satisfy the systems of inear differential equations

Virasoro symmetry: vir(c); @ vir(c)g
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of the conformal algebra. The complete set of the fields { 4, } consists of some
number (which can be infinite) of the conformal families

{4} =@ [¢,]. (3.11)



(vi) If the parameter ¢ satisfics the equation

V25 —¢ — 1—c=£
25 —c+Vi—-¢ ¢4

where p and g are positive integers, the “minimal” conformal quantum field theory
can be constructed so that 1t be exactly solvable in the following sense (1) A finite
number of conformal famihlies [, ] 18 involved 1n the operator algebra, each of them
being degenerate, (1) all anomalous dimensions 4, are known exactly, (i) all
correlation functions of the theory can be computed as solutions of special systems
of linear partial differential equations There are infinitely many conformal quantum

VOLUME 52, NUMBER 18 PHYSICAL REVIEW LETTERS 30 APRIL 1984

Conformal Invariance, Unitarity, and Critical Exponents in Two Dimensions

Daniel Friedan, Zongan Qiu, and Stephen Shenker
Enrico Fermi and James Franck Institutes and Department of Physics,
University of Chicago, Chicago, Illinois 60637
(Received 31 January 1984)

Conformal invariance and unitarity severely limit the possible values of critical exponents
in two-dimensional systems.



A propos the fragility of history -

When | moved from Chicago to Rutgers in 1989, | brought along a
couple of backup tapes of my computer files. They wouldn't have
contained notebooks; | was still writing on paper. But the tapes did
contain the computer programs | wrote to explore my conjectures
about the Virasoro unitarity constraints. Around that time there was a
famous particle detector at SLAC called the Mark Il detector. | gave a
Fermi Institute seminar (in front of the hex people among others) on
the unitarity results from the 2nd version of my program. | called the
talk "Results from the Mark Il Ghost Detector”. Many years after the
move to Rutgers, | got around getting the material on the tapes
transferred to hard disks. It was too late. The magnetic tapes were
unreadable. - Daniel Friedan, Sept. 2024



BPZ had a notion of fusion
rules as selection rules,
but not as an algebra.



¢,(z) be the primary field with the dimension (5.22) The result of the above
calculation can be represented by the following symbolic formulae

B r 7
V.2 = _¢(a-a+)] T Paran]

\f’(z,l)‘i’(u): (‘I’(a-—a)] + L¢(a+a,)d (5 24)

Here the square brackets denote the contributions of the corresponding conformal
famihies to the operator product expansion of ¥ (2)}¢.,,(z1). In (5 24) overall factors,
standing 1n front of these contributions are omitted These factors cannot certainly
be determined by simple calculations like the one performed above™ As we shall see
in the next section, some of these coefficients could vanish

It can be shown that the “fusion rule” (5.24) 1s generalized to the cases of
arbitrary degenerate fields ¢, ,,, as follows,

1+m 1+n

llb(n,rfn)q!)c:: 2 E [qb(a-f-la_ t+hka )} (5 25)

{(=1l-mhi=1-—n



WZW Model

Non-Abelian Bosonization in Two Dimensions

Edward Witten*

Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544, USA

Abstract. A non-abelian generalization of the usual formulas for bosonization
of fermions in 141 dimensions is presented. Any fermi theory in 1+1
dimensions is equivalent to a local bose theory which manifestly possesses all

the symmetries of the fermi theory.

Received September 29, 1983

CURRENT ALGEBRA AND WESS-ZUMINO MODEL
IN TWO DIMENSIONS

V G KNIZHNIK and AB ZAMOLODCHIKOV

Landau Institute of Theoretical Physics, Moscow, USSR

Reccived 6 June 1984

We invesugate quantum field theory in two dimensions invanant with respect to conformal
(Virasoro) and non-abehan current (Kac-Moody) algebras The Wess-Zumino model 1s related to
the special case of the representations of these algebras, the conformal generators being quadrati-
cally expressed 1n terms of currents The anomalous dimensions of the Wess-Zumno fields are
found exactly, and the multipoint correlation functions are shown to satisfy linear differenuial
equations In particular, Witten’s non-abelean bosomsation rules are proven

Argued for
conformal
invariance when
WZ term is added.

Generalized
BPZ to models
with Lie group

symmetry



STRING THEORY ON GROUP MANIFOLDS

Doron GEPNER and Edward WITTEN

Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544, USA

Received 26 May 1986

A number of issues concerning affine Lie algebras and string propagation on group manifolds
are addressed. We show that a 1 + 1 dimensional quantum field theory which gives a realization of
current algebra (for any non-abelian Lie group G) will always give rise to an “integrable”
representation. It is known that string propagation on the group manifold can give rise to a
realization of current algebra for any G and any &, but precisely which representations occur for
given A has not been determined previously. We do this here by studying modular invariance and
by making a semiclassical study for large k. These results permit a complete description of the
operator product algebra. Some examples based on SO(3) and SU(3)/Z, are worked out in detail.



WZW Model

H =@o<rp<k V2 V)

N.B. A finite sum

Compare Peter-Weyl theorem

L*(G)=d, V; QV,

“H o= L2(L6W) "

It’s all about group theory, and becomes finite dimensional
group theory in the semiclassical limit k — oo



Modular Invariance
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Loop Graph in the Dual-Tube Model* F W

002+
Joel A. Shapiro
Center for Theovetical Physics, Department of Physics and Astvono
University of Mavyland, College Park, Maryland 20742
and Physics Depavtment, Rutgevs University, New Brunswick, New Jer:

(Received 6 December 1971)
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The one-loop graph in the dual-tube model is constructed. The conditions fo
gences or new singularities are exactly those found by Lovelace for factorizat
“Pomeranchukon” in the strip model. Loops correspond to electrostatics on1
only if spurious particles are permitted to circulate in the loops.

-.003 +

-2 0 172

(a) Fundamental regions of the modular group. The region marked F is the one I choose to integrate over.
(b) The region F in the w plane [w= exp(2mi7)] .

VOLUME 54, NUMBER 6 PHYSICAL REVIEW LETTERS 11 FEBRUARY 1985
Heterotic String OPERATOR CONTENT OF TWO-DIMENSIONAL
it Al kbbbt gy g CONFORMALLY INVARIANT THEORIES

(Received 21 November 1984)

A new type of superstring theory is constructed as a chiral combination of the closed D =26 bo-
sonic and D = 10 fermionic strings. The theory is supersymmetric, Lorentz invariant, and free of
tachyons. Consistency requires the gauge group to be Spin(32)/Z, or Egx Ej.

John L. CARDY
Department of Physics, University of California, Santa Barbara C4 93106, UUSA
A Classification of Open String Models
Received 22 November 1985

W. Nahm (Revised 3 January 1986)

Physikalisches Institut der Universitit Bonn, Nussallee 12, D-5300 Bonn 1, Federal Republic of
Germany



Prehistory B: String Theory 1984-1986

1. Anomalies — cool thing to work on
@ Harvard 1982-1985

(Anomalies have a complex history)

2. Green-Schwarz anomaly cancellation

3. Heterotic String Theory & Calabi-Yau

4. Narain; Narain, Sarmadi, and Witten



Nuclear Physics B239 (1984) 477-507
€ North-Holland Publishing Company

CHIRAL ANOMALIES, HIGHER DIMENSIONS, AND
DIFFERENTIAL GEOMETRY

Bruno ZUMINO

Lawrence Berkeley Laboratory and Department of Physics, University of California, Berkeley, CA
94720, USA

WU Yong-Shi* and A. ZEE
Departmenr of Physics, University of Washington, Seartle, WA 98195, USA

Received 6 June 1983
{Final version received 6 December 1983)

We determine the abelian and non-abelian chiral anomalies in 2 n-dimensional spacetime by a
differential geometric method which enables us to obtain the anomalies without having to calculate
Feynman diagrams, as has been done by Frampton and Kephart. The advantage of this methed is
that the construction automatically satisfies the Wess-Zumino consistency condition, a condition
which has direct physical interpretation. We hope that our analysis sheds light on the mathemarical
structure associated with chiral anomalies. The mathematical analysis is self-contained and a brief
review of differential forms and other mathematical tools is included.

Proc. Natl. Acad. Sci. USA
Vol. 81, pp. 2597-2600, April 1984
Mathematics

Dirac operators coupled to vector potentials
(elliptic operators/index theory/characteristic classes/anomalies/gauge fields)

M. F. Ativant anp 1. M. SINGER

‘tMathematical Institute, University of Oxford, Oxford, England; and $Department of Mathematics, University of California, Berkeley, CA 94720

Contributed by I. M. Singer, January 6, 1984

ABSTRACT Characteristic classes for the index of the Di-
rac family §, are computed in terms of differential forms on
the orbit space of vector potentials under gauge transforma-
tions. They represent obstructions to the exi: e of a covari-
ant Dirac propagator. The first obstruction is related to a chi-
ral anomaly.

- Physics B234 (1983) 269-330
h-Holland Publishing Company

The analytic family indexed by /% can be defined direct-
ly in terms of the Hilbert bundles #* = W(}LZ(S’ ® E) over

/4. Covariance means {fss}scs gives an elliptic operator
f4.4 mapping the fiber 3., to #3,. The analytic index of
this family is Ind # above.

When M = $* and % is the group of gauge transformations
leaving the north pole fixed, the index for the Dirac family

GRAVITATIONAL ANOMALIES

Luis ALVAREZ-GAUME'
Lyman Laboratory of Physics, Harvard University, Cambridge, MA 02138, USA

Edward WITTEN?
Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544, USA

Received 7 October 1983

It is shown that in certain parity-violating theories in 4k+2 dimensions, general covariance
is spoiled by anomalies at the one-loop level. This occurs when Weyl fermions of spin-% or -3 or
self-dual antisymmetric tensor fields are coupled to gravity. (For Dirac fermions there is no trouble.)
The conditions for anomaly cancellation between fields of different spin is investigated. In six
dimensions this occurs in certain theories with a fairly elaborate field content. In ten dimensions
there is a unique theory with anomaly canceilation between fields of different spin. It is the chiral
n =2 supergravity theory, which is the low-¢nergy limit of one of the superstring theories. Beyond
ten dimensions there is no way to cancel anomalies between fields of different spin.



ANOMALY CANCELLATIONS IN SUPERSYMMETRIC D = 10 GAUGE THEORY
AND SUPERSTRING THEORY *

Michael B. GREEN

Queen Mary College, University of London, London E1 4NS, UK
and California Institute of Technology, Pasadena, CA 91125, USA

and

John H. SCHWARZ
California Institute of Technology, Pasadena, CA 91125, USA

Received 10 September 1984
Supersymmetric ten-dimensional Yang—Mills theory coupled to N = 1, D = 10 supergravity has gauge and gravitational
anomalies that can be partially cancelled by the addition of suitable local interactions The remaining pieces of all the

anomalies cancel if the gauge group is SO(32) or Eg X Eg. These cancellations are automatically incorporated in the type I
superstring theory based on SO(32). A superstring theory for Eg X Eg has not yet been constructed.

Walking into the office of Alvarez-Gaume & Ginsparg
and hearing about the news from Aspen.



SUPERSTRINGS FROM 26 DIMENSIONS?

Peter G.O. FREUND'
Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA

Received 13 November 1984
The finite type I superstring theories of Green and Schwarz (SO(32) and (?)Eg X Eg) in ten dimensions are viewed as

special dimensional reductions on 16-tori from the non-supersymmetric Veneziano—Nambu—Goto strings in 26 dimensions.
Fermions appear as solitons of the two-dimensional string field theory. Various problems of such an approach are pointed

out and possible solutions outlined.

VOLUME 54, NUMBER 6 PHYSICAL REVIEW LETTERS 11 FEBRUARY 1985

Heterotic String

David J. Gross, Jeffrey A. Harvey, Emil Martinec, and Ryan Rohm
Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544
(Received 21 November 1984)

A new type of superstring theory is constructed as a chiral combination of the closed D =26 bo-
sonic and D =10 fermionic strings. The theory is supersymmetric, Lorentz invariant, and free of
tachyons. Consistency requires the gauge group to be Spin(32)/Z, or Egx Ej.

Right-moving CFT does not have to be the
same as the Left-moving CFT



VACUUM CONFIGURATIONS FOR SUPERSTRINGS

P. CANDELAS

Center for Theoretical Physics, University of Texas, Austin, Texas 78712
and Institute for Theoretical Physics, Santa Barbara, California 93106, USA

Gary T. HOROWITZ

Physics Department, University of California, Santa Barbara, California 93106, USA

Andrew STROMINGER
CONFORMAL INVARIANCE, SUPERSYMMETRY

The Institute for Advanced Study, Princeton, New Je AND STRING THEORY

Edward WITTEN Danic! FRIEDAN!

Joseph Henry Laboratories, Princeton University, Prince Enrico Fermi and James Franck Institutes and Department of Physics, University of Chicage,
Chicago, IL 66637, USA

Received 2 January 1985
Emil MARTINEC?

Joseph Henry Laboratories, Princeion University, Princeton, NJ 08544, USA

We study candidate vacuum configurations in ten-dimens
ity and superstring theory that have unbroken N =1 supers Stephen SHENKER!
condition permits only a few possibilities, all of which have van
E; X E; case, one of these possibilities leads to a model that i
group with four standard generations of fermions.

Enrico Fermi and Jumes Franck Institutes and Department of Physics, University of Chicago,
Chicago, IL 60637, USA

Received 16 December 1985

Covariant quantization of string theories is developed in the context of conformal fietd theory
and the BRST quantization procedure. The BRST method is used to covarantly quantize
superstrings, and in particular to construct the vertex operators for string emission as well as the
supersymmetry charge. The calculation of string loop diagrams is sketched. We discuss how
conformal methods can be used to study string compactification and dynamics.



Volume 169B, number 1 PHYSICS LETTERS 20 March 1986

NEW HETEROTIC STRING THEORIES IN UNCOMPACTIFIED DIMENSIONS < 10

K.S. NARAIN
Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX, UK

Received 6 December 1985

It is shown that infinitely many heterotic string theories exist in uncompactified dimensions less than 10, that are one-loop
finite (for massless external legs). Tachyvons are removed by compactifying into tori (10— d) and (26 — d ) dimensions of the
right-moving superstring and left-moving bosonic string sectors, respectively. The condition for modular invariance 1s shown to
be equivalent to self-duality condition on even lorentzian lattices with (10— ) and (26 — d) timelike and spacelike directions,
respectively. The construction results in a (10— d 26 — d) parameter family of one-loop finite string theories. The zero mass
sector of these theories for d =4 and 6 correspond to ¥ =4 and 2 supergravily coupled to super Yang-Mills with many
possible groups. some of which cannot be obtained by compactifying d = 10 heterotic string theory.



Nuclear Physics B279 (1987) 369-379
North-Holland, Amsterdam

A NOTE ON TOROIDAL COMPACTIFICATION OF HETEROTIC
STRING THEORY

K.S. NARAIN and M.H. SARMADI
Rutherford Appleron Laboratory, Chilton, Didcot, Oxon OXI11 OQX, UK

E WITTEN
Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544, USA

Received 9 June 1986
(Revised 4 July 1986)

The connection of recently constructed lower dimensional heterotic strings with conventional
toroidal compactification is clarified.



NSW: It’s just a toroidal compactification of
heterotic string with flat metric, B-field, and
gauge field

1 1
2,9 = (i)~ ) g2t g2t

o2mit DPED

qQ=¢

Infinite sum: ' is an even unimodular
lattice embedded into R&4+8s

Siegel-Narain theta function



Simplest case: Target space Sz

12 12
O(7,7T) = EqZL g2PR
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When R? = E(@ 0= z dys' Os Oy N =2ab

S,S Em

Noted c. 1987 by Friedan & Shenker; Moore;
Dijkgraaf, Verlinde, Verlinde (DVV) ; perhaps many others.



Harvard 1985-1986

Despite opposition from the senior faculty,
kids run the show.

L. Alvarez-Gaume, S. & V. Della Pietra,

J. . Distler, P. Ginsparg, G. Moore, P. Nelson,
J. Polchinski, C. Vafa

Trying to learn about the great
developments from Princeton & Chicago.
Lots of work on 2dCFT and string theory
from the worldsheet perspective.



Complex geometry and the theory of quantum strings
A. A. Belavin and V. G. Knizhnik

L. D. Landau Institute for Theoretical Physics of the USSR Academy of Sciences
(Submitted 18 February 1986)
Zh. Eksp. Teor. Fiz. 91, 364-390 (August 1986)

A summation over closed orientable surfaces of genus p>2 ( p-loop vacuum amplitudes in the
theory of bosonic strings) in the critical dimension . = 26 reduces to an integration over the
moduli space M, of complex structures of Riemann surfaces of genus p. The analytic
properties of the integration measure are studied as a function of the complex coordinates on
M, . It is shown that the measure multiplied by (det Im 7)'* (where 7 is the period matrix of
the Riemann surface) is the absolute square of a function holomorphic and nowhere vanishing
on M, . This function has a second-order pole at the infinity D = H’F /M, of the compactified
moduli space M, . By these properties the measure is determined uniquely, up to an arbitrary
constant factor, fact which allows one to construct explicit formulas in terms of theta functions
for surfaces of genus p = 2, 3. The theory contains power and logarithmic divergences, related
respectively to the renormalization of the tachyon wave function and of the slope. The relation
of these results to Mumford’s theorem is discussed. The quantum geometry of critical strings
turns out to be a complex geometry.

Z, = | Ilp@m)|* (detImr)~1

T =)



| went to David Mumford’s office to explain some of what was
going on at the physics department: Theta functions, modular
forms, integration on moduli space of curves.

His Tata Lectures On Theta were enormously helpful
to the work of several of us at Harvard at the time.

1R

Mumford isomorphism K(M,) ® 19713 =0

Full of excitement | called Phil Nelson, at the time he
was visiting Joe Polchinski in UT Austin.

Too late.

There was competition between Harvard and Moscow
— but it was not acrimonious.



0 Prehistory: A. 2dCFT and B. String Theory

0 Three Roads To RCFT: 1986-1987

e Princeton: Fall 1987- January 1988

° Braiding & Fusion & S & T: Moore & Seiberg Spring 1988
9 Chern-Simons Theory: July 1988- July 1989

G MTC & Anyons: August 1989 — November 1989
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Three Roads To RCFT

a.) Friedan & Shenker: Modular Geometry
b.) Moore: Atkin-Lehner Symmetry

c.) Dijkgraaf-Verlinde-Verlinde (DVV):
c=1 classification and beyond



Friedan & Shenker 1986-1987




Nuclear Physics B281 (1987) 509-545
North-Holland, Amsterdam

THE ANALYTIC GEOMETRY OF TWO-DIMENSIONAL
CONFORMAL FIELD THEORY*

Daniel FRIEDAN and Stephen SHENKER

Enrico Fermi and James Franck Institutes and Department of Physics, University of Chicago,
Chicago, Hlinois 60637, USA

Received 16 June 1986

Two-dimensional conformal field theory 1s formulated as analytic geometry on the universal
moduli space of Riemann surfaces.

The analytic geometry construction was a synthesis of
BPZ and Cardy. - Daniel Friedan, Sept. 2024



Conformal blocks are sections of projectively
flat (infinite-dimensional) vector bundles over
the moduli of curves.

Correlation functions for fixed moduli (m, m)
are pairings with a metric

Z(m,m)=h(y,¥)=y“(m)hz, " (m), (43)
Moduli include positions of punctures.
a, b label Virasoro conformal primaries:

Generically sum is infinite-dimensional
(but finite dimensional in the BPZ case)



The simplest tractable nontrivial examples in higher genus are gaussian models,
the nonlinear models whose target spaces are multidimensional tori. The generalized
characters are theta functions. The Ising model can also be represented explicitly as
a gauge system. The Ising partition function in genus g is written in terms of
pfaffians or square roots of determinants of chiral Dirac operators:

Z =272 |pfaffian @ |. (44)

The sum is over the 2°¢ ' + 22! gspin structures in genus g which generically have
no zero modes, i.e. for which the Z, index vanishes. For ¢ < 1, the rank of the vector
bundle V, is finite, and grows exponentially in g. For ¢>1, the rank of V, is
infinite In general, because an infinite number of highest weights appear in the
theory. In exceptional cases the metric of the infinitely many generalized characters
is highly degenerate, so the rank of W, is much smaller than the number of highest
weights in the theory. In chiral theories this collapse is taken to the extreme; the
rank of W, is 1, for all g.



Friedan & Shenker, unpublished,
1986-1987 speculating:

Space of CFTS is an arithmetic variety. The degenerate
points are like the "rational points” of this variety.

| remembered that Peter Freund was thinking about p-adic string
theory in 1986-87. His August 1987 paper cites private
communication with Shenker and me on the subject. This was the
idea of reducing a rational conformal field theory at each of the prime
numbers to build a p-adic version. - Daniel Friedan, Sept. 2024

Most likely Daniel coined the term
“rational conformal field theory”
in the 1986-1987 school year.



NON-ARCHIMEDEAN STRINGS *

Peter G.O. FREUND and Mark OLSON
Enrico Fermi Institute and Department of Physics, The University of Chicago, Chicago, IL 60637, USA

Received 13 August 1987

A full set of factorized, dual, crossing-symmetric tree-level N-point amplitudes is constructed for non-archimedean closed strings.
Momentum components and space-time coordinates are still valued in the field of real numbers, quantum amplitudes in that of
complex numbers. It is the waorld-sheet parameters, which one integrates over, that become p-adic. For the closed string the
parameters are valued in quadratic extensions of the fields @, of p-adic numbers (p=prime).

(in the adelic sense) in a larger structure meant to shed light on the behavior of the physical string. The adelic
point of view has been advocated, though in a different context, also by Witten [2] and Friedan and Shenker

[8].

[8] D. Friedan and S. Shenker, private communication.



Atkin-Lehner Symmetry 1986-1987




At Harvard/IAS in 1986-1987 | was interested
in what string theory could say about the
cosmological constant problem.

At the time, because A < 10729 jn “natural
units” it was obvious” to most people that it
is identically zero.

Crossing the street at Harvard Square with Steve Weinberg

(Measured value =107 122 jn Planck units = (0.008 eV)* )

In string theory the (perturbative approx. to the )
cosmological constant is the partition function
summed on genus g surfaces.



Heterotic string vacuum amplitude
(Belavin & Knizhnik; Friedan & Shenker):

L = <l/)L ’lpR) l/JL,R S F(V — Mg)

Maybe Z = (; ,1¥r) =0 because of a
selection rule due to a symmetry?



Discussion with Pierre Deligne at
|AS tea time about symmetries of moduli
spaces: Atkin-Lehner symmetry.
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Fig. 3. Some modular surfaces and their symmetries.



Lvac1 = f (YL, Yr)(7,T)
F({TH

PSL(2,7) = ]_[ I .y,
[

Letting y; be a basis for the y; —transforms

of Y; and Yp
sz Z(t,T)
M

1

N
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Use asymmetric orbifolds of Narain compactifications.

First example: 2d compactification of heterotic string.

Amazing cancellation:

7 — d°T @Leech(T) —0

M, (Im T)Z 7724

(Later pointed out to be an easy consequence of
integration by parts because 05 (E;) ~ (Imt)™ % )



n an In anln Yin
-1 1 -11.596 -11.569 -11.569
0 24 ﬂ'/3 25.132 13.5367
1 1906884 —.70482 x 104 -15.6487 -2.112
2 21493760 .10669 x 108 2.2932 0.1812
3 864299970 —-.22243 x 10~° -0.1922 -.011

Since |I.] < ﬂ,—lne"ﬁ’”‘ the series convergesrapidly. Graphing the data in the above ta-

ble we have:

15 ¢

10

.I-.
&
.1

-10 1

.-Js 1

fig.5: Graph of the eumulative cosmological constant against level number



| spent a lot of time, with very limited
success, trying to make models.

| decided to focus on what kind of CFT’s give
partition functions which are finite sums of
holomorphic times antiholomorphic functions
of moduli



Nuclear Physics B293 (1987) 139-188
North-Holland, Amsterdam

ATKIN-LEHNER SYMMETRY

Gregory MOORE

School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540, USA
and Lyman Laboratory of Physics, Harvard University, Cambridge, MA 02138, USA

Received 24 March 1987

The vanishing of the one-loop string cosmological constant in nontrivial nonsupersymmetric
backgrounds can be understood by viewing the path integral as an inner product of orthogonal
wave functions. For special backgrounds the string theory has an extra symmetry, expressed as a
transformation on moduli space. When left- and right-moving wave functions transform in
different representations of this symmetry the cosmological constant must vanish. Specific
examples of the mechanism are given at one loop for theories in two and four dimensions. Various
suggestions are made for the higher loop extension of this idea.



function which is holomorphically factorized. For these backgrounds the one loop
partition function should be a finite sum of Petersson inner products for congruence

subgroups:
2cfilg:- (2.24)
!

We will see in some examples that the coefficients ¢, needn’t be positive. In this
picture, the inclusion Iy(n) C I')(m) whenever m divides n, suggests that we should
think of the subgroups of the modular group as a vast net spreading out from I" and
reconverging, amongst the groups with infinite index, on (7). As we have men-
tioned the index provides a measure of the complexity of the background. Note that
this way of measuring distances between backgrounds 1s rather different from the
naive notion of distance between backgrounds, and 1s somewhat reminiscent of
p-adic distance.

Recently, Friedan and Shenker have independently investigated backgrounds of
this type, and have developed a notion of rational conformal field theories, in which
the background is specified by rational data [32]. In their picture, the metric on the
infinite dimensional bundle of primary fields becomes highly degenerate for certain
backgrounds, leading to a partition function of the form (2.24).

Probably the first mention of
“rational conformal field theories” in print.
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As you remember, when we first met at Cargese 1987, | was working
with Herman and Robbert on c=1 CFT’s. This is also where | learned
about the isolated c=1 models of Paul Ginsparg.

Other subjects that were covered at that school were orbifolds etc. |
was very much influenced by the work of Dan Friedan and Steve
Shenker (especially their paper on the analytic geometry of CFT), but
also by all the developments related to the classification of modular
invariants for minimal models and WZW models. People were also
already thinking about extensions of the Virasoro algebra, such as W-
algebras (e.g. by Kareljan Schoutens who was also at Utrecht). In the
c=1 case we knew that rational radii were special and have an
enlarged algebra .l think the relationship with theta functions and
bosonization of fermions also made clear that there was something
special about rational models.

In my recollection the concept of RCFT was natural consequence of the
work of Dan and Steve, and | think Dan may have been the first to use
this term. - Erik Verlinde, September 2024



CONFORMAL FIELD THEORY AT C=1

Robbert Dijkgraaf, Erik Verlinde and Herman Verlinde

Institute for Theoretical Physics
Princetonplein 5, P.0. Box 80.006
3508 TA Utrecht, The Netherlands

1. C=1 MODELS
1.1. Introduction

Conformal field theory [1] is a subject of great interest to wvarious
disciplines in physics. Although we are still far from a complete
understanding, partial results seem to indicate that a beautiful, deep
mathematical structure lies at its roots. The situation for central charge
c<l is by now very well understood [2]. The case c=1 however forms in many
aspects a natural boundary. Here we meet the new features of an infinity of
primary fields and the existence of marginal operators and deformations.
Furthermore, the c=1 models allow a natural interpretation as a string
compactification. As such they can serve as an instructive example of what

is to be expected at higher c wvalues.



FUSION RULES AND MODULAR TRANSFORMATIONS IN 2D
CONFORMAL FIELD THEORY

Erik VERLINDE

Institute for Theoretical Physics, University of Utrecht, P. Q. Box 80.006, 3508 TA Utrecht,
The Netherlands

Received 15 March 1988

We study conformal field theories with a finite number of primary fields with respect to some
chiral algebra. It is shown that the fusion rules are completely determined by the behavior of the
characters under the modular group. We illustrate with some examples that conversely the
modular properties of the characters can be derived from the fusion rules. We propose how these
results can be used to find restrictions on the values of the central charge and conformal
dimensions.



Erik’s definition: Close to the modern one

Extended chiral algebra (holomorphic VOA) with
finitely many (highest weight) representations.

The germ of the idea is already in the
DVV Cargese paper:




1.4. Rational gaussian models

A different approach towards classification uses

the concept of
rational conformal field theories.

A characteristic property of these
models is that they contain extra chiral primary operators, which can be

used to construct an extension of the Virasoro algebra. The theory is

called rational if, in addition, its operator content falls into a finite
set of irreducible representations of this extended algebra. An alternative

characterization of rationality is that the partition function is built up

from a finite set of characters, which are modular forms under some
subgroup of the modular group SL(2,Z) [12].

The rational theories in the c=1 spectrum are found at the rational
values of R?. In particular, the gaussian model with g2
2

= m/n contains the
chiral vertex operators Vi(z) - exp[ii/N¢(z)) of spin zN — mn. The

representations of the corresponding extension of the current algebra are
: X . p 2nik

built on the chiral primary fields Yk = exp [w—w), where k € Zy. For these
values of the momenta the operator pProduct

s with V, are local. The fusion
rules are simply -

] (¥ ] = [$rape )

(1.9)
The corresponding 1-loop characters are given by
G[FﬁN](')
xk(7) =
n(r)

(1.10)



We'll return to Erik’s paper
(from March 1988)



0 Prehistory: A. 2dCFT and B. String Theory

@) Three Roads To RCFT: 1986-1987

e Princeton: Fall 1987- January 1988

° Braiding & Fusion & S & T: Moore & Seiberg Spring 1988
9 Chern-Simons Theory: July 1988- July 1989

e MTC & Anyons: August 1989 — November 1989
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INSTITUTE FOR ADVANCED STUDY

Acadenne Activaries of the School: Acadon Year 1987-838

[n infonmal collaboraton wath the School of Natural Sciences and wath the help
of a grant from the Alfred P. Sloan Foundation, the School of Mathematics held
a program in string theory dunng the academic year 198788, It invited a num-
ber of senior mathemacicians and mathematical physicists, and they led seminars
on string theory and related topics,

There were three seminars on conformal hield theory: 1D, Fnedan and S. Shenker,
term I; G. Segal, term ); and P. Goddard, term 11 In addition, D. Ohve held one
on algebraic aspects of sring theory; 1t was continued by J. Lepowsky and L
Frenkel, who discussed orbifold conformal field theory, aiming at the construction
of a remarkable finite group called the Monster. Parallel lectures on the last 1opic
were mven by P Deligne. M. Aayah led a seninar on applications 1o 3—dimen-
sional and 4-dimensional mantifolds of ideas coming from physics.

In term 11, E. Witten continued with a senes of lectures that prosented a more
powerful heuristic approach to sonie of the same questions. The supergeometry
seminar in term § was also related w physics, the theory it expounded being an
outgrowth of the treatment by physicists of Fenni fields,

In all these seminars an effort was made 1o have the first lectures understandable o
the non—specialist. The presence of both mathematicians and mathematical physi-
cists in the audicnice and the corresponding need for commumcation were helpful,



Mo eniber 13

Lectuee: “Medieval Confrarernines:
A Re-Asessment - H

ANDRE VAUCHEZ, Uhiibgrsity of Piris

Sermnar on Conformal Field Theory - m
STEPHEN SHENKER, School of Mathemarics, 1AS

Seminar on Conformal Field Theory - m
GRAFME SEGAL, Dheiversing of Obxford

devember 4

November 20
Seminar on Conformal Field Theory - m
GRAEME SEGAL, Ulniversity of Oxfond

Seminar on Differential Geometry:
“Fundamental group and the growth of the
number of closed geodesics in rank 1
manifolds™ m

GERMARD F KNIEPER, School of Mathenatics, TAS

Special Lecture: “Knot polynomials, abstract
tenors and the Yang-Baxter equation” m
LOUTS it KAUEIMAN, Uniovrsity of Minois at
Cfn'r.t_co

Semunar on Conformal Field Theory - m
DANIEL FRIEDAN, Schoo! of Mathematics, 1AS

Seminar on Conformal Field Theory - m

GRAEME SEGAL, University of Oxford

IAS-Princeton University Lunchtime Seminar:
“Ghostly Polyakov integrals; dual Peierls

brackets™ N
MARK RuUBIN, Rockefeller University

Astrophysics Semunar: “Intrinsic shapes of

elliptical galaxies™
MARIN FANX, Umiversity of Leiden



Discussions with D. Friedan @ IAS
inspired me to try to prove that the central
charge and conformal weights in RCFT are € Q

PRl e - Sl g TR

|AS tea time: | remarked to Greg Anderson
that we were interested in flat vector bundles:

He immediately said that we should be studying
ODE’s with regular singularities.



Rationality in Conformal Field Theory

Greg Anderson' and Greg Moore?
'School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540, USA
*School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540 USA

Abstract. We show that if the one-loop partition function of a modular invariant
conformal field theory can be expressed as a finite sum of holomorphically
factorized terms then ¢ and all values of h are rational.

and the degeneracy of the states with h = h = 0 1s exactly one. Another distinguish-
ing characteristic of conformal field theory is modular invariance, which, among
other things states that the one loop partition function:

Z(t)=Trgro gl = ¥ Nyu(he, )iy, ) (1.2)

abh =0

is modular invariant. Here N, is the degeneracy of representations (h,, h,), x(h, c)
is the character of the representation V(h,c), and g = e*™, where te #, the upper

Representations of what???? We don’t say.



Used modular differential equations.

ON THE CLASSIFICATION OF RATIONAL CONFORMAL FIELD THEORIES

Samir D. MATHUR, Sunil MUKHI and Ashoke SEN
Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400003, india

Received 19 July 1988

We propose a method for classifying rational conformal field theories in terms of the differential equation satisfied by their
characters.

Towards a classification of two-character rational
conformal field theories

A. Ramesh Chandra and Sunil Mukhi

Indian I'nstitute of Science Bdueation and Research,
Homi Bhabha Rd, Pashan, Pune 411 008, I'ndia

E-muail: ramesh. ammanamanchi@gmail . com, sunil .oukhidgmail . com

A o a e W= mreeartede oo orrrsesble o serrres lesb o e ebrrems e o it Ferrr 11esms oof oo g i e 8



QUASICRYSTALLINE COMPACTIFICATION

J. HARVEY
Princeton University, Princeton, NJ 08540, USA

G. MOORE
Institute for Advanced Study, Princeton, NJ 08540, USA

C. VAFA
Lyman Laboratory of Physics, Harvard University, Cambridge, MA 02138, USA

Received 14 QOctober 1987

A class of asymmetric orbifolds is constructed using ideas from the theory of quasicrystals.
These orbifolds provide examples of solutions to string theory which are isolated in the sense that
they do not belong to a continuous moduli space of solutions and moreover cannot be approxi-
mated by rational orbifolds. One of the notable features of the construction is that many aspects
of the models are easily handled with the theory of cyclotomic fields.



Jan. 5, 1988: Jadwin Hall, P.U.
E. Verlinde’s talk on modular
transformations and the fusion
rule algebra
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First | thought about the operators in the c=1 model constructed out
of the integrals of del phi, which later became a special case of the
Verlinde operators. | discussed these ideas with Robbert and
Herman at the time, and this ended up in the proceedings of the
Cargese school. My goal was to see if similar operators could be
defined for the other conformal field theories. Holomorphic
factorisation was important for this, which was already emphasised
in the work of Dan and Steve. In October 1987 | made

my breakthrough.

- Erik Verlinde, Sept. 2024
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Recalling what was
done in the DVV
Cargese paper
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Next day there was an important meeting
(first of three in this talk) in Witten’s office in D-building

with Kazhdan, Moore, Seiberg, and Witten.
Trying to figure out what Erik had said.
Witten: 'It's magic.”

Erik released a preliminary version of his
paper during his Princeton visit.

Crucial discussion with Erik about how to prove it.
He suggests looking at 2-point functions on the torus.



FUSION RULES AND MODULAR TRANSFORMATIONS IN 2D
CONFORMAL FIELD THEORY

Erik VERLINDE

Institute for Theoretical Physics, University of Utrecht, P. Q. Box 80.006, 3508 TA Utrecht,
The Netherlands

Received 15 March 1988

We study conformal field theories with a finite number of primary fields with respect to some
chiral algebra. It is shown that the fusion rules are completely determined by the behavior of the
characters under the modular group. We illustrate with some examples that conversely the
modular properties of the characters can be derived from the fusion rules. We propose how these
results can be used to find restrictions on the values of the central charge and conformal
dimensions.



identity:
A=Y SIStk (3.11)

Note that the r.h.s. indeed satisfies the property (3.7). By using in addition to (3.11)
the fact that A,* =38 we can also express the eigenvalues A{ in terms of the
entries of the matrix S/

A =g /88 (3.12)

Together with (3.11) this allows us to compute the coefficients 4, ;, if we know the
matrix S. In this way we have calculated the coefficients A, jk for many rational
CFT’s for which the modular properties are known, and for all of them we have
indeed found that:

Aijk=ijk- (3'13)

We conjecture that this is true for every RCFT, but a proof of this fact requires a
better understanding of the operators ¢,(#). We have shown that the coefficients



Elegant. Readable. Convincing.

David Kazhdan’s quip:

Physics is very interesting, there are many interesting
theorems. Unfortunately, there are no definitions.



a.) ldentification of matrix coefficients of
Verlinde operators with fusion rules.

b.) Kazhdan remark: Nggg > 1 in su(3)

c.) Missing notion of a chiral vertex operator.



Prehistory: A. 2dCFT and B. String Theory

Three Roads To RCFT: 1986-1987

Princeton: Fall 1987- January 1988

Braiding & Fusion & S & T: Moore & Seiberg Spring 1988

Chern-Simons Theory: July 1988- July 1989

MTC & Anyons: August 1989 — November 1989
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January-February 1988:
Discussions start with Seiberg
(and Tom Banks)

1. BPZ/FQS minimal models/unitarity classification

2. Constraints of modular invariance

3. c=1 classification of DVV & Ginsparg

4. Capelli,Itzykson,Zuber classification of SU(2) WZW models

5. Verlinde’s conjecture

The time for systematic
classification seemed right.



Someone (Goddard, Segal, or Witten) put
Tsuchiya-Kanie’s paper in my hand

Vertex Operators in Conformal Field Theory on P! and
Monodromy Representations of Braid Group

Dedicated to Professor Hirosi Toda on his 60th birthday

Akihiro Tsuchiya and Yukihiro Kanie

Contents

§ 0. Introduction

§ 1. Affine Lie algebra of type A"

§ 2. Vertex Operators (Primary Fields)

§ 3. Differential Equations of N-point Functions and Composability
of Vertex Operators

§ 4. Commutation Relations of Vertex Operators

§ 5. Monodromy Representations of Braid Groups

Appendix I. Bases of Tensor Products of 3(,-modules

Appendix II. Connection Matrix of Reduced Equation
References | Received March 4, 1987.




Our aim in this paper 1s to give rigorous foundations to the work of
[KZ], and to reformulate and develop the operator formalism in the con-
formal field theory on the complex projective line P'. The space 57 of
operands is taken to be a sum #=) Y2 s, of the integrable highest
weight modules 57, of the affine Lie algebra §=3[(2, C)QUIt, t ]®Cc of
type AY. We fix the value ¢ (positive integer) of the central element c

Notice: Completely chiral, even the Hilbert space H'!

Hyzw EDo<ap<k V2 & V)



Chiral vertex operators

A triple v=( jj) of nonnegative half integers j,, j, and j is called a

2J1

vertex. Put A(v)=4,4 4, —4,,. Then the Clebsch-Gordan condition
li—r|<i<h+r and ji+j+jeZ

for a vertex v is a condition for Hom (V,®V,,, V,,)#0. In this case
Hom, (V,;®V,,, V;,)=C and v is called a CG-vertex.
For a vertex v= (jj}.) with j,, ;<< /2, a vertex operator @(z) of spin
2J1
j is called of type v, if @(u; z)=11,P(u; z)II,, for any u € V,, where I, is
the projection of # (or ) onto #, (or #, respectively). Then we get
the condition for the existence of vertex operators:

Theorem 1 (Proposition 2.1 and Theorem 2.2).
i) A vertex operator @(z) of type v is uniquely determined by the
form (initial term) @, € Hom, (V],®V,QV,,, C) defined by

By, u, W)= (22| Pw; )W) ..o  We Vi, ueV,weV,).

ii) There exists a nonzero vertex operator @ of type Vz(jjj ) on i,
21
if and only if the vertex v is an {CG-vertex, that is, it satisfies the {-con-
strained Clebsch-Gordan condition:

= Rl<i<h+is hthtieZ and ji+j+j<L.

Je

F 3

Ji



Braiding & Yang-Baxter

i ko A k Ji

Proposition 4.2. i) Let J=(j, js, js ) with I(J) = &. Then for
each intermediate edge k e I(J) and (w, z) e I,,

79.,0(@)Pvx(W)=_ 25 Doy (W)Ds, () CD),

EelyI)

where the operator in the left hand side is considered as the analytic continu-
ation of the composition of the vertex operators @, (w) and @, (z) along the
path b(t) in the manifold X .



Tsuchiya-Kanie study fusion

'jz

Ja I 1'
’ ‘ j3 f r

j 4 w k z ‘ J1 S j4 ‘ Z ) J 1
vy(k) vi(k) w(r)

But end their paper with complicated
explicit formulae for connection coefficients

for the KZ equation in the SU(2) WZW case.
They did not introduce a fusion tensor.



Ann. Inst. Fourier, Grenoble
37, 4 (1987, 139160

Important follow-up to Tsuchiya-Kanie.

MONODROMY REPRESENTATIONS
OF BRAID GROUPS
AND YANG-BAXTER EQUATIONS

by Toshitake KOHNO

INTRODUCTION

The purpose of this paper is to give a description of the monodromy
of integrable connections over the comfiguration space arising from
classical Yang-Baxter equations. These monodromy representations define
a series of linear representations of the braid groups 8 : B, — End (W®")
with one parameter, associated to any finite dimensional complex simple
Lie alpebra q and s finite dimensional irreducible representations
p:a— End (W). By means of trigonometric solutions of the quantum
Yang-Baxter eguations due to Jimbo ([10] and [11]), we give an explicit
form of of these representations in the case of a non-exceptional simple
Lie algebra and its vector representation (Theorem 1.2.8) and in the
case of sl{2,C) and its arbitrary finite dimensional irreducible represen-
tations (Theorem 2.2.4).

Cur monodromy representation @ commutes with the diagonal action
of the g-analogue of the universal enveloping algebra of q in the sense
of Jimbo [9], which was discussed as quantum groups by Drinfel’d [7].
In particular, in the case g = slim,C), the representation 8 gives Hecke
algebra representations of B, appearing in a recent work of Jones [14).

The study of these monodromy representations 15 molivaled by a
receni development of two dimensional conformal field theory imtated
by Belavin, Polyakov and Zamolodchikow [5]). The importance of the
two dimensional conformal field theory with pauge symmetry was

Key-wards © Broid group - Yang-Bamicr eguation - Simple Lic algebra - Iniegrakble
connection

Studied monodromy
representations provided by the
Knizhnik-Zamolodchikov equations
on the plane, and the relation to
the braid group representations.

It did not influence me, but it
did influence others in the
field: Frohlich, Segal, Witten

Did not combine the
operations of braiding and
fusing or generalize to higher
genus.



Discussions
with Seiberg:

Polynomial constraints on braiding,
fusion, and modular transformation
matrices
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The talk devoted a lot of space to a proof of
the Verlinde conjecture using those relations.



2"d important meeting in
Witten’s office in D-building

The day after my IAS seminar we met
with Pierre Deligne (maybe also Kazhdan)
in Witten'’s office. Delighe explained to us

about tensor categories.



Attitudes About Categories

| was aware of them, but had not
studied anything in depth.

| did not take category theory seriously,

regarding it as overly formal abstract
nonsense with no real content.

And | generally made fun
of category theory.



CONFORMAL THEORIES AND PUNCTURED SURFACES

Cumrun VAFA 5 g loos) = iy Py

Lyman Laboratory of Physics, Harvard University, Cambridge, MA 02138, USA =
Received 14 September 1987

We define conformal theories as realizations of certain operations involving punctured Riemann surfaces (with coordinates

chosen at the punctures) in a Hilbert space, We describe the connections of our formalism with other formulations of conformal
theories.

Nuclear Physics B303 (19%8) 455-521
North-Holland, Amsterdam 470 1. Alvarez Gaumé et al. / Strings

STRINGS IN THE OPERATOR FORMALISM

I ALVAREZ GAUME Fig. 4. A Riemann surface £ with # punctures p, and n coordinates in the neighborhood of punctures.

Physics Depariment, Boston University, Boston, MA 02215, USA

C. GOMEX
Theony Division, CERN, CII 1211, Genera 23, Switzerlund

. MOORE: My joking response to Cumrun:
Institute for Advanced Study, Princeton, NJ 08540, (SA ““Oh you re J ust definin ga functor”’
C. VAFA
Lyman Laboratory of Phystes, Harvard University, Cantbridge, MA 02138, USA W e b Ot h I au g h e d , an d th at was th at.

Received 4 January 1988

We consider string theories in the operator formalism. In particular we develop Polyakov
strings completely in the operator language. The operator approach turns out to be economical,
self-contained and manifestly modular invariant.



From writeup of my Cargese talk:
Vanishing Vacuum Energies, 10/87:

Thus, the set of boundary conditions {(h,g)} is broken up into orbits. The condition
of modular invariance is that Z{(h,g)(ar + b/er + d) = Z(h®g°, h%g¥)(r) 4. Therefore, if

4 and so, I suppose, the Z-functor is a morphism from the “category” of boundary

conditions to the “category” of partition functions.

Most other physicists | talked to didn’t know
about category theory, and didn’t like it when it
was explained.



REMARK (£ Witzn) RELATED TO BIRKHOFF
CONERENCE T HEOREM OF ATEGCORY THY.

if 2;j € H—e, B(€) changes 7y aCCOTAINGLY. L& IEIAUIVLS (&0 Witiisn vass swwos === = =
2] (60,'.) = 1. The edge-path groupoid [8] of éO,n defines the duality groupotd Don. T'on
acts on 50,,. so ['o,n is a subgroup of Do n.

To introduce conformal blocks, thicken D to obtain a partition of the n-holed sphere

into pants (a.k.a. trinions) together with a Fenchel-Nielsen coordinate system (£;,0;). For

3 E. Witten has remarked that these statements are closely analogous to the Birkhoff

coherence theorem in category theory.

associating an operator @ 10 €acn UL, LULLLpYiss | m et |V| acC |_ ane ye ars

operators according to the partition of the surface.

The sections % may be analytically continued from later. He SOught me
th ion vto all of T. Duality states that for any paif .
RIEE S ol - out to remind me of

v, v'e%, there is a duality matrix A4, with %
=A% ; representa- . .
A, %, throughout T. The 4,,- form a rep thIS and Sald he Was

’ I
% E. Witten has remarked that these statements are closely a0
ogous to the Maclane coherence theorem in category theory: Ve ry a I I I u Se d .



After the Deligne/Kazhdan/Witten response
to my April 22, 1988 seminar we took
categories seriously, and started studying

NEANTRO SAAVEDRA RIVANO
Catégories tannakiennes

Bulletin ae la 5. M. F., tome 100 (1972), p. 417-430

<httpwww.numdam.org/item%id=BSMF_1972__ 100 __ 417 0=

=1 % OGN e L b

o= ]

& . -
Catégories tannakiennes

P. DELIGNE

& A. Grothendieck en témoignage d'admiration
et de reconnaissance

. Introduction

. Rappels et compléments: catégories tensorielles

. Rappels et compléments: gronpoides

. Comonades

. Produit tensoriel de catégories abéliennes

. Le théoréme principal

. Caractérisation interne des calégories tannakiennes

{caractéristique 0)

. Le groupe fondamental d'une catégorie tensorielle
. Corps différentiels

Index terminologique
Index des notations
Bibliographie

1. Introduction



POLYNOMIAL EQUATIONS FOR RATIONAL CONFORMAL FIELD THEORIES

Gregorvy MOORE and Nathan SEIBERG '
Institute for Advanced Study, Princeton, NJ 08540, USA

Received 24 May 1988

Duality of the conformal blocks of a rational conformal field theory defines matrices which may be used to construct represen-
tations of all monodromies and modular transformations in the theory. These duality matrices satisfy a finite number of indepen-
dent polynomial equations, which imply constraints on monodromies allowed in rational conformal field theories. The equations
include a key identity needed to prove a recent conjecture of Verlinde that the one-loop modular transformation S diagonalizes
the fusion rules. Using this formalism we show that duality of the g=0 four-point function and modular invariance of all one-

loop one-point functions guarantee modular invariance to all orders. The equations for duality matrices should be useful in the
classification of conformal field theories.

No categories. (Other than footnote with blooper.)

Change C,N to B, F.

“Almost proved” = proved.



j1 iy j2 Iy h 12 .
Iz

(a) | ! . | {al l 5
. kz = T B |.| k - k2 =XF . 4

1S symn;etric and one may then deduce R BUt we falled to

= exp{ =21 [4() +40) ) o appreciate the

where k 1s a normalization factor, | m pO rta n Ce/
significance.

Other than the fact that it allowed us to give projective representations of mapping
class groups at all genus and thereby define a
(finite-dimensional) modular geometry in the sense of Friedan & Shenker.



3-step classification program for RCFTs

1. Classify solutions to the polynomial equations.
(i.e. classify MTC's.)

2. Use categorical viewpoint and try to imitate
“Tannakian” reconstruction to construct the chiral theory —
up to holomorphic conformal field theories with trivial
braiding/fusion/S-matrix.

3. Then classify the ways chiral parts can be glued together
to make a full RCFT.



Combining Left and Right movers:

NATURALITY IN CONFORMAL FIELD THEORY

Gregory MOORE and Nathan SEIBERG*
Institute for Advanced Study, Princeion, NJ 08540, USA

Received 2 August 1988

We discuss constraints on the operator product coefficients in diagonal and nondiagonal
rational conformal field theories. Nondiagonal modular invariants always arise from automor-
phisms of the fusion rule algebra or from extensions of the chiral algebra. Moreover, when the
chiral algebra has been maximally extended a strong form of the naturality principle of field
theory can be proven for rational conformal ficld theory: operator product coefficients vanish if
and only if the corresponding fusion rules vanish; that is, if and only if the vanishing can be
understood in terms of a symmetry. We illustrate these 1deas with several examples. We also
generalize our ideas about rational conformal ficld theories to a larger class of theories:
“guasi-rational conformal field theories” and we explore some of their properties.

1.Automorphisms of the fusion rule algebra.
(Parallel paper of Dijkgraaf-Verlinde.)

But again we failed to
appreciate the
importance/significance.

S.=8"1=—"\=¢§ 32(_)1’;;’,
ivy iJ F i 00 ,F;_F-; 2



And we introduced more formally the idea of
extensions of chiral algebras as a way to
generate new RCFTs’

Add an integer spin holomorphic field to the
chiral algebra (VOA) and only keep fields local
with respect to that field.



Condensation

The key idea of “extensions of chiral algebras’ led
to the topic of "anyon condensation” in papers of
Bais and Slingerland in their study of spontaneous
symmetry breaking of quantum group symmetry

Condensate induced transitions between topologically ordered phases

E A. Bais"? and J.K.Slingerland®

!Institute for Theoretical Physics, University of Amsterdam,
Valckenierstraat 65, 1018 XE Amsterdam, The Netherlands
*Santa Fe Institute, Santa Fe, NM 87501, USA*
*Dublin Institute for Advanced Studies, School of Theoretical Physics, 10 Burlington Rd, Dublin, Ireland.’
(Dated: May 28, 2018)

We investigate transitions between topologically ordered phases in two spatial dimensions induced by the
condensation of a bosonic quasiparticle. To this end, we formulate an extension of the theory of symmetry
breaking phase transitions which applies to phases with topological excitations described by quantum groups or
modular tensor categories. This enables us to deal with phases whose quasiparticles have non-integer quantum
dimensions and obey braid statistics. Many examples of such phases can be constructed from two-dimensional
rational conformal field theories and we find that there is a beautiful connection between quantum group sym-
metry breaking and certain well-known constructions in conformal field theory, notably the coset construction,
the construction of orbifold models and more general conformal extensions. Besides the general framework,
many representative examples are worked out in detail.



Condensation

Nati and | have been very critical of the
use of the word “condensation”
initiated by Bais and Slingerland

(and it has since become widespread and standard)

But... Preparing for this talk | found
an unpublished M&S paper ...



preliminary draft: 12/ 1/00 11.0v

effect. Since these Wilson lines correspond to the effects of insertions of ‘t Hooft opera-

tors we may say that the 9+1 dimensional objects created by the ‘t Hooft operators have
«condensed.” It is for this reason that the charge X of the Wilson line operators has no
physical meaning: only the charge modulo the charge of the condensing objects has any
meaning. The above conditions (3.4) and (3.5) on the central charge and representations,
derived in the context of 9D CFT gauarantee the invisibility of the ‘t Hooft loops and the

gauge invariance of the allowed Wilson loops.

For example in the SO(3) theory the operators Wy have condensed. Demanding that

—
8
| ///J‘ -

»-

/ ' “
I’'m Shéﬁ\ted! Shocked! To find
that condensatior has been
going on at the Institute!




Anyon condensation and tensor categories

Liang Kong " !

1307.8244

* Institute for Adoanced Study (Saemce Hall)

Tsmghua University, Bajing 100084, China

® Department of Mathematics and Statistics
University of New Hampshire, Durham, NH 03824, USA

Higher Gauging
and Non-invertible Condensation Defects

Konstantinos Roumpedakis!, Sahand Seifnashri®?, and Shu-Heng Shao? 2 2 04 . O 240 7

il WOXR | New B Hourly Weathe G who first wrote W Wess—Zumino-V B Home - INSPIRE G I'm shocked ) SCGP VIDEC x + v - o X
e @A AB % e =
E 28 Nanme. nanser nanure =
Title: 1+1d SPT phases with non-invertible
Y ies: i and ized
10955 11X families
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Name: Liang Kong
Event rkrshcp Applications of Generalized Symmetries and Workshop Applications of &
- Topological D > Quantum Matter " -
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Title: Higher Condensation Theory N + Zheng-Chi P
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Abstract: It was known for more than 20 years that many phase transitions between (topological) D2
quantum phases or (topological) quantum field theories are driven by defect condensations. The
only fully established defect condensation theory is the theory of anyon (or boson) condensations
n 2+1D topological orders (or TQFTs). Little is known for the condensations of higher dimensional o
! (RO \ ). Litho " . 5 y Workshop Applications of 7
defects in higher dimensional topological orders. In this talk, | will explain a unified mathematical D N
Generalized Symmetries and
theory of defect condensations in topological orders in all dimensions based on higher categories,

Topological Defects to Quantum Matter
higher algebras and higher representations. My talk is based on a recent work arXiv:2403.07813 L

joint with Zhi-Hao Zhang, Jiaheng Zhao and Hao Zheng. ::::‘H:;:Z? g:::ensation Theory

Date: 2024-09-13

More os of this person (see all)

=% ications of
L/ Symmetries and Topological Defects to

Applications of Generalized Symmetries and Topological ? "I 4]




Some Modern Developments:

Combining left-movers and right-
movers is now understood in terms of
topological defect operators:

-rohlich, Fuchs, Runkel, Schweigert, 0909.5013
Kapustin-Saulina, 1012.0911
A. Davydov, 1312.7466,1412.8505

But a systematic classification like that of
ClZ seems out of reach.



Classical and Quantum Conformal Field Theory

Gregory Moore and Nathan Seiberg*
Institute for Advanced Study, Princeton, NJ 08540, USA

Abstract. We define chiral vertex operators and duality matrices and review the
fundamental identities they satisfy. In order to understand the meaning of these
equations, and therefore of conformal field theory, we define the classical limit
of a conformal field theory as a limit in which the conformal weights of all
primary fields vanish. The classical limit of the equations for the duality
matrices in rational field theory together with some results of category theory,
suggest that (quantum) conformal field theory should be regarded as a
generalization of group theory.

To summarize, we have shown that every compact group (discrete or
continuous) leads to a classical conformal field theory on the plane. The
L 2 correspondence between familiar concepts in group theory and conformal field

theory 1s the following:

Group
Representations

Fig. 5. Deformation of contours used to obtain-a “tensor product” of representations ClebSCh‘Gordan COGfﬁClentS/ lntcrtWinerS

A Invariant tensors
representations to a third representation. Hence, to begin with the general

definition, one would like to make sense of #;® #; as a representation space of /. Symme“y of coupllngs

One cannot take the standard tensor product representation because of the central Racah coefficients (6‘} S)’mbOlS)

terms in .o/. Rather, one uses contour deformation to write a deformed tensor . h

product representation parametrized by z=0, oo in the complex plane Functions on the group

00— @4 To do this define: Product of functions on the group
A,,o(@i)z«fi"*""(Z(C—Z)‘”"“@;)®1+1®f9i Average over the group

of a product of functions

_ %’: (n+ii71)2"+diilik@1+hd‘®1+1®@;- (2.4)
k=0

Chiral algebra
Representations

Chiral vertex operators
Conformal blocks

Q

Fusion matrix

Physical fields

Operator product expansion
Physical correlation function



Appendix B. The Completeness Theorem

In this appendix we give the proof that the set of equations given in Sect. 4 give a
complete set of relations for the duality groupoid. We divide the problem into three
steps considering genus zero, one and larger than one in turn.

lon; Tin s Iy butnotforly,forg > 1, for which we
were severely arraigned in 1998 by Bakalov and Kirillov:

These questions were studied In a series of pioneering papers of Moore and
Seiberg [MS1, MS2|. These authors used spheres with 3 holes (trinions) as their
building blocks, and they gave a complete set of simple moves and relations among
them. However, their paper [MS2] has some serious flaws. First of all, they use the
language of chiral vertex operators, which 1s important for applications to conformal

field theory, but which 1s not really relevant for finding the set of simple moves and
relations, since this question is of purely topological nature. This lead them to miss

some “obvious” axioms which are automatically satisfied in any conforaml field
theory. What 1s worse, their proof contains some gaps, the most serious of them
being a completely inadequate treatment of the case of surfaces of higher genus
with n > 1 holes. The reason is that they used an explicit presentation of the
mapping class group I'(X) by generators and relations, found by Wajnryb [Wajl,
and such a presentation for surfaces of higher genus was known only for surfaces
with < 1 holes. (For surfaces with arbitrary number of holes, a presentation of the



Parallel Developments At The Time

Graeme Segal: The definition of conformal field theory

oHE DEFINITION OF CONFORMAL FIELD THECRY

G. B. Segal
Mathematical Institute
24-29 St. Giles
Ooxford OX1 3LB

England

I shall propose a definition of 2-dimensional conformal f£ield theory
which I believe is equivalent to that used by physicists.

{. THE CATEGORY £

The category £ is defined as follows. There is a sequence of objects
! {cn} 50" where cn is the disjoint union of a set of n parametrized
n

‘circles.
A morphism c. * Cm is a Riemann surface X with boundary 39X,

together with an identification i : € -C_ 9%X. (We identify

porphisms {(X,1i),(X',i') if there is an iseomorphism £ : X =+ X' such that
fsi = i'., MNotice that the boundary of a Riemann surface is canonically
riented. The identifications i are supposed to be orientation-

reserving, and Cm - cn means the unjion Cmu. Cn with the orientation of

4] reversed.)

' A morphism 03 -+ c2.

Como, August 24-29, 1987.



The Definition of Conformal Field Theory

Graeme Segal

St. Catherine's College, Oxford.

The object of this work is to present a definition of a
two-dimensional conformally invariant quantum field theory in
mathematical language, and to describe the basic examples. 1 hope this
will be helpful to mathematicians who are interested in physics; but
apart from that there are several areas of pure mathematics where
conformal field theories seem to play a fundamental but quite

unexpected role. I shall give five examples.

(i) The "monster" group of Griess-Fischer is the group of
automorphisms of a fairly simple and natural conformal field theory.
The graded representation of the monster group whose Poincaré series is

the modular function j is the basic Hilbert space of the field theory,



Two-dimensional conformal field theories 27

§3. Modular functors

We start with a finite set I of labels, containing a
distinguished label called 1. There is an operation of
*conjugation” o w» @ on I such that 1 =1 .

A modular functor based on I 1s a rule which asscclates

a finlte dimensional vector space V to each Riemann surface

L,a
I with boundary, where each boundary component of I is egquipped
with a parametrization and also a label from I. {Here

o = (al,...,ak) is a multi-index, where oy e I is the label

of the ith boundary circle.) The spaces Vz,u are required to
have the following four properties.

(3.1) v =y RV
Eln EZ,GIJL az El,ul 22,a2

whare ElJL E, denotes the disjeint union.

(3.2) If ¥ is obtained fram E by identifying twe boundary

circles S1 and s2 {using their parametrizations) then

Vi = 2 Ve,Bad

where the sum is over all labellings BRaa of 3I which agree

with the labelling £ of 8% and give conjugate labels «,

to Sl and 52

(3.3) Vp,o = {q: if a=1

0 if a# 1,

where D 1is the standard disc.

(3.4) depends holancrphically on I, in the sense that

Vie
if [Et} is a holomorphic family of surfaces parametrized by

t ¢ T then {VZ Q‘} is a holomorphic vector bundle on T.
tl’

IXth International Congress on
Mathematical Physics, Swansea,
July 1988. More on that later.



Parallel Developments At The Time

Constructive/Alge

STATISTICS OF FIELDS, THE YANG-BAXTER EQUATION,
AND THE THEORY OF KNOTS AND LINKS

Jirg Frohlich
Theoretical Physics

ETH-Honggerberg, CH-8093 Ziirich

1. Introduction

In these notes we describe an analysis of the statistics problem in quantum field
theory. It has been known for some time that in two space-time dimensions there
is more to the problem of statistics of local fields than Bose- or Fermi statistics [1].
In three-dimensional space-time, local quantum fields obey Bose- or Fermi statistics,

q Yy
but "extended particles”, coupled to the vacuum by fields localized on cones, may
exhibit intermediate statistics, so called ©-statistics [2].

There is a fairly close, and perhaps somewhat surprising, connection between the
statistics problem in two-dimensional quantum field theory and the following three
topics:

(1) Soliton quantization in two-dimensional quantum field models; [3,4,5,6].

(2) Two-dimensional, conformal quantum field theory; some aspects of the co-
variant quantization of superstring theory (in particular, the construction of fermion
emission vertices); [7,8,9,10].

(3) Polynomial invariants for knots and links [11]. Some of these connections
will be sketched briefly, but there is no room here for a detailed treatmex.)t. The
results discussed in these notes may be viewed as comments on the beautiful and
deep lectures by G. Mack, D. Friedan and K.Gawedzki. Some of my results, next to
many other things, are also sketched in the notes of B. Schroer. o

The first examples of statistics different from standard Bose- or Fermi statistics
in the context of simple, two- dimensional quantum field x.nodels wer.e e;JCOl:lntered
in [1]. A related issue, the construction of order- and disorder variables in two-
dimensional classical spin systems such as the Ising model, was analyzed by Kadanoff
and Ceva [12]. Since the Euclidean description of quantum field theory (see e.g.

’ ‘ s d Ceva do, however, not

[13]) was not a well known thing, at the time, Kadanoff and Ceva. 1," n {10
seem to have realized the implications of their work for the statistics problem in
i as studied, independentl;
tWo-dimensional quantum field theory- That problem W , indep y

braic QFT Community:

. MET! AND RES!
W ME HODS [ ESULTS N (ONFORMA QFT AND T
""STRI NG IDEA"™

Bert Schroer and Fy Berlin

Institut fiir Theorie der Elementarteilnhen

Arnimallee 14, 1000 Berlin 33

tract Causal fields in conformal i
':‘;a ik “br?id" o (spegf; 1‘33{,:.1;:,( tl;iv:talgebra structure: the exchange al-
related to ghe.posSlble dimensiogal spectra of local ﬁeldl;ncfl“.l}:?)\:ppeu- s g
cenfafal extenswn,cl'large (=Casimir energy) is part of time re resl:u::o"‘) e
tension of l{nruh s idea a.llows us to calculate correlation fun:tionn aftmr;.th%l’y- st
QFT's on higher genus Riemann surfaces directly in terms of the ﬂ:t(:p:::elz::z}:toil;zm::

a generalization of Hawking’s temperature, t iti :
b_ygiiy _ 3 “temperatures”. P , the new positive definite states are characterized

1. Introduction and History

Conformal QF T was introduced? in the 60°. However, the field theory community in those
days largely ignored or rejected conformal invariance since apart from free fields it seemed
to be at odds with the principle of Einstein causality. In those days the consequences of
relativistic causality combined with assumptions on the energy-momentum spectrum were
the main research topic. Apart from certain structural theorems®® such as TCP and the
connection of spin with statistics, the main experimentally testable results were dispersion
relations and certain spectral sum rules.

At the beginning of the 70°, when the intimate relation between relativistic quantum
field theory and statistical mechanics through the method of analytic continuation (-“Eu-
clidean quantum field theory”) became widely appreciated, the issue of confo”rmal invariance
teappeared on the statistical mechanics side, where the “causality P“ad?3‘ created 1;“ of
@ huisance. In this spirit of statistical mechanics Migdalf and Polya‘kov %wpmd :a:i::,:
lled “conformal bootstrap”, i.e. the study of the Euclidean ic;w:::;;mii{:aﬁ;l S
:kth conformal invariant boum.iary .conditlons- ’Il‘lhl's 5:?“:.”::\:““, even with all these re-

!4 the help of group theoretical ideas w10 focii g bative solutions are concerned.
Onemem's it remained too structureless as far as non-per::in:; a sore, particularly in view
ofnt;he conceptual side the already mentioned P”aj;x;:ys) to soften the postulate of Ein-
= e failure of all attempts (even up to Our p:,e?macro) ulate. The causality
“In causality i e. to replace it by a less stringen

causality post ] o
in 19727, After its parti
e global conformal transformation Was clearly fox;mtalt;:eg :;:ries e
i “standing in a very limited setting®, it Was finally so va L ki ail
i oy e Zlassiﬁcation scheme {oF COnfO:m cont.ributions“'“"s did m:s rely gn
" il : itional important ' may ask why should one be
iy of th(;h:;:; i (BPzz with a]dod(;s e e e e one meY
al operator me



MS Naturality paper cite credit for chiral vertex operators:

[10] B. Schroer, Nucl. Phys. B295 (1988) 4; Algebraic aspects of non-perturbative quantum field theories,
Como lectures;
K.-H. Rehren, Comm. Math. Phys. 116 (1988) 675;
J. Frohlich, Statistics of fields, the Yang-Baxter equation, and the theory of knots and links, lectures
at Cargése 1987, in Nonperturbative quantum field theory (Plenum, New York), to be published;
G. Felder and J. Frohlich, unpublished lecture notes;
K.-H. Rehren and B. Schroer, Einstein causality and artin braids, FU preprint;
A. Tsuchiya and Y. Kanie, in Conformal field theory and solvable lattice models, Advanced Studies
in Pure Mathematics 16 (1988) p. 297; Lett. Math. Phys. 13 (1987) 303

Using the approach to conformal blocks suggested
by algebraic quantum field theory one is led to a
concept of an exchange algebra’” — very similar to
the braiding algebra of chiral vertex operators.



ADVANCES IN MATHEMATICS 102, 20-78 (1993)

Parallel Developments In Math

Braided Tensor Categories
ANDRE JOyaAL

Université du Québec & Montréal,
Montréal, Québec H3C 3PS, Canada

AND
Ross STREET

Macquarie Universiry,
North Ryde, New South Wales 2113, Australia

Contents.
Introduction.
. Tensor categories.
. Braidings and Yang-Baxier operators.
Braided categorical groups.
. A braiding for representations of the finite general linear groups.
. Abstract categorical aspects of braidings.
. Balanced tensor categories.
. Autonomy.

I T T

INTRODUCTION

Categories enriched with tensor products, here called tensor categories,
but also called monoidal categories, have been studied and used extensively
in the literature [ML1, EK, ML2, SR, DM]. Large examples such as the
categories of Abelian groups and of Banach spaces are important for
studying mathematical structures. Small examples, as found in particular in
algebraic topology, are important as mathematical structures in their own
right.

Some tensor products behave like composition and so are not generally
expected to be commutative. Yet categories with a “commutative” tensor
product deserve special attention in the same way that commutative rings
do in ring theory. Natural examples of commutativity are not strict in
the sense of an ecquality 4® B=B®A. Rather, natural isomorphisms
cqp. A® B> B® A exist. In the case of categories of sets with structure
¢, 518 given on elements by a simple switch in order. It seemed reasonable,

Braided ribbon tensor categories.

Motivations came from topology
and higher category theory.

Two talks in 1986 led to a widening interest in braided tensor categories.
One was the talk of P. Freyd at the Category Theory Conference at
Cambridge University; he described joint work with D. Yetter [FY1] in
which they had discovered that their category of tangles was braided and
autonomous (that is, each object has a dual; such tensor categories are
also called “compact™ and “rigid™), and was “free” in some sense. The other
was V. Drinfel’d’s International Congress talk on quantum groups where
the “quasitriangular” bialgebras are examples of braided protensor
categories. These talks provided classes of new examples of our structure:

In mid-1987, we were led to deal with this problem in a different way:
by looking at tangles of ribbons instead of tangles of strings. This led us to
the notion of balanced tensor categories which, as well as a braiding, have
a twist on each object; the free category as such is the category of braids
on ribbons. Incorporating dual objects, we were led to deline tortile tensor
categories.



0 Prehistory: A. 2dCFT and B. String Theory

@ hrceRoads To RCFT: 1986-1987

e Princeton: Fall 1987- January 1988

° Braiding & Fusion & S & T: Moore & Seiberg Spring 1988

e Chern-Simons Theory: July 1988- July 1989

e MTC & Anyons: August 1989 — November 1989

111



Chern-Simons Theory

Complicated and intricate history —
deserving of an entirely separate talk.

1. Witten: Swansea and the Jones Polynomial
2. My trip to the Soviet Union, August 1988
3. Taming the conformal zoo

4. Explicit quantization:
Eliztur et. al. & Axelrod-Della Pietra-Witten




IXth International Congress on Mathematical
Physics 17-27 July 1988, Swansea, UK

Atiyah, Segal, and Witten go to dinner at
Annie’s restaurant.

All the pieces for the CS interpretation of the
Jones polynomial fall into place for Witten.
He changes his talk for the next day.

3" Important meeting in Witten’s office
in D-building. Nati and | are stunned.






Quantum Field Theory and the Jones Polynomial *

Edward Witten **

School of Natural Sciences, Institute for Advanced Study, Olden Lane, Princeton,
NJ 08540, USA

Abstract. [t is shown that 2 + 1 dimensional quantum Yang-Mills theory, with
an action consisting purely of the Chern-Simons term, is exactly soluble and
gives a natural framework for understanding the Jones polynomial of knot
theory in three dimensional terms. In this version, the Jones polynomial can be
generalized from S7 to arbitrary three manifolds, giving invariants of three
manifolds that are computable from a surgery presentation. These results shed
a surprising new light on conformal field theory in 1 4+ 1 dimensions.

Received September 12, 1988; in revised form September 27, 1988



My trip to the Soviet Union:
2" half of August 1988

Going to the Gelfand seminar in Moscow

(and risking my life).

Going to FaddeeV’s institute in Leningrad
(and almost getting arrested)

Discussions with Reshetikhin and Turaev:

They were working on both quantum

group representation theory and

3-manifold invariants.
Smuggling out manuscripts: The plane takes off



TAMING THE CONFORMAL ZOO

Gregory MOORE and Nathan SEIBERG '
Institute for Advanced Study, Princeton, NJ 08540, USA

Received 18 January 1989

All known rational conformal field theories may be obtained from (2 + 1 )-dimensional Chern-Simons gauge theories by appro-
priate choice of gauge group. We conjecture that all rational field theories are classified by groups via (2+ 1 )-dimensional Chern-
Simons gauge theories,

Following up on a paragraph in Witten’s paper
“Taming” explained how edge states naturally follow
from the CSW theory on 3-fold with boundary.

(edge states will be relevant to the FQHE application )

Modern viewpoint is quite different:
Boundary field theory & anomaly inflow



The paper also showed that all known
RCFT’s, and all known methods of generating
new RCFT’s fit into the framework of CSW
theory with a compact Lie group.

Classification conjecture: Compact Lie groups.

Since the known RCFT’s are so well organized by
CSGT, we comjecture that all chiral algebras of RCFT
arise from the quantization of the 3D CSGT for some
compact Lie group. This conjecture 1s 1n accord with
the philosophy of ref. [3] which emphasized that
RCEFT should be viewed as a generalization of group
theory. If our conjecture is correct, the classification



Finite groups are
compact Lie groups!

Beautiful work by Freed and Dijkgraaf-
Witten led to the very fruitful subject of
Dijkgraaf-Witten theories

.... Which generalize to m —finite
TQFT’s - a very useful class of TQFTSs.



Solving Chern-Simons theory with
geometric quantization:

Nuciear Physics B326 (1989) 108-134
North-Holland, Amsterdam

REMARKS ON THE CANONICAL QUANTIZATION OF THE
CHERN-SIMONS-WITTEN THEORY

Shmuel ELITZUR

Ruacah Institute of Physics, Hebrew Unwersity, Jerusalem, Israel

Gregory MOORE
Institute for Advanced Study, Princeron, NJ 08540 USA

Adam SCHWIMMER

Department of Phyvsics, Weizmann Institute of Science, Rehovot 76100, Israel

Nathan SEIBERG*
Instture for Advanced Study, Princeton, NJ 08540, USA

Received 6 Apnl 1989

We comment on some aspects of the canonical guanuzation of the Chern-Simons—Witten
theory We carry out expleitly the quantization on several interesting surfaces The connection to
the related two dimensional theory 1s illustrated from different ponts of view

... and many other related

J. DIFFERENTIAL GEOMETRY
33 (1991) 787-902

GEOMETRIC QUANTIZATION
OF CHERN-SIMONS GAUGE THEORY

SCOTT AXELROD, STEVE DELLA PIETRA & EDWARD WITTEN

Abstract

We present a new construction of the quantum Hilbert space of Chern-
Simons gauge theory using methods which are natural from the three-
dimensional point of view. To show that the quantum Hilbert space
associated to a Riemann surface X is independent of the choice of com-
plex structure on X, we construct a natural projectively flat connection
on the quantum Hilbert bundle over Teichmiiller space. This connec-
tion has been previously constructed in the context of two-dimensional
conformal field theory where it is interpreted as the stress energy tensor.
Qur construction thus gives a (2 + 1)-dimensional derivation of the basic
properties of (1 + 1)-dimensional current algebra. To construct the con-
nection we show generally that for affine symplectic quotients the natural
projectively flat connection on the quantum Hilbert bundle may be ex-
pressed purely in terms of the intrinsic Kéhler geometry of the quotient
and the Quillen connection on a certain determinant line bundle. The
proof of most of the properties of the connection we construct follows
surprisingly simply from the index theorem identities for the curvature
of the Quillen connection. As an example, we treat the case when X has
genus one explicitly. We also make some preliminary comments concern-
ing the Hilbert space structure.

papers in at the time ...



Starting in the early 1980’s collaboration via
email began. Here’s an example:

SNSVAX: :NATHAN 6-NOV-1988 11:66

From:
To: ADAM, NATHAN

Subj: k+2
Dear Shmuel and Adam

we have an idea for the k+2.
do not yet know how to prove.

works beautifully.
e replaced by k+2.

Assumption 1: in all your expressions k should b
We think that this can be justified as follows. if one first imposes
he should use the classical consti

the constraints and then quantizes,

with the bare fields and therefore with the constant k. However, it

first quantize and then impose the constraint, you should use the ren
eloariy be made more precise.

fields and hence with k+2. This should

Now when you quantize, you seem to have too many states.
=0 and A 1= 1/2 (in my normalizatic
ose with 8 < A

u‘ LN

It relies on two assumptions which we
Given these two assumptions everything

Assumption 2: the states with A 1 =
dimensional rep of The Wey! group (all those wit

are in a one
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Lectures on RCFT *

Gregory Moore

Institute for Advanced Study
Princeton, NJ 08540, USA
and

Department of Physics
Yale University, New Haven, CT 06511-8167,USA
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Nathan Seiberg**

Institute for Advanced Study
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and
Department of Physics and Astronomy
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* Given by G. Moore in the Trieste spring school 1989 and by N. Seiberg in the Banff
ner school 1989.
On leave of absence from the Department of Physics, Weizmann Institute of Science,

vot 76100 ISRAFT.



representations of the Teichmiller modular group. Graeme Segal abstracted the concept,
implicitly used from the earliest days of dual model theory and somewhat more precisely
described in [1)[24)(21)[13] to the notion of a modular functor. A modular functor may be

specified by the following data and axioms:

Axioms for a Modular Functor

Data:
1. Representation labels: A finite set I of labels (i.e. the representations of the chiral

algebra) with a distinguished element 0 € I and an involution ¢ — i~ such that 0"= 0.
2. Conformal blocks: A map

(Z,(i1,v1,P1), ... (in.vn, Pn)) = H(E; (13,01, P1),... (1,00, Pn)))

from oriented surfaces with punctures, each puncture P, being equipped with a direction
v, and a label 1,, to vector spaces.

3. Duality transformations: A linear transformation H(f) : H(Z,) — H(Z;) associ-
ated to an automorphism £, — I, (and similarly for punctures).

Conditions:

1. Functoriality: H(f) depends only on the isotopy class of f. Thus the mapping
class group acts on H(Z), (and similarly for punctures).

2. Involution: If bar denotes reversal of orientation and application of the involution
to the representations then H(L) = H(ZJ.

3. Multiplicativity: H(Z, [ Z;) = H(E;) @ H(E,;).

4. Gluing: Pinching (I, (i;,v1,P1),...(3n,9n, Pn)) along a cycle to obtain a surface
(possibly connected or disconnected) (Z, (i1, 01, P1);- - - (ins¥n, Pn ), (7, v, P), (7 v, P)) with

a pair of identified punctures P, P defines vector spaces related by
H(Z; (il yv1, P1),... (i,.,v,,,P,.)) = 9:‘617"()3; c+(3nyUny Pn), (4,0, P), (5 v, P))

5. Normalization. H(5%;(j,P)) = §,, -C.




Axioms for a Modular Tensor Category
Data: .
1. A finite index set I with a distinguished element 0 and a bijection of I to itself
written ¢t — 1",
2. Vector spaces: LJ,. t,7,k € I, with dtm'l.”I = ;,, < oo

3. Isomorphisms:

LR 52 SN 5.2
QJ,,V*?.V”

F[J_l ”] & Vi eV, =8,V 8V}

1y kz it sk 3132

4. A constant Spo(0).

Conditions:

1. (1) =1,0"=0.

205, = 65C VI 650 Vi=VE (VRTEVE
3. ﬂ;kﬂij € End(l;‘;) is multiplication by a phase.

4.The identities:
FXe ) F=0120F(1&0

Fy3F,Fo3 = P FisFy
for e = 1.
5. The identities

5%(p) = e~ mleC
(ST)® = §?
where S(p) € End(®V};) is defined by

Siglp) = Sonf0)e™ FF:[ ”,,0;; ZB"'[U'] "’m“’

C represents the action of ", the numbers +e~*2» may be deduced from 2, and T : Vj‘i .

2wi( A,

V;. is scalar multiplication by e —¢/24) for a constant c. (For more details see [15].)

These are the same as
the modern axioms for
an MTC expressed in
terms of tensors derived
using a set of simple
objects.

Except:

Imposed modular
identities on S.



The name modular tensor category
was invented by Igor Frenkel

The first time it appeared in print

& H INVERTIBLE F7. S:0C—0C

S(nc*a) = StE)- Sia)
= S~ B

4/,' (2) %(3) ABOVE VIEWED
AS CONDITIONS ON S | ARE

EQUIVALENT 1o 3 ToRUS &5,



Modern Definition (Turaev 92)

MTC: = Semisimple linear ribbon category
with finitely many simple objects and
nondegenerate matrix:

Sij: =Tr bi,j o bj,i

Ribbon category = braided tensor
category with twists and compatible
duals.



Modern Definition
Emerged from works:

M&S, Lectures on RCFT

Reshetikhin-Turaev: 2 famous papers on quantum
groups and invariants of links in 3-folds

Turaev, Modular categories and 3-manifold
invariants, Int. J. Mod. Phys. 1992

Lyuboshenko, ...



Web of Science search (20240922) for
“modular tensor category’ in the abstract of published

papers in its data base, as a function of time: 116 results.
Note: zero between 1992 and 1999.



The classification conjecture:

Conjecture 1: The modular functor of any unitary RCFT is equivalent to the modular
functor of some CSW theory defined by the pair (G,A) with G a compact group and

A€ HYBG;Z).

that there are substantial reasons for believing conjecture 1 is correct. As we have dis-
cussed, one might imagine a proof to proceed along lines very similar to the theorems of
Deligne and Doplicher-Roberts. On the other hand, it would be fascinating if there were
examples of “sporadic” modular tensor categories arising from conformal field theories. In
the introduction we pointed out that an alternative statement of the conjecture says that
all RCFT’s have already been found. It was probably first stated by Emil Martinec (7]
that the nontrivial RCFT’s are essentially exhausted by the coset construction, and this
was repeated in [9]. It has been reiterated many times in private by Bazhanov, Frohlich,

Gawedzki, Goddard, Reshetikhin, and perhaps others.



With most straightforward interpretation

of "equivalence” the conjecture is false:
Teleman 2021

The Haagerup TQFT is not a gauge theory

A recurring conjecture in the math literature, inspired by Moore and Seiberg, states that the
Witt equivalence class of every modular tensor category contains a representative Chern-
Simons gauge theory of some compact group. While a different source of fusion categories
has long been known (the Haagerup construction), a stronger version of the conjecture, as-
serting braided equivalence instead of Witt equivalence, appears to still circulate. While this
stronger conjecture 1s easily falsified by a numerical check of Frobenius-Perron dimensions,
this note gives a human-readable proof that the Haagerup category 1s a counterexample.

https://math.berkeley.edu/~teleman/paperlist.html
Nov. 11, 2021



The classification conjecture: Current Status

Correct version of equivalence” is Witt equivalence

Importance of Witt equivalence was not
appreciated (by me) in 19809.

Witt equivalence ~ Existence of topological interface

Kitaev, arXiv:cond-matt/0506438
Kapustin-Saulina 1012.0911

Witt equivalence ~ ) Drinfeld center of fusion category
Davydov, Muger, Nikschych, and Ostrik, 1009.2117

Davydov, Nikschych, and Ostrik, 1109.5558



Does every Witt equivalence class contain a
WCS(G,k) for compact G ?

(Yes, but in a trivial and unsatisfying way with ¢ = 1.)

MTC = Drinfeld center of the Haagerup
fusion category.

Is it the MTC of some RCFT?

All three steps of the proposed
classification program from 1988-
1989 are far from complete.



0 Prehistory: A. 2dCFT and B. String Theory

0 Three Roads To RCFT: 1986-1987

e Princeton: Fall 1987- January 1988

° Braiding & Fusion & S & T: Moore & Seiberg Spring 1988

9 Chern-Simons Theory: July 1988- July 1989

e MTC & Anyons: August 1989 — November 1989

134



Nonabelions

1.Prehistory: See G. Goldin article.

2.Nick Read and the Pfaffian state

3.Talk at Soviet-American conference:

[October or November 1989

4. Kitaev 1997, 2006: It suddenly becomes relevant
5. Current experimental status.

Recent work on several platforms



arXiv:2212.12632v1 [physics.hist-ph] 24 Dec 2022

The Prediction of Anyons: Its History and
Wider Implications

Gerald A. Goldin

Dept. of Mathematics, Dept. of Physics & Astronomy,
Rutgers University, Mew Brunsenck NJ, USA

geraldgoldinfdimeacs. rutgers. edu

December 27, 2022

A bstract

Prediction of “anyons," often attnbuted exclusively to Wilczek, came first from
Leinass & Myrtheim in 1977, and independently from Goldin, Menikoff, & Sharp
m 198081, In 2020, experimentalists successfully created anyomie excitations.
This paper discuzses why the possibility of quantum particles in two-dimensional
space with intermediate exchange statistics eluded physicists for so long after
bosons and fermions were understood. The history sugpests ideas for the prepa-
ration of future rescarchers. | conclude by addressing failures to attribute sci-
entific achievements accurately. Such practices disproportionately hurt women
and minorties 1n physics, and are harmful to science.

1 Introduction

“Anyons" are quantum particles or excitations, theoretically posable n two
space dimen=ions, with exchange statistics intermediate between bosons and
fermions. They are associated with surface phenomena in the presence of mag-
netic fux. Theoretical applications include explaimng the quantum Hall ef
fect, describing quantum vortices in superfluids, and their relevance to quantum
computing. In 2020, more than forty years after they were first suggested [1],
experimentalists suceesded i creating anyvonie excitations. The experimental
confirmation of thewr prediction atiracted considerable new attention to these
fascinating possibilities.

Predicting the anyon required basic changes In our understanding of quan-
tum statistics. The prediction is often incorrectly attnbuted exclusively to Frank
Wilczek, while the first clear predictions were by Leinass and Myrheim in 1977
[1] and by Menikoff, Sharp, and myself in 1980-1981 [2, 3], from different the-
oretical perspectives. Wilezek's 1982 work [4, 5| took still a third path to the
prediction. He also coined the name “anyons” to deseribe such particles. Thas

PRI [ .. T SR S e R ol R, T T SN TR TR T B L



PHYSICAL REVIEW
LETTERS

VoLuMmE 49 4 OCTOBER 19582 Numsen 14

Quantum Mechanics of Fractional-Spin Particles

Frank Wilezsek
maritule for Theoretical Physies, Usfversily of Califorsia, Senla Rarbaora, Califprmia 231000

iRecalved 22 June 1382)

Composites formed from charged particles and vortices in (2 + 1)-dimensional models,
ar flax tubes in three-dimenzional models, can bave any ([ractiosal) asgular momentum,
The stallstios of these objects, like their spin, interpolates continuoosly between the
uaunl boson and fermion cases. How this works for two-particle quantum mechanics is
discussed here,

FACS pumbsera: 03.65.Ca, 03.65.G8, 05.30.-d

In a recent note® | showed that charged parti- (e apyon.—Laet us recall how the fractional L,
cles orbiting around magnetic flux tubes have ariges, Charged particles orbiting around a flux
orbital angular momentum integer +gd,/20; this tube carrying flux ¢ are subject to an azimuthal
phenomenon is realized for example in the vor- veckor potential

tices of a type-11 superconductor and in string A = 2 (1)
solutions of gauge theories.! Closely related ob- g - B/ EEY.
servations were made previously by Hasenfratz,® Although the potential gives vanlahing magnetic

and recently by Geoldin and Simon,*® See also the field strength, and therefore is negligible in clas-
discussion by Peshkin.® I there is a generalized sical physics, it does play a role in quantum
spin-stalistics connection, we must expect that machanies.” It is convenient to eliminate A ; by
the flux-tube=particle composites have unusaual a gauge transformation;

statistics, interpolating between bosons and

fartrinng  iaes interrhanme of tans of Fhas s nm - Afed, -3 A=0, A=dy/in, (2



Camping out at Yale

August 1989

- _u 3=
g\., Yo

Fives 1938

e P —




| wanted to apply MTC’s to anyon physics:

So, first thing upon arrival at Yale, August 1989
was to go see Nick Read.

In our very first conversation we had the Pfaffian
state. One motivation for the Pfaffian state was
the conformal blocks of the Ising model. This fit
nicely with ideas Nick had about pairing and
condensation.



NONABELIONS IN THE FRACTIONAL QUANTUM HALL EFFECT

Gregory MOORE
Department of Physics, Yale University, New Haven, CT 06511, USA

Nicholas READ
Departments of Applied Physics and Physics, Yale University, New Haven, CT 06520, USA

Received 31 May 1990
(Revised 5 December 1990)

Appiications of conformal field theory to the theory of fractional quantum Hall systems are
discussed. In particular, Laughlin’s wave function and its cousins are interpreted as conformal
blocks in certain rational conformal field theories. Using this point of view a hamiltonian is
constructed for electrons for which the ground state is known exactly and whose quasihole
excitations have nonabelian statistics; we term these objects ‘“‘nonabelions”. It is argued that
universality classes of fractional quantum Hall systems can be characterized by the quantum
numbers and statistics of their excitations. The relation between the order parameter in the
fractional quantum Hall effect and the chiral algebra in rational conformal field theory is
stressed, and new order parameters for several states are given.



these “particles” gives a matrix, i.e. nonabelian action on this vector. It is
interesting to ask whether there exist in nature exotic two-dimensional systems
whose elementary excitations include some transforming as nonabelian representa-
tions of ,. Particles defining nontrivial abelian representations of %, are known
as “anyons’” and it seems apt to call these new objects “nonabelions”. Fractional

Probably the first occurrence of the term nonabelion”.

the properties of higher genus surfaces. Indeed, it seems to us highly likely that a
FQHE system should define a “modular functor” or a “modular tensor category”
(see ref. [1]; actually what we really require here is an extension of these concepts
to chiral superalgebras as opposed to aigebras).

. - .. re=3
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Anyons in an exactly solved model and beyond

Alexel Kitaev

Cualifornia Institute of Technology, Pasadena, CA 91125, U.S.A.

e-mail: kitaev@Qiqi.caltech.edu

January 1, 2008

Abstract

A spin 1/2 system on a honeycomb lattice is studied. The interactions between nearest
neighbors are of XX, YY or ZZ type, depending on the direction of the link; different types
of interactions may differ in strength. The model is solved exactly by a reduction to free
fermions in a static Zo gauge field. A phase diagram in the parameter space is obtained.
One of the phases has an energy gap and carries excitations that are Abelian anyons.
The other phase is gapless, but acquires a gap in the presence of magnetic field. In the
latter case excitations are non-Abelian anyons whose braiding rules coincide with those of
conformal blocks for the Ising model. We also consider a general theory of free fermions
with a gapped spectrum, which is characterized by a spectral Chern number v. The
Abelian and non-Abelian phases of the original model correspond to » = 0 and v = +1,
respectively. The anyonic properties of excitation depend on v mod 16, whereas v itself
governs edge thermal transport. The paper also provides mathematical background on
anyons as well as an elementary theory of Chern number for quasidiagonal matrices.

Contents
Introduction
1 The model

2 Representing spins by Majorana operators
2.1 A general spin-fermion transformation . . . . .. .. ...
2.2 Application to the concrete model . . . . . . . .. o000 000000
2.3 Path and loop operators . . . . . . ...



Soviet-American Workshop On String Theory,
Princeton University, Oct. 30 - Nov. 2, 1989

LIFE AFTER R&FT
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Reception:

\ o y
One problem:
Overt hostility to the use of category theory.

For better or worse, | completely dropped this line of
research and started working on matrix models of 2d gravity...



From Wikipedia article on “Anyon”

While at first non-abelian anyons were
generally considered a mathematical
curiosity, physicists began pushing toward
their discovery when Alexei Kitaev showed
that non-abelian anyons could be used to
construct a topological guantum computer.



https://en.wikipedia.org/wiki/Alexei_Kitaev
https://en.wikipedia.org/wiki/Topological_quantum_computer

quant-ph/9707021v1 9 Jul 1997

rxX1v

Fault-tolerant quantum computation by anyons

A. Yu. Kitaev

L.D.Landau Institute for Theoretical Physics,
117940, Kosygina St. 2

e-mail: Kkitaev @ itp.ac.ru

February 1, 2008

Abstract

A two-dimensional quantum system with anyonic excitations can be considered as a
quantum computer. Unitary transformations can be performed by moving the excitations
around each other. Measurements can be performed by joining excitations in pairs and
observing the result of fusion. Such computation is fault-tolerant by its physical nature.

A quantum computer can provide fast solution for certain computational problems (e.g.
factoring and discrete logarithm [1]) which require exponential time on an ordinary computer.
Physical realization of a quantum computer i1s a big challenge for scientists. One important
problem 1s decoherence and systematic errors in unitary transformations which occur in real
quantum systems. From the purely theoretical point of view, this problem has been solved
due to Shor’s discovery of fault-tolerant quantum computation [2], with subsequent improve-
ments 3, 4, 5, 6]. An arbitrary quantum circuit can be simulated using imperfect gates, provided
these gates are close to the 1deal ones up to a constant precision 6. Unfortunately, the threshold
value of ¢ is rather smalll: it is verv difficult to achieve this precision.



Experimental realization of nonabelions
has not yet (20240926) been achieved.

But several encouraging experimental
results exist — especially for the Majorana
edge mode, in different platforms
(e.g. GsAs, graphene)

And several groups are getting
extremely close....



Thanks go to

Tom Banks, Dan Freed, Igor Frenkel,
Daniel Friedan, Chetan Nayak, Karin Rabe,
Nick Read, Graeme Segal, Nathan Seiberg,
Steve Simon, Erik Verlinde, Edward Witten

for help providing relevant material
and correcting errors
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