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At is a trajectory or path in time described bysomedynamics

we can write down an ODE
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the solution to this ODE is straightforward
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Probabities needto beconserved overtime underthe vector fieldof
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III fix fix PDE givetheevolution
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Another way to understand why Det Trace inthe infinitesimal limit

is that near the identity matrix the determinant behaves like thetray
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remake
unlike autoregressive NF computingthe inversemapfor a CNF

hassameaplexityaffection

Remake NeuralODE canbethought as an infinitelydeep

neural network this canbeseenby solving theODE via Elated
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As with NF we cantrain theCNF using Maximum likelihood
Estimation
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Norestriction on architecture like for MAF or couplingflows

More expressive

In practice we need to optimize 4101 Bakpropagate
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Formulate gradient computation as a separateODE in FEEat
known as adjointoDEithas solution
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this is a stochastic estimator thatandscales better

exercise show that E tm EtAEi Trial i e estimationisunbiased

caveat the jacobian matrixof theCNF flows are not fully freeform

in fact they happen to be positive
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ie all eigenvalues are positive Eg one can't write
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embed thedata in higherdim space

this lifts the topological obstruction
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solvers
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expensive weeds
many time steps in
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numerically unstable

Inpractice CNFs don'tscalewell to large
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I.FI g Lipmanetal Ic LM 2023 why
Flow matching is simple trainingobjective for CNF's thatallows

for scalabletraining as scales beterthan MIEobjectiveand morestable
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We saythatUt generates theprob paths pyx if theaboveeg are

satisfied

the idea is to directly regressthe velocityfieldUp
with anMSE loss
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Hugebenefit Noneed to solveODE duringtraining af which

usually requires going
sequentially throughtimesteps e.g Euler

method

Here time canbesamplednonsequentially Parallelized



Problem Howdo we model the prob path pyxi whatto take
forUt

we only knowthat
Po Phase NCo11
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Solution Model simplerconditional joint quantities thatwhen marginalized

I giveyouback the quantitiesyou are
interested in

L us leadsto integralrepresentations
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conditioned on some random

variable y suchthat
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the conditicaprobepathPaxly interpas between the stdGaussian

at t o andthedeltafunctioncenteredaround y at t 1

Marginalizing over the data distribution
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gives thecorrectboundary conditions above
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themostnatural choice is to take a Ganishintupolation since

the dirac delta is recovered as the narrowwidth of a Gaussian
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Remake Diffusionmodels explained later in thecourse also lead
to Gaussian conditionalprob paths with particular
choicesof the mean I and covarianceOf

Sampling Xt Pyexixal yields a cond trajectory of the form
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the conditional vector field can also be computed

1UfxlX x tq I Recall that

Uf IxXn

one
onrowthtthevectorfield

ve that generate Pyx
can be represented by



441xt fdx 4lxix.ltxtyy1tIZy
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generate Peery via the continuityequation

Unfortunately Mix can'tbe integrated We still don't

know the denominator Pax back to square 1

Intindflowmatchingtotheresue

InsteadofLem consider regressingthe conditional vectorfield
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THEOREM minimizingthe objective Lgm is equivalent

to minimizing Lin



PoYen01 DoLean o t last

This is another comon trick in ML if a Loss is intractable

cookup asimplerlossthathasthesame minima

Notice that if we assume Gaussianconditional probability
paths where we specify 8 and I then Leg is
fully computable
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Ramadi Using the CFM objective fortraining
is fast
But once we learn the conditional vector field

inorder to sample fromthecot westillneed
to solve the NODE slow

NEtopes

Goingbeyand Gassianbasdstibution

optimalTransport Flow matching

Diffusionmodels


