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A Comment On Berry
Connections



Philosophy

If a physical result is not mathematically natural, there
might well be an underlying important physical issue.

We will illustrate this with continuous
families of qguantum systems

l.e. guantum systems parametrized by a
space X of control parameters.

In this context one naturally encounters Berry
connections — an enormously successful idea.



A Little Subtlety

Given a continuous family of Hamiltonians with a gap
in the spectrum there is, in general, not one Berry
connection, but rather a family of Berry connections.

Example: For band insulators there is a family of
natural Berry connections, whose gauge equivalence
classes are parametrized by a real-space torus.

This has consequences for topological contributions
to electric polarization and magneto-electric
polarizability: a 3D Chern "insulator” has a bulk QHE.



I'HE ORIGIN OF THE PROBLEM LS
't PROBLEM OF THE ORIGIN.




Definition: There

Affine Space

Like a vector space — but no natural choice of origin.
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Non-symmorphic crystals

E(n): The Euclidean group of length-preserving
transformations of affine n-dimensional space.

There is a natural subgroup R" of translations

But there is no natural subgroup isomorphic to O(n):

One must CHOOSE an origin to define such a group.

That’s why there are non-symmorphic crystal structures.



Hilbert Bundles

Hilbert bundle over a space
X of control parameters \L
X

!

—

< X




Sections Of A Hilbert Bundle
Space of sections: I'|H — X|

U:z— Y(x) € H,

H
w1
X

X

—_———




Projected Bundles
|
X —

Given a continuous family P(.’L’) o T ¥
- I'lyg T

of projection operators:
Projected bundle V : Subbundle with sections:

I'(V) = {¢(z)
H = S? x C?
Tl

T € S%

P(z)y(z) = ¢(z)} C T'(H)
P(z)=z(1+2%-0)

Definition: A vector bundle
V is a projected bundle.




Projected Connection
V:I'(V) = Q'(V)
V(fO)=df ¥ + fVU

Remark: The space of connections on a
vector bundle is an affine space modeled ()1 (End(V))
on the vector space:

Connection:

If the vector bundle V and we choose a
is defined using a family of connection v’H
projection operators P(x) on H:

we get a connection on the bundle V

VP :=PoV*"o, +:T(V)—>T(H)



Berry Connection

Given a continuous family of Hamiltonians H,
on H, ,if thereis a gap:

Egap ¢ UzexSpec(Hy)

we have a continuous family

of projection operators: P(.’L‘) = @(Egap — H;L-)
VB -— Po VH ol [M. Berry (1983); B. Simon 1983) ]

Note that it requires a CHOICE of VH



Commonly assumed: H has been trivialized:
H=X X Ho

Natural choice of V¥ :
' The trivial connection.

VHip(z) = do* 5oz 1()
AP = Y|V 5ly)

But in general there is no

natural trivialization of H'!




Hilbert Bundle Over Brillouin Torus
Crystal in n-dimensional affine space: C C A"

Invariant under a lattice of translations: [, C [R™

Brillouin torus: = {unitary irreps of L}.
Reciprocal lattice: [V C K = (R’"’)V >~ R
l_c c TV — IC/LV XJT;;(R) — e2mik-R Rel

Bloch states define a Hilbert bundle H
over the Brillouin torus:

M = {vglvz(z + R) = ™" g (z)}



Trivializations Of H

H can be trivialized by choosing Bloch functions
Yy i@+ R) =™ %), t(z) neN

smooth Vk € TV

{wn E} A basis for Hilbert space  Hz

But in general there is no

natural trivialization of H'!




A Family Of Connections on H

So: There is no such thing as THE” Berry
connection in the context of band structure.

But, there is a natural family of connections on H':

[Freed & Moore, 2012]

VH,SCO

They depend on a choice of origin x, modulo L:
V'H,wo . VH,.’L'6 — o

o =27 dk - (xg — z5) Q 1y



Berry Connections For Insulators

Insulator: Projected bundle F of filled bands:
Fr, =0O(Es — Hy) - Hi, C Hi
vB.zo _ BT — g
a=2midk- (xo—z5) Q 1r

So what?
F(vB,mo) - F(vB,atg)

mmmm) A|l Chern numbers unchanged....



Electric polarization:

(K,PJe) = |, i Imlogd Hol(VB’“’O,'yEmod 2w

[ King-Smith & Vanderbilt (1993); Resta (1994) ]

Magnetoelectric Polarizability

Eg/f[faxwell o f]R‘l aij E'i, Bj

“Axion angle” 9(3&'0) = %aii — fTv CS(VB’:DO)

[ Qi, Hughes, Zhang; Essin, Joel Moore, Vanderbilt ]



Dependence Of Axion Angle On x,

CS(V+a)— CS(V) =Tr(2aF + aDsa + 2a°)
C:.:= fTV Cl(f) c LY

O(xo) — 0(xzy) = 27C - (xg — ()

[:Maxwell D % fR4 (6, df) A Cs(AMaxwell)

QHE in the bulk of the insulator”™
— in the plane orthogonal to ¢
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Born Rule For Families Of Quantum
Systems Parametrized By A
Noncommutative Manifold



Quantum Systems

Set of physical ““states” S
Set of physical “observables” O

Born Rule: BR:Sx0O—>7P

P  Probability measures on R.

m € M(R) =) 0< p(m) <1

m = [r1,r2] CR BR(S7 O)([Thrz])

is the probability that a measurement of the observable O
in the state s has value betweenr,andr, .



Standard Dirac-von Neumann

Axioms
Density matrices p: Positive trace class

operators on Hilbert space of trace =1

O Self-adjoint operators T on Hilbert space

Spectral Theorem: There is a one-one correspondence of
self-adjoint operators T and projection valued measures:

Example: T'= 3y APx  Pr([r1,m2]) = ., <x<r, P

m € M(R) BR(p,T\m) = Try (pPr(m))



Continuous Families Of Quantum
Systems

Hilbert bundle over #H
space X of control ,,Tl
X .:'L'

parameters.

For each x get a probability measure . :

m € M(R) — g (m) = Try, (pz Pr,(m))
BR:SxXxXOxX—>7P

BR(p,T,x) = g



Noncommutative Families ?

What happens when the space X of
control parameters is replaced by a

NNCIMULAL VE SHACE ?

How does the Born
rule change?

Why ask this question?




(And the answer

Curiosity.
¢ o is interesting.)

With irrational magnetic flux the Brillouin torus is replaced by
a noncommutative manifold. (Bellisard, Connes, Gruber,...)

NC tt* geometry (S. Cecotti, D. Gaiotto, C. Vafa)

Boundaries of Narain moduli spaces of toroidal
heterotic string compactifications are NC

The early universe” might be NC



C* Algebras

A C* algebrais a (normed) algebra 2 over
the complex numbers with an involution:

acA—a*ecA (ab)* =b*a”
such that ....

Example1l: A =C(X):={f:X — C}
Example 2: A = Mat,, (C)

Self-adjoint: Positive:
a* = a a = b*b



Gelfand’s Theorem

The topology of a (Hausdorff) space X is completely
captured by the C*-algebra of continuous functions

L OX):={f: X = C}

(f1+ fo)z) = fi(z) + f2(z) (f1- fo)(z) :== fi(z)f2(z)

“Points” become
1D representations:

evy, - f € C(X) — f(xg) € C

Commutative A topological
C* algebra: 2 I Irrep(Ql)

A =C(Irrep(A))

space



Noncommutative Geometry

Statements about the topology/geometry of X are
equivalent to algebraic statements about C(X)

Replace C(X) by a noncommutative C* algebra U

Interpret A as the algebra of functions
on a honcommutative space” ...
... even though there are no points.

“pointless geometry”

Example: Noncommutative torus:
Uqu;* — U,&*UZ =1 UZUJ — 627ri¢'5'5 UJUZ



Noncommutative Control Parameters

We would like to define a family of quantum
systems parametrized by a NC manifold whose
“algebra of functions” is a general C* algebra A

What are observables?
What are states?

What is the Born rule?

What replaces the Hilbert bundle?



Noncommutative Hilbert Bundles

Definition: Hilbert C* module € over C*-algebra .

Complex vector space £ with a right-action of U
and an "inner product” valued in U

\Ill,\Ilg = (\Ifl,\Ilz)Q[EQ[
(U1, Pa)y = (P2, ¥y )y

(\I/, \If)g[ > (0 (Positive element of the C* algebra.)
such that .....

Like a Hilbert space, but overlaps’” are valued

in a (possibly) noncommutative algebra.




Quantum Mechanics With
Noncommutative Amplitudes

Basic idea: Replace the Hilbert space by a Hilbert C* module

H— &
U, U (U,Vg)y €

Overlaps are valued in a possibly noncommutative algebra.

QM: 0< pA) =@ Y)(Wr )" <1

QMINA: (T, 0)(T,, )" €A



Example 1: Hilbert Bundle Over A
Commutative Manifold
£E=TH — X]| A =C(X)
U:z—p(x) € Hy

H
wl
X

xr

—_———
(U1, Us)y € A :=C(X)
(W1, ¥2)a () := (Y1(x),Y2(x)), €C




Example 2: Hilbert Bundle Over A
Fuzzy Point

Def: “‘fuzzy point” has A = Mat, x4 (C)
8 — M&tbxd(C)

(U1, Uy)gy = ‘I’I‘I’2



Observables In QMNA
Consider “adjointable operators” T : & — &
(W1, TW)g = (T*W¥1, W)y

The adjointable operators
B are another C* algebra.

Definition: QMNA observables
are self-adjoint elements of B

(Technical problem: There is no spectral theorem for
self-adjoint elements of an abstract C* algebra. )



C* Algebra States

Definition: A C*-algebra state w € §(A)
is a positive linear functional

w:A—-C w(l)=1
A=C(X) weSX)

w(f) = Jx fdu  du =a positive measure on X:
A= Matyxo(C) we S

w(T) =Try(pT)  p = adensity matrix



QMNA States

Definition: A QMNA state is a
completely positive unital ma

) w8 — 2

“Completely positive’”” comes up naturally both
in math and in quantum information theory.

Positive: ¢ : B>g = A>o

Unital:  @(1g) = 1y
Completely positive

wR1: (% & Ma,tn((C))ZO — (Q[ X Matn((c))zo



QMNA Born Rule

Main insight is that we should regard the Born Rule as a map

BR : SQMNA o mQMNA S(Q[) P

For general 2 the datum w € S(A) together
with complete positivity of @ give just the right

information to state a Born rule in general:

BR(p,T,w) € P




Family Of Quantum Systems
Over A Fuzzy Point

£ = Matpxa(C) = C° ® C* = HBob @ HAlice

A= Mat,(C) = End(H Atice)
B = Maty,(C) = End(HBob)

BR(p,T,w)(m) = Try ,pap(Pr(m))

A NC measure w € S(2)” is equivalent to a density matrix p, on H

QMNA
state: (T)

=Y. E!TE, S, ElE, =1



Quantum Information Theory
& Noncommutative Geometry

BR(p,T,w)(m) = Try ,pap(Pr(m))
=3 o Tra,paEL(Pr(m))E,

= o Trap Eapa EL Pr(m)
— TrHBS(pA)PT(m)
Last expression is the measurement by Bob of

T in the state p, prepared by Alice and sent to
Bob through quantum channel £.



Three Conclusions

Don’t be discouraged by negative response.

(Within reason)

Please say, 'a Berry connection,” not the Berry connection.”

(Unless you have specified V*)

QM can be generalized to QMNA.

(Is it really a generalization?)

(Is it useful?)




