# Comments On Continuous Families Of Quantum Systems



**Gregory Moore** 



**Dirac Medal Ceremony** 

ICTP, Trieste, August 8, 2016

# Soviet-American Workshop On String Theory, Princeton, October 1989



# MODULAR TENSOR CTERY

#### DATA:

PARTIE: EXPERIMENT ?? "REAL WORLD" APPLICATIONS IN CONDENSED MATTER PHYSICS 2D 2nd ORDER PHASE TRALS - OF COURSE CSW -> APPL'S TO F.Q.H.E. EANYONS BASIC PRINCIPLES DATA FOR Frohlich OF (NON)RELTUSTIC => MTC + Gabbiani
2+1 QFT => 9=0 AXIOMS Marchetti - NONABELIAN ANYONS NOT RULED OUT-F.O.H. SYSTEM => L.G. THEORY N. Read A(2)~ \ < x 1 4 4 (2') 1x > d2' W/ CS TERM PURE LOW ENERGY, LONG RANGE: CSW => FULL MTC !?

# NEW STATES N. Read

EXAMPLE: Pf 1 TT(Z:-Z;)9

1. 
$$v = \frac{1}{q}$$
 q even!

- 2. 3 HAMILTONIAN SUCH THAT PPF
- IS NONDEGENERATE, INCOMPRESSIBLE, GROUNDSTATE

#### DOUBLY DEGENERATE:



#### ANALYTIC CONTINUATION:

"PHYSICAL" REALIZATION OF

NONABELIAN ANYONS

# Part II

# A Comment On Berry Connections

# Philosophy

If a physical result is not mathematically natural, there might well be an underlying important physical issue.

We will illustrate this with continuous families of quantum systems

i.e. quantum systems parametrized by a space X of control parameters.

In this context one naturally encounters Berry connections – an enormously successful idea.

### A Little Subtlety

Given a continuous family of Hamiltonians with a gap in the spectrum there is, in general, not one Berry connection, but rather a family of Berry connections.

Example: For band insulators there is a family of natural Berry connections, whose gauge equivalence classes are parametrized by a real-space torus.

This has consequences for topological contributions to electric polarization and magneto-electric polarizability: a 3D Chern `insulator" has a bulk QHE.

# THE ORIGIN OF THE PROBLEM IS THE PROBLEM OF THE ORIGIN.

### Affine Space

Like a vector space – but no natural choice of origin.

Definition: There is a transitive and free action of a vector

space.



# Non-symmorphic crystals

E(n): The Euclidean group of length-preserving transformations of affine n-dimensional space.

There is a natural subgroup  $\mathbb{R}^n$  of translations

But there is no natural subgroup isomorphic to O(n):

One must CHOOSE an origin to define such a group.

That's why there are non-symmorphic crystal structures.

#### Hilbert Bundles

Hilbert bundle over a space X of control parameters

$$\begin{array}{ccc} \mathcal{H}_x & \mathcal{H} \\ \downarrow & \downarrow \pi \\ x \hookrightarrow & X \end{array}$$



#### Sections Of A Hilbert Bundle

Space of sections:  $\Gamma[\mathcal{H} \to X]$ 

$$\Psi: x \mapsto \psi(x) \in \mathcal{H}_x$$



# **Projected Bundles**



Given a continuous family of projection operators:  $P(x):\mathcal{H}_x o \mathcal{H}_x$ 

Projected bundle  $\mathcal{V}$ : Subbundle with sections:

$$\begin{split} \Gamma(\mathcal{V}) &:= \{\psi(x) | P(x) \psi(x) = \psi(x)\} \subset \Gamma(\mathcal{H}) \\ \mathcal{H} &= S^2 \times \mathbb{C}^2 \qquad P(\hat{x}) = \frac{1}{2}(1 + \hat{x} \cdot \vec{\sigma}) \\ \pi \downarrow \qquad \text{Definition: A $\underline{vector \ bundle}$} \\ \hat{x} \in S^2 \qquad \mathcal{V} \text{ is a projected bundle.} \end{split}$$

### **Projected Connection**

**Connection:** 

$$abla:\Gamma(\mathcal{V}) o\Omega^1(\mathcal{V})$$

 $\nabla (f\Psi) = df \otimes \Psi + f\nabla \Psi$ 

Remark: The space of connections on a vector bundle is an affine space modeled  $\Omega^1(\mathrm{End}(\mathcal{V}))$  on the vector space:

If the vector bundle  $\mathcal{V}$  is defined using a family of projection operators P(x)

and we <u>choose</u> a connection  $\nabla^{\mathcal{H}}$  on  $\mathcal{H}$ :

we get a connection on the bundle  ${\mathcal V}\,$  :

$$\nabla^P := P \circ \nabla^{\mathcal{H}} \circ \iota \qquad \iota : \Gamma(\mathcal{V}) \hookrightarrow \Gamma(\mathcal{H})$$

### **Berry Connection**

Given a continuous family of Hamiltonians  $H_x$  on  $\mathcal{H}_x$  , if there is a gap:

$$E_{\mathrm{gap}} \notin \cup_{x \in X} \mathrm{Spec}(H_x)$$

we have a continuous family of projection operators:  $P(x) = \Theta(E_{ ext{gap}} - H_x)$ 

$$\nabla^B := P \circ \nabla^{\mathcal{H}} \circ \iota$$
 [M. Berry (1983); B. Simon 1983)]

Note that it requires a CHOICE of  $\nabla^{\mathcal{H}}$ 

#### Commonly assumed: ${\cal H}$ has been trivialized:

$$\mathcal{H} = X \times \mathcal{H}_0$$



Natural choice of  $\nabla^{\mathcal{H}}$ :

The trivial connection.

$$\nabla^{\mathcal{H}}\psi(x) = dx^{\mu} \frac{\partial}{\partial x^{\mu}} \psi(x)$$

$$\vec{A}^{\mathrm{Berry}} = \langle \psi | \vec{\nabla}_{\vec{R}} | \psi \rangle$$

But in general there is no natural trivialization of  $\mathcal{H}$ !

#### Hilbert Bundle Over Brillouin Torus

Crystal in n-dimensional affine space:  $\, C \subset \mathbb{A}^n \,$ 

Invariant under a lattice of translations:  $L \subset \mathbb{R}^n$ 

Brillouin torus: = {unitary irreps of L}.

Reciprocal lattice: 
$$L^ee \subset \mathcal{K} \cong (\mathbb{R}^n)^ee \cong \mathbb{R}^n$$

$$\bar{k} \in T^{\vee} = \mathcal{K}/L^{\vee} \quad \chi_{\bar{k}}(R) = e^{2\pi i k \cdot R} \quad R \in L$$

Bloch states define a Hilbert bundle  $\mathcal{H}$  over the Brillouin torus:

$$\mathcal{H}_{\bar{k}} := \{ \psi_{\bar{k}} | \psi_{\bar{k}}(x+R) = e^{2\pi i k \cdot R} \psi_{\bar{k}}(x) \}$$

#### Trivializations Of ${\cal H}$

 ${\mathcal H}$  can be trivialized by choosing Bloch functions

$$\psi_{n,\bar{k}}(x+R)=e^{2\pi\mathrm{i}k\cdot R}\psi_{n,\bar{k}}(x)\quad n\in\mathbb{N}$$
 smooth 
$$\forall \bar{k}\in T^\vee$$

$$\{\psi_{n,ar{k}}\}$$
 A basis for Hilbert space  $\mathcal{H}_{ar{k}}$ 

But in general there is no natural trivialization of  $\mathcal{H}$ !

# A Family Of Connections on ${\mathcal H}$

So: There is no such thing as "THE" Berry connection in the context of band structure.

But, there <u>is</u> a natural family of connections on  $\mathcal{H}$ :

$$abla \mathcal{H}, x_0$$
 [Freed & Moore, 2012]

They depend on a choice of origin  $x_0$  modulo L:

$$\nabla^{\mathcal{H},x_0} - \nabla^{\mathcal{H},x_0'} = \alpha$$

$$\alpha = 2\pi i \ dk \cdot (x_0 - x_0') \otimes 1_{\mathcal{H}}$$

### **Berry Connections For Insulators**

Insulator: Projected bundle  $\mathcal{F}$  of filled bands:

$$\mathcal{F}_{ar{k}} = \Theta(E_f - H_{ar{k}}) \cdot \mathcal{H}_{ar{k}} \subset \mathcal{H}_{ar{k}}$$
 $abla^{B,x_0} - 
abla^{B,x_0} = lpha$ 
 $alpha = 2\pi i \ dk \cdot (x_0 - x_0') \otimes 1_{\mathcal{F}}$ 

So what?

$$F(\nabla^{B,x_0}) = F(\nabla^{B,x_0'})$$



All Chern numbers unchanged....

#### Electric polarization:

$$\langle K, P/e \rangle = \int_{T_K^{\perp}} \operatorname{Im} \log \det \operatorname{Hol}(\nabla^{B,x_0}, \gamma_K) \mod 2\pi$$

[King-Smith & Vanderbilt (1993); Resta (1994)]

#### Magnetoelectric Polarizability

$$\mathcal{L}_{\mathrm{eff}}^{\mathrm{Maxwell}} \supset \int_{\mathbb{R}^4} \alpha^{ij} E_i B_j$$

$$\theta(x_0) = \frac{1}{3}\alpha^i_{i} = \int_{T^{\vee}} CS(\nabla^{B,x_0})$$

[ Qi, Hughes, Zhang; Essin, Joel Moore, Vanderbilt ]

# Dependence Of Axion Angle On x<sub>0</sub>

$$CS(
abla+lpha)-CS(
abla)= ext{Tr}(2lpha F+lpha D_Alpha+rac{2}{3}lpha^3)$$
 $ec{c}:=\int_{T^ee}c_1(\mathcal{F})\in L^ee$ 

$$\theta(x_0) - \theta(x'_0) = 2\pi \vec{c} \cdot (x_0 - x'_0)$$

$$\mathcal{L}_{ ext{eff}}^{ ext{Maxwell}} \supset rac{1}{4\pi} \int_{\mathbb{R}^4} \langle ec{c}, dec{x} 
angle \wedge CS(A^{ ext{Maxwell}})$$



QHE in the  $\underline{bulk}$  of the ``insulator'' in the plane orthogonal to  $ec{c}$ 

#### Part III

# Born Rule For Families Of Quantum Systems Parametrized By A Noncommutative Manifold

### Quantum Systems

Set of physical ``states'' 
$${\cal S}$$

Set of physical ``observables'' 
$${\cal O}$$

Born Rule: 
$$BR: \mathcal{S} \times \mathcal{O} \rightarrow \mathcal{P}$$

 ${\mathcal P}$  Probability measures on  ${\mathbb R}$ .

$$m \in \mathfrak{M}(\mathbb{R}) \longrightarrow 0 \leq \wp(m) \leq 1$$

$$m=[r_1,r_2]\subset \mathbb{R} \qquad \qquad BR(\mathbf{s},\mathbf{O})([r_1,r_2])$$

is the probability that a measurement of the observable O in the state  $\bf s$  has value between  $\bf r_1$  and  $\bf r_2$ .



# Standard Dirac-von Neumann Axioms



 $\mathcal{S}$  Density matrices  $\rho$ : Positive trace class operators on Hilbert space of trace =1

O Self-adjoint operators T on Hilbert space

Spectral Theorem: There is a one-one correspondence of self-adjoint operators T and projection valued measures:

$$m\in\mathfrak{M}(\mathbb{R}) \hspace{0.2cm}
ightarrow \hspace{0.2cm} P_T(m)$$

Example: 
$$T = \sum_{\lambda} \lambda P_{\lambda}$$
  $P_{T}([r_{1}, r_{2}]) = \sum_{r_{1} \leq \lambda \leq r_{2}} P_{\lambda}$ 

$$m \in \mathfrak{M}(\mathbb{R})$$
  $BR(\rho, T)(m) = \operatorname{Tr}_{\mathcal{H}}(\rho P_T(m))$ 

# Continuous Families Of Quantum Systems

Hilbert bundle over space X of control parameters.



For each x get a probability measure  $\wp_x$ :

$$m \in \mathfrak{M}(\mathbb{R}) \mapsto \wp_x(m) := \operatorname{Tr}_{\mathcal{H}_x}(\rho_x P_{T_x}(m))$$

$$BR: \mathcal{S} \times \mathcal{O} \times X \rightarrow \mathcal{P}$$

$$BR(\rho, T, x) = \wp_x$$

#### Noncommutative Families?

What happens when the space X of control parameters is replaced by a

noncommutative space?

How does the Born rule change?

Why ask this question?





Curiosity.

(And the answer is interesting.)

With irrational magnetic flux the Brillouin torus is replaced by a noncommutative manifold. (Bellisard, Connes, Gruber,...)

NC tt\* geometry (S. Cecotti, D. Gaiotto, C. Vafa)

Boundaries of Narain moduli spaces of toroidal heterotic string compactifications are NC

The "early universe" might be NC

# C\* Algebras

A  $C^*$  algebra is a (normed) algebra  $\mathfrak A$  over the complex numbers with an involution:

$$a\in\mathfrak{A}\to a^*\in\mathfrak{A} \qquad (ab)^*=b^*a^*$$
 such that ....

Example 1: 
$$\mathfrak{A} = C(X) := \{f: X \to \mathbb{C}\}$$

Example 2: 
$$\mathfrak{A}=Mat_n(\mathbb{C})$$

$$a^* = a \qquad \qquad a = b^*b$$

#### Gelfand's Theorem

The topology of a (Hausdorff) space X is completely captured by the C\*-algebra of continuous functions on X:

$$C(X) := \{f : X \to \mathbb{C}\}$$

$$(f_1+f_2)(x)=f_1(x)+f_2(x)$$
  $(f_1\cdot f_2)(x):=f_1(x)f_2(x)$ 

"Points" become

1D representations:

$$\operatorname{ev}_{x_0}: f \in C(X) \mapsto f(x_0) \in \mathbb{C}$$

Commutative  $\mathfrak{A}$   $\longrightarrow$  Irrep $(\mathfrak{A})$  A topological space  $\mathfrak{A}\cong C(\operatorname{Irrep}(\mathfrak{A}))$ 

### Noncommutative Geometry

Statements about the topology/geometry of X are equivalent to algebraic statements about C(X)

Replace C(X) by a noncommutative  $C^*$  algebra  $\mathfrak A$ 

Interpret A as the `algebra of functions on a noncommutative space" ...

... even though there are no points.

"pointless geometry"

**Example: Noncommutative torus:** 

$$U_i U_i^* = U_i^* U_i = 1$$
  $U_i U_j = e^{2\pi i \phi_{ij}} U_j U_i$ 

#### Noncommutative Control Parameters

We would like to define a family of quantum systems parametrized by a NC manifold whose "algebra of functions" is a general C\* algebra  $\mathfrak A$ 

What are observables?

What are states?

What is the Born rule?

What replaces the Hilbert bundle?

#### Noncommutative Hilbert Bundles

Definition: Hilbert C\* module  $\mathcal{E}$  over C\*-algebra  $\mathfrak{A}$ .

Complex vector space  $\mathcal E$  with a right-action of  $\mathfrak A$  and an ``inner product'' valued in  $\mathfrak A$ 

$$\Psi_1,\Psi_2\in\mathcal{E}$$
  $(\Psi_1,\Psi_2)_{\mathfrak{A}}\in\mathfrak{A}$   $(\Psi_1,\Psi_2)_{\mathfrak{A}}^*=(\Psi_2,\Psi_1)_{\mathfrak{A}}$   $(\Psi,\Psi)_{\mathfrak{A}}\geq 0$  (Positive element of the C\* algebra.) such that .....

Like a Hilbert space, but ``overlaps'' are valued in a (possibly) noncommutative algebra.

# Quantum Mechanics With Noncommutative Amplitudes

Basic idea: Replace the Hilbert space by a Hilbert C\* module

$$\mathcal{H} \to \mathcal{E}$$
 
$$\Psi_1, \Psi_2 \in \mathcal{E} \quad (\Psi_1, \Psi_2)_{\mathfrak{A}} \in \mathfrak{A}$$

Overlaps are valued in a possibly noncommutative algebra.

QM: 
$$0 \le \wp(\lambda) = (\psi_{\lambda}, \psi)(\psi_{\lambda}, \psi)^* \le 1$$

QMNA: 
$$(\Psi_{\lambda}, \Psi)(\Psi_{\lambda}, \Psi)^* \in \mathfrak{A}$$

# Example 1: Hilbert Bundle Over A Commutative Manifold

$$\mathcal{E} = \Gamma[\mathcal{H} o X] \qquad \mathfrak{A} = C(X)$$
 $\Psi: x \mapsto \psi(x) \in \mathcal{H}_x$ 



$$(\Psi_1, \Psi_2)_{\mathfrak{A}} \in \mathfrak{A} := C(X)$$
  $(\Psi_1, \Psi_2)_{\mathfrak{A}}(x) := (\psi_1(x), \psi_2(x))_{\mathcal{H}_x} \in \mathbb{C}$ 

# Example 2: Hilbert Bundle Over A Fuzzy Point

Def: ``fuzzy point'' has  $\mathfrak{A}\cong \mathrm{Mat}_{a imes a}(\mathbb{C})$ 

$$\mathcal{E} = \mathrm{Mat}_{b \times a}(\mathbb{C})$$

$$(\Psi_1, \Psi_2)_{\mathfrak{A}} = \Psi_1^{\dagger} \Psi_2$$

#### Observables In QMNA

Consider ''adjointable operators''  $T: \mathcal{E} 
ightarrow \mathcal{E}$ 

$$(\Psi_1, T\Psi_2)_{\mathfrak{A}} = (T^*\Psi_1, \Psi_2)_{\mathfrak{A}}$$

The adjointable operators B are another C\* algebra.

Definition:  $\underline{QMNA}$  observables are self-adjoint elements of  $\mathfrak B$ 

(Technical problem: There is no spectral theorem for self-adjoint elements of an abstract C\* algebra.)

# C\* Algebra States

Definition: A  $C^*$ -algebra state  $\omega \in \mathcal{S}(\mathfrak{A})$  is a positive linear functional

$$\omega:\mathfrak{A}\to\mathbb{C}$$
  $\omega(\mathbf{1})=1$ 

$$\mathfrak{A} = C(X) \quad \omega \in \mathcal{S}(\mathfrak{A})$$

$$\omega(f)=\int_X f d\mu$$
 d $\mu$  = a positive measure on X:

$$\mathfrak{A} \cong \mathrm{Mat}_{a \times a}(\mathbb{C}) \quad \omega \in \mathcal{S}(\mathfrak{A})$$

$$\omega(T) = \mathrm{Tr}_{\mathcal{H}}(\rho T)$$
  $\rho$  = a density matrix

#### **QMNA States**

Definition: A *QMNA state* is a completely positive unital map

$$\varphi:\mathfrak{B}\to\mathfrak{A}$$

"Completely positive" comes up naturally both in math and in quantum information theory.

Positive: 
$$\varphi:\mathfrak{B}_{\geq 0} \to \mathfrak{A}_{\geq 0}$$

Unital: 
$$arphi(1_{\mathfrak{B}})=1_{\mathfrak{A}}$$

Completely positive

$$\varphi \otimes 1 : (\mathfrak{B} \otimes \operatorname{Mat}_n(\mathbb{C}))_{\geq 0} \to (\mathfrak{A} \otimes \operatorname{Mat}_n(\mathbb{C}))_{\geq 0}$$

### **QMNA** Born Rule

Main insight is that we should regard the Born Rule as a map

$$BR: \mathcal{S}^{\mathrm{QMNA}} imes \mathcal{O}^{\mathrm{QMNA}} imes \mathcal{S}(\mathfrak{A}) o \mathcal{P}$$

For general  $\mathfrak{A}$  the datum  $\omega \in \mathcal{S}(\mathfrak{A})$  together with complete positivity of  $\varphi$  give just the right information to state a Born rule in general:

$$BR(\varphi, T, \omega) \in \mathcal{P}$$

# Family Of Quantum Systems Over A Fuzzy Point

$$\mathcal{E} = \operatorname{Mat}_{b imes a}(\mathbb{C}) = \mathbb{C}^b \otimes \mathbb{C}^a = \mathcal{H}_{\operatorname{Bob}} \otimes \mathcal{H}_{\operatorname{Alice}}$$
  $\mathfrak{A} = Mat_a(\mathbb{C}) = \operatorname{End}(\mathcal{H}_{\operatorname{Alice}})$   $\mathfrak{B} = Mat_b(\mathbb{C}) = \operatorname{End}(\mathcal{H}_{\operatorname{Bob}})$   $BR(\varphi, T, \omega)(m) = \operatorname{Tr}_{\mathcal{H}_A} \rho_A \varphi(P_T(m))$ 

"A NC measure  $\omega \in \mathcal{S}(\mathfrak{A})$ " is equivalent to a density matrix  $\rho_A$  on  $\mathcal{H}_A$ 

omna state: 
$$\varphi(T)=\sum_{\alpha}E_{\alpha}^{\dagger}TE_{\alpha}$$
  $\sum_{\alpha}E_{\alpha}^{\dagger}E_{\alpha}=1$ 

# Quantum Information Theory & Noncommutative Geometry

$$BR(\varphi, T, \omega)(m) = \operatorname{Tr}_{\mathcal{H}_A} \rho_A \varphi(P_T(m))$$

$$= \sum_{\alpha} \operatorname{Tr}_{\mathcal{H}_A} \rho_A E_{\alpha}^{\dagger}(P_T(m)) E_{\alpha}$$

$$= \sum_{\alpha} \operatorname{Tr}_{\mathcal{H}_B} E_{\alpha} \rho_A E_{\alpha}^{\dagger} P_T(m)$$

$$= \operatorname{Tr}_{\mathcal{H}_B} \mathcal{E}(\rho_A) P_T(m)$$

Last expression is the measurement by Bob of T in the state  $\rho_A$  prepared by Alice and sent to Bob through quantum channel  $\mathcal{E}$ .

#### **Three Conclusions**

Don't be discouraged by negative response.

(Within reason)

```
Please say, ``a Berry connection,' not ``the Berry connection.' (Unless you have specified \nabla^{\mathcal{H}})
```

QM can be generalized to QMNA.

```
(Is it really a generalization?)

(Is it useful?)
```