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ABSTRACT
We present and employ a new kinematical approach to cosmological ‘dark energy’ studies. We

construct models in terms of the dimensionless second and third derivatives of the scalefactor

a(t) with respect to cosmic time t, namely the present-day value of the deceleration parameter

q0 and the cosmic jerk parameter, j(t). An elegant feature of this parametrization is that all

� cold dark matter (�CDM) models have j(t) = 1 (constant), which facilitates simple tests

for departures from the �CDM paradigm. Applying our model to the three best available sets

of redshift-independent distance measurements, from Type Ia supernova and X-ray cluster

gas mass fraction measurements, we obtain clear statistical evidence for a late-time transition

from a decelerating to an accelerating phase. For a flat model with constant jerk, j(t) = j,
we measure q0 = −0.81 ± 0.14 and j = 2.16+0.81

−0.75, results that are consistent with �CDM at

about the 1σ confidence level. A standard ‘dynamical’ analysis of the same data, employing

the Friedmann equations and modelling the dark energy as a fluid with an equation-of-state

parameter, w (constant), gives �m = 0.306+0.042
−0.040 and w = −1.15+0.14

−0.18, also consistent with

�CDM at about the 1σ level. In comparison to dynamical analyses, the kinematical approach

uses a different model set and employs a minimum of prior information, being independent of

any particular gravity theory. The results obtained with this new approach therefore provide

important additional information and we argue that both kinematical and dynamical techniques

should be employed in future dark energy studies, where possible. Our results provide further

interesting support for the concordance �CDM paradigm.

Key words: supernovae: general – cosmological parameters – cosmology: observations –

cosmology: theory – X-rays: galaxies: clusters.

1 I N T RO D U C T I O N

The field of cosmology has made unprecedented progress during the

past decade. This has largely been driven by new observations, in-

cluding precise measurements of the spectrum of cosmic microwave

background (CMB) anisotropies (Spergel et al. 2003, 2006, and

references therein), the distance–redshift relation to Type Ia super-

novae (SNeIa) (Riess et al. 1998; Perlmutter et al. 1999; Knop et al.

2003; Riess et al. 2004; Astier et al. 2005), the distance–redshift

relation to X-ray galaxy clusters (Allen, Schmidt & Fabian 2002;

Ettori, Tozzi & Rosati 2003; Allen et al. 2004), measurements of

the mean matter density and amplitude of matter fluctuations from

X-ray clusters (Borgani et al. 2001; Reiprich & Böhringer 2002;

Allen et al. 2003; Schuecker et al. 2003; Voevodkin & Vikhlinin

2004), measurements of the matter power spectrum from galaxy

redshift surveys (Tegmark et al. 2004; Cole et al. 2005; Eisenstein

et al. 2005), Lyman α forest studies (Croft et al. 2002; Viel, Weller

& Haehnelt 2004; Seljak et al. 2005) and weak-lensing surveys

(van Waerbeke et al. 2000; Hoekstra, Yee & Gladders 2002; Jarvis

�E-mail: drapetti@slac.stanford.edu

et al. 2005; Van Waerbeke, Mellier & Hoekstra 2005), and measure-

ments of the Integrated Sachs–Wolfe effect (Fosalba, Gaztanaga &

Castander 2003; Scranton et al. 2003).

These and other experiments have led to the definition of the

so-called concordance � cold dark matter (�CDM) cosmology. In

this model, the Universe is geometrically flat with only ∼4 per cent

of the current mass-energy budget consisting of normal baryonic

matter. Approximately 23 per cent is CDM, which interacts only

weakly with normal baryonic matter but which clusters under the

action of gravity. The remaining ∼73 per cent consists of smoothly

distributed quantum vacuum energy (the cosmological constant),

which pushes the Universe apart. This combination of matter and

vacuum energy leads to the expectation that the Universe should

undergo a late-time transition from a decelerating to an accelerating

phase of expansion. Late-time acceleration of the Universe is now

an observed fact (e.g. Allen et al. 2004; Riess et al. 2004; Astier et al.

2006). A transition from a decelerating phase to a late-time accel-

erating phase is required to explain both the late-time acceleration

measurements and the observed growth of structure.

Despite the observational success of the concordance �CDM

model, significant fine-tuning problems exist. In particular,
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difficulties arise in adjusting the density of the vacuum energy to

be a non-zero but tiny number, when compared with the value pre-

dicted by standard theoretical calculations, and in explaining why

the current matter and vacuum energy densities are so similar (the

‘cosmic coincidence’ problem). For these reasons, amongst others,

a large number of alternative cosmological models have been pro-

posed. These include models that introduce new energy components

to the Universe – so-called ‘dark energy’ models, for example, scalar

‘quintessence’ fields (Caldwell, Dave & Steinhardt 1998; Copeland,

Liddle & Wands 1998; Steinhardt, Wang & Zlatev 1999; Zlatev,

Wang & Steinhardt 1999; Barreiro, Copeland & Nunes 2000),

K-essence (Armendariz-Picon, Mukhanov & Steinhardt 2000, 2001;

Chiba, Okabe & Yamaguchi 2000), tachyon fields (Bagla, Jassal &

Padmanabhan 2003; Copeland et al. 2005) and Chaplygin gas mod-

els (Kamenshchik, Moschella & Pasquier 2001; Bento, Bertolami

& Sen 2002). Other possibilities include modified gravity theories,

motivated by, for example, the existence of extra dimensions (Dvali,

Gabadadze & Porrati 2000; Deffayet, Dvali & Gabadadze 2002a;

Deffayet et al. 2002b; Guo et al. 2006; Maartens & Majerotto 2006)

or other modifications of General Relativity (Capozziello, Carloni

& Troisi 2003; Vollick 2003; Carroll et al. 2004, 2005; Navarro

& Van Acoleyen 2005; Mena, Santiago & Weller 2006; Nojiri &

Odintsov 2006), which can also lead to late-time cosmic acceler-

ation. The simplicity of the concordance �CDM model, however,

makes it highly attractive. A central goal of modern observational

cosmology is to test whether this model continues to provide an

adequate description of rapidly improving data.

Most current analyses of cosmological data assume General Rel-

ativity and employ the mean matter density of the Universe, �m,

and the dark energy equation-of-state w as model parameters. Such

analyses are often referred to as ‘dynamical studies’, employing as

they do the Friedmann equations. Other dynamical analyses employ

modified Friedmann equations for a particular gravity model. How-

ever, a purely kinematical approach is also possible that does not

assume any particular gravity theory. Kinematical models provide

important, complementary information when seeking to understand

the origin of the observed late-time accelerated expansion.

In a pioneering study, Riess et al. (2004) measured a transition

from a decelerating to accelerating phase using a simple linear

parametrization of the deceleration parameter q(z), where q(z) is

the dimensionless second derivative of the scalefactor, a(t), with re-

spect to cosmic time. Recently, Shapiro & Turner (2005), Gong &

Wang (2006) and Elgaroy & Multamaki (2006) have employed a va-

riety of other parametrizations, constructed in terms of q(z), to study

this transition. However, since the underlying physics of the transi-

tion are unknown, the choice of a particular parametrization for q(z)

is quite arbitrary. Shapiro & Turner (2005) applied a principal com-

ponent analysis of q(z) to the SNIa data of Riess et al. (2004) and

found strong evidence for recent, changing acceleration but weak

evidence for a decelerated phase in the past (i.e. weak evidence for

a transition between the two phases). Elgaroy & Multamaki (2006)

employed a Bayesian analysis to the Riess et al. (2004) data and

the more recent Supernova Legacy Survey (SNLS) SNIa sample of

Astier et al. (2006), obtaining a similar result.

In this paper, we develop an improved method for studying the

kinematical history of the Universe. Instead of using parametriza-

tions constructed in terms of q(z), we follow Blandford et al. (2004)

and introduce the cosmic jerk, j(a), the dimensionless third deriva-

tive of the scalefactor with respect to cosmic time. (Here a is the

cosmic scalefactor, with a = 1/1 + z.) The use of the cosmic jerk

formalism provides a more natural parameter space for kinematical

studies. Our results are presented in terms of current deceleration

parameter q0 and j(a), where the latter can be either constant or

evolving. We apply our method to the three best current kinemati-

cal data sets: the‘gold’ sample of SNIa measurements of Riess et al.

(2004), the SNIa data from the first year of the SNLS project (Astier

et al. 2006), and the X-ray galaxy cluster distance measurements of

Allen et al. (in preparation). The latter data set is derived from mea-

surements of the baryonic mass fraction in the largest relaxed galaxy

clusters, which is assumed to be a standard quantity for such systems

(see e.g. Allen et al. 2004, for discussion).

In General Relativity, j(a) depends in a non-trivial way on both

�m and w(a) (Blandford et al. 2004). In general, there is no one-

to-one mapping between models with constant j and models with

constant w. A powerful feature of the standard dynamical approach

is that all �CDM models have w = −1 which make it easy to search

for departures from �CDM. Likewise, the use of the jerk formalism

imbues the kinematical analysis with a similar important feature in

that all �CDM models are represented by a single value of j = 1. The

use of the jerk formalism thus enables us to constrain and explore

departures from �CDM in the kinematical framework in an equally

effective manner. Moreover, by employing both the dynamical and

the kinematical approaches to the analysis of a single data set, we

explore a wider set of questions than with a single approach. We note

that Sahni et al. (2003) and Alam et al. (2003) also drew attention

to the importance of the jerk parameter for discriminating models

of dark energy and/or modified gravity. Chiba & Nakamura (1998)

and Caldwell & Kamionkowski (2004) also showed its relevance

for probing the spatial curvature of the Universe.

Using the three kinematical data sets mentioned above, we find

clear evidence for a negative value of q0 (current acceleration) and a

positive cosmic jerk, assuming j constant. The concordance �CDM

model provides a reasonable description of the data, using both

the new kinematical and the standard dynamical approaches. We

also search for more complicated deviations from �CDM, allowing

j(a) to evolve as the Universe expands, in an analogous manner

to dynamical studies which allow for time-variation of the dark

energy equation-of-state w(a). Our analysis employs a Chebyshev

polynomial expansion and a Markov Chain Monte Carlo (MCMC)

approach to explore parameter spaces. We find no evidence for a

time-varying jerk.

This paper is structured as follows. In Section 2, we describe our

new kinematical approach. In Section 3, we describe the scheme

adopted for polynomial expansions of j(a). Section 4 includes details

of the data analysis. The results from the application of our method

to the SNIa and X-ray cluster data are presented in Section 5. Finally,

our main conclusions are summarized in Section 7. Throughout this

paper, we assume that the Universe is geometrically flat.

2 T H E K I N E M AT I C A L A N D DY NA M I C A L
F R A M E WO R K S F O R L AT E - T I M E C O S M I C
AC C E L E R AT I O N

2.1 Previous work

The expansion rate of the Universe can be written in terms of the

Hubble parameter, H = ȧ/a, where a is the scalefactor and ȧ is its

first derivative with respect to time. The current value of the Hubble

parameter is the Hubble Constant, usually written as H0. Under the

action of gravity, and for negligible vacuum energy, the expansion

of the Universe is expected to decelerate at late times. Contrary to

this expectation, in the late 1990s, SNIa experiments (Riess et al.

1998; Perlmutter et al. 1999) provided the first direct evidence for

a late-time accelerated expansion of the Universe. In particular, the
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present value of the deceleration parameter, q0, measured from the

supernova data was found to be negative. In detail, the deceleration

parameter q is defined as the dimensionless second derivative of the

scalefactor

q(t) = − 1

H 2

(
ä

a

)
, (1)

and in terms of the scalefactor,

q(a) = − 1

H
(aH )′, (2)

where the ‘dots’ and ‘primes’ denote derivatives with respect to

cosmic time and scalefactor, respectively.

The current ‘concordance’ cosmological model, �CDM, has

been successful in explaining the SNIa results and all other preci-

sion cosmology measurements to date. Together with its theoretical

simplicity, this makes the �CDM model very attractive. However,

as discussed in the Introduction section, the concordance model

does face significant theoretical challenges and a wide range of

other possible models also provide adequate descriptions of the cur-

rent data (see Copeland, Sami & Tsujikawa 2006, for an extensive

review).

An excellent way to distinguish between models is to obtain pre-

cise measurements of the time-evolution of the expansion of the Uni-

verse. Given such data, a number of different analysis approaches are

possible. In searching for time-evolution in the deceleration param-

eter, as measured by current SNIa data, Riess et al. (2004) assumed

a linear parametrization of q(z):

q(z) = q0 + dq

dz
z. (3)

These authors measured a change in sign of the deceleration pa-

rameter, from positive to negative approaching the present day, at

a redshift zt = 0.46 ± 0.13. Using this parametrization for q(z),

the definition of the deceleration parameter given by equation (1),

and integrating over the redshift, we obtain that for this model the

evolution of the Hubble parameter is given in the form

E(z) = H (z)

H0

= (1 + z)(1+q0−q ′)eq ′z, (4)

where q′ = dq/dz.

However, since the origin of cosmic acceleration is unknown, it is

important to recognize that the choice of any particular parametrized

expansion for q(z) is essentially arbitrary. Indeed, when (or if) a

transition between decelerated and accelerated phases if inferred to

occur can depend on the parametrization used. Elgaroy & Multamaki

(2006) showed that using the linear parametrization described by

equation (3) and fitting to the SNIa data set of Astier et al. (2006)

a transition redshift zt ∼2.0 is obtained which, uncomfortably, lies

beyond the range of the data used.

Transitions between phases of different cosmic accelerations are

more naturally described by models incorporating a cosmic ‘jerk’.

The jerk parameter, j(a), is defined as the dimensionless third deriva-

tive of the scalefactor with respect to cosmic time (Blandford et al.

2004):

j(t) = 1

H 3

(
˙̈a

a

)
, (5)

and in terms of the scalefactor

j(a) = (a2 H 2)′′

2H 2
, (6)

where again the ‘dots’ and ‘primes’ denote derivatives with respect

to cosmic time and scalefactor, respectively.

In such models, a transition from a decelerating phase at early

times to an accelerating phase at late times occurs for all models with

q0 < 0 and a positive cosmic jerk. Note that a Taylor expansion of the

Hubble parameter around small redshifts (Riess et al. 2004; Visser

2004) contains the present value of both the deceleration and the jerk

parameters, q0 and j0. Such Taylor expansions are inappropriate for

fitting high-redshift objects (Blandford et al. 2004; Linder 2006),

such as those included in the data sets used here.

Blandford et al. (2004) described how the jerk parametrization

provides a convenient, alternative method to describe models close

to �CDM. In this parametrization, flat �CDM models have a con-

stant jerk with j(a) = 1 (note that this neglects the effects of radi-

ation over the redshift range of interest, which is also usually the

case when modelling within the dynamic framework). Thus, any

deviation from j = 1 measures a departure from �CDM, just as

deviations from w = −1 do in more standard dynamical analyses.

Importantly, in comparison to dynamical approaches, however, the

kinematical approach presented here both explores a different set of

models and imposes fewer assumptions. The dynamical approach

has other strengths, however, and can be applied to a wider range

of data (e.g. CMB and growth of structure studies), making the

kinematical and dynamical approaches highly complementary.

It is interesting to note that, in principle, any particular dynami-

cal parameter space will have its own physical limits. For instance,

within the dynamical (�m, w) plane, models with w < −1, known as

‘phantom’ dark energy models, violate the dominant energy condi-

tion (Carroll, Hoffman & Trodden 2003; Onemli & Woodard 2004)

and present serious problems relating to the treatment of dark energy

perturbations (Caldwell & Doran 2005; Hu 2005; Vikman 2005;

Zhao et al. 2005) when w(z) crosses the boundary w = −1. Current

data allow models with w < −1 (Weller & Lewis 2003; Allen et al.

2004; Riess et al. 2004; Astier et al. 2006; Cabre et al. 2006; Spergel

et al. 2006) and models in which w(z) crosses the boundary w =
−1 (Corasaniti et al. 2004; Jassal, Bagla & Padmanabhan 2005;

Rapetti, Allen & Weller 2005; Seljak et al. 2005; Upadhye, Ishak &

Steinhardt 2005; Zhao, Xia, Feng & Zhang 2006). However, another

dynamical parameter space, coming, for example, from a different

gravity theory, might not pathologically suffer from such boundaries

around the models allowed for current data.

Since the (q0, j) plane (see below) is purely kinematical, that is,

no particular gravity theory is assumed, we are not forced to inter-

pret j = 1, or any locus in this plane, as a barrier. Note, however,

that caution is required in extending the results from the kinematical

analysis beyond the range of the observed data (see for details Amin

& Blandford, in preparation). For example, inappropriately extend-

ing a jerk model to very high redshifts could imply an unphysical

Hubble parameter at early times, that is, these models do not have

a big bang in the past.

2.2 A new kinematical framework

For our kinematical analysis, we first calculate H(a), given j(a; C),

where C = (c0, c1, ..., cN ) is the selected vector of parameters used

to describe the evolution of j(a) (see below). Following Blandford

et al. (2004), we rewrite the defining equation for the jerk parameter

(6) in a more convenient form:

a2V ′′(a) − 2 j(a)V (a) = 0, (7)

where ‘prime’ denotes derivative with respect to a and V(a) is defined

as

V (a) = −a2 H 2

2H 2
0

. (8)
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We specify the two constants of integration required by equation (7)

in terms of the present Hubble parameter H0 and the present decel-

eration parameter q0 as follows:

V (1) = −1

2
, V ′(1) = q0, (9)

where a(t0) = 1 at the present time t0. Here, the first condition comes

from H(1) = H0 and the second from

V ′(1) = − H ′
0

H0

− 1 = q0. (10)

The Hubble parameter, H(a), obtained from equations (7), (8) and

(9) is used to calculate the angular diameter (dA) and luminosity

(dL) distances for a flat Friedmann–Robertson–Walker–Lemaı tre
(FRWL) metric:

dA(a) = a2 dL(a) = c

H0

a

∫ 1

a

1

a2 E(a)
da, (11)

where c is the speed of light. These theoretical distances, dL(a) and

dA(a), are then used in the data analysis (see Section 4).

Our framework provides a simple and intuitive approach for kine-

matical studies. For models with q0 < 0 (>0), the Universe is cur-

rently accelerating (decelerating). Models with q0 < 0 and j(a) = 1

(constant) are currently accelerating and have the expansion evolv-

ing in a manner consistent with �CDM. Any significant departure

from j = 1 indicates that some other mechanism is responsible for

the acceleration.

2.3 Standard dynamical framework

For comparison purposes, we have also carried out a standard dy-

namical analysis of the data in which we employ a dark energy model

with a constant dark energy equation-of-state, w. From energy con-

servation of the dark energy fluid and the Friedmann equation, we

obtain the evolution of the Hubble parameter, H(z) = H0 E(z),

E(z) = [
�m(1 + z)3 + (1 − �m)(1 + z)3(1+w)

]1/2
, (12)

where �m is the mean matter density in units of the critical density.

As with the kinematical analysis, we assume flatness and neglect

the effects of radiation density. In this framework, models with a

cosmological constant have w = −1 at all times.

3 E VO LV I N G J E R K M O D E L S

Our analysis allows for the possibility that the cosmic jerk parameter,

j(a), may evolve with the scalefactor. We have restricted our analysis

to the range of a where we have data, [amin = 0.36, amax = 1]. In

searching for possible evolution, our approach is to adopt �CDM

as a base model and search for progressively more complicated

deviations from this. We begin by allowing a constant deviation �j
from �CDM (j = 1). For this model, it is possible to solve the

jerk equation (7) analytically. Using the initial conditions listed in

equation (9), we obtain

V (a) = −
√

a

2

[(
p − u

2p

)
a p +

(
p + u

2p

)
a−p

]
, (13)

where p ≡ (1/2)
√

(1 + 8 j) and u ≡ 2(q0 + 1/4). Note that in the

(q0, j) plane for

j <

{
q0 + 2q2

0 q0 < −1/4

−1/8 q0 > −1/4
(14)

there is no big bang in the past.1 The models allowed by our com-

bined data sets do not cross this boundary.

For the next most complicated possible deviation from �CDM,

we have j(a; C) = j�CDM + � j(a; C). Here j�CDM = 1 and j(a; C)

is the cosmic jerk for the cosmology in question. In order to mean-

ingfully increase the number of parameters in the vector C, we em-

ploy a framework constructed from Chebyshev polynomials. The

Chebyshev polynomials form a basis set of polynomials that can be

used to approximate a given function over the interval [−1, 1]. We

rescale this interval to locate our function � j(a; C) in the range of

scalefactor where we have data

ac ≡ a − (1/2)(amin + amax)

(1/2)(amax − amin)
, (15)

where a is the scalefactor in the range of interest and ac is Chebyshev

variable. The trigonometric expression for a Chebyshev polynomial

of degree n is given by

Tn(ac) = cos(n arccos ac). (16)

These polynomials can also be calculated using the recurrent for-

mula

Tn+1(ac) = 2acTn(ac) − Tn−1(ac), n � 1, (17)

where T0(ac) = 1 and, for example, the next three orders are T1(ac) =
ac, T2(ac) = 2ac

2 − 1, T3(ac) = 4ac
3 − 3ac, etc. Using a weighted

combination of these components, any arbitrary function can be ap-

proximately reconstructed. The underlying deviation from �CDM

can be expressed as

� j(a; C) �
N∑

n=0

cn Tn(ac), (18)

where the weighting coefficients form our vector of parameters,

C = (c0, c1, ... , cN ). Thus, using equation (18) we produce different

parametrizations for increasing N. With higher values of N, we allow

for a more precise exploration of the [q0, j(a; C)] parameter space.

However, it is clear that this process will be limited by the ability

of the current data to distinguish between such models. In order to

judge how many orders of polynomials to include, we quantify the

improvements to the fits obtained from the inclusion of progressively

higher orders in a variety of ways (see below). In general, we find

that models with a degree of complexity beyond a constant jerk are

not required by current data.

We note that approches other than expanding �j in Chebyshev

polynomials are possible, for example, one could include the dimen-

sionless fourth derivative of the scalefactor as a model parameter.

However, since �CDM does not make any special prediction for

the value of this derivative, we prefer to use our general expansion

in �j here.

4 DATA A N D A NA LY S I S M E T H O D S

4.1 Type Ia supernova data

For the analysis of SNIa data, we use both the ‘gold’ sample of Riess

et al. (2004) and the first-year SNLS sample of Astier et al. (2006).

1 Allowed (q0, j) values are those for which the equation V(a) = 0 has no

solution in the past (a < 1) (Amin & Blandford in preparation).
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The former data set contains 1572 SNeIa, where a subset of 37 low-

redshift objects are in common with the data of Astier et al. (2005).

Astier et al. (2006) contain 1153 objects. We use the measurements

of Astier et al. (2006) for objects in common between the studies.

Thus, combining both data sets we have 120 SNeIa from the Riess

et al. (2004) gold sample (157 minus the 37 low-redshift objects in

common) and 115 SNeIa from Astier et al. (2006).

The two SNIa studies use different light curve fitting methods. In

order to compare and combine the data, we fit the observed distance

moduli μobs(zi) = mobs(zi) − M, where m is the apparent magnitude

at maximum light after applying galactic extinction, K-correction

and light curve width–luminosity corrections, and M is the abso-

lute magnitude, with the theoretical predictions, μth(zi) = mth(zi)

− M = 5 log10DL(zi;θ ) + μ0, where DL = H0 dL is the H0-free

luminosity distance, μ0 = 25 − 5 log10 H0 and m0 ≡ M + μ0 is a

‘nuisance parameter’ which contains both the absolute magnitude

and H0.

For the [q0, j(a; C)] parameter space, the luminosity distance

dL(z; θ ) is directly obtained integrating the solution of the differen-

tial equation (7) with the definition (11) as presented in Section 2.2.

For models using linear parametrization of q(z) and/or dynamical

models with �m and w, we plug equations (1) and (12), respectively,

into the equation describing the luminosity distance for a flat FRWL

metric, in units of megaparsecs:

dL(z; θ ) = c(1 + z)

H0

∫ z

0

dz

E(z; θ )
, (19)

where the speed of light, c, is in km s−1 and the present Hubble

parameter, H0, in km (s Mpc)−1. Here, the vectors of parameters for

each model are θ = (q0, dq/dz) and θ = (�m, w). For the gold

sample data of Riess et al. (2004), we use the extinction-corrected

distance moduli, μobs(zi) and associated errors, σ 2
i . For the SNLS

data of Astier et al. (2006), we use the rest-frame B-band magnitude

at maximum light m∗
B(zi), the stretch factor si and the rest-frame

colour ci to obtain μobs(zi) = m∗
B(zi) − M + α (si − 1) − βci. These

values were derived from the light curves by Astier et al. (2006),

who also provided best-fitting values for α = 1.52 ± 0.14 and β =
1.57 ± 0.15.

For both SNIa data sets, we have

χ 2(θ ; m0) =
∑
SNIa

[
μth(zi; θ, μ0) − μobs(zi; θ, M)

]2

σ 2
i

, (20)

where the dispersion associated with each data point, σ 2
i = σ 2

μi,obs
+

σ 2
int,i + σ 2

v,i. Here σ 2
μi,obs

accounts for flux uncertainties, σ 2
int,i ac-

counts for intrinsic, systematic dispersion in SNIa absolute mag-

nitudes and σ 2
v,i accounts for systematic scatter due to peculiar

velocities. The SNLS analysis includes an intrinsic dispersion of

0.131 04 mag4 and a peculiar velocity scatter of 300 km s−1. The

gold sample analysis includes 400 km s−1 peculiar velocity scatter,

with an additional 2500 km s−1 added in quadrature for high-redshift

SNeIa.

We marginalize analytically over m0:

χ̃2(θ ) = −2 ln

∫ ∞

−∞
exp

[
−1

2
χ 2(θ, m0)

]
dm0 (21)

2 Riess et al. (2004) presented 16 new Hubble Space Telescope (HST) SNeIa,

combined with 170 previously reported SNeIa from ground-based data. They

identified a widely used ‘high-confidence’ subset, usually referred to as the

gold sample, which includes 14 HST SNeIa.
3 71 SNLS objects, plus 44 previously reported nearby objects.
4 http://snls.in2p3.fr/conf/papers/cosmo1/.

obtaining

χ̃2 = ln

(
c

2π

)
+ a − b2

c
, (22)

where

a =
∑
SNIa

[
5 log10 DL(zi; θ ) − mobs(zi)

]2

σ 2
i

, (23)

b =
∑
SNIa

5 log10 DL(zi; θ ) − mobs(zi)

σ 2
i

, c =
∑
SNIa

1

σ 2
i

. (24)

Note that the absolute value of χ 2 = a − (b2/c). For the analysis

in the standard dynamic framework, our results agree with those of

Riess et al. (2004) and Astier et al. (2006), and the comparison work

of Nesseris & Perivolaropoulos (2005).

4.2 X-ray cluster data

For the analysis of cluster X-ray gas mass fractions, we use the data

of Allen et al. (in preparation), which contain 41 X-ray-luminous,

relaxed galaxy clusters, including 26 previously studied by Allen

et al. (2004). [Some of the original 26 have since been revisited

by the Chandra X-ray Observatory leading to improved constraints

(for details see Allen et al., in preparation)]. The new X-ray data set

spans a redshift interval 0.06 < z < 1.07. Our analysis follows the

method of Allen et al. (2004), fitting the apparent redshift evolution

of the cluster gas fraction with the expression

f ref
gas(zi) = F Rref(zi), Rref(zi) ≡

[
d ref

A (zi)

DA(zi)

]1.5

, (25)

where F = (b �b H 1.5
0 )/[(1 + 0.19

√
h) �m] is the normalization of

the fgas(z) curve, dA and dref
A (z) are the angular diameter distances

[dA = dL/(1 + z)2] to the clusters for a given cosmology and for

the reference �CDM cosmology [with H0 = 70 km (s Mpc)−1 and

�m = 0.3], respectively, and DA = H0 dA is the H0-free angular di-

ameter distance. For the kinematical approach, we treat the normal-

ization F as a single ‘nuisance’ parameter, which we marginalize

over in the MCMC chains.

For the dynamical analysis of the same X-ray data, we follow

Allen et al. (2004) and employ Gaussian priors on the present value

of the Hubble parameter H0 = 72 ± 8 km (s Mpc)−1 (Freedman

et al. 2001), the mean baryon density �b h2 = 0.0214 ± 0.0020

(Kirkman et al. 2003) and the X-ray bias factor b = 0.824 ±
0.089 [determined from the hydrodynamical simulations of Eke,

Navarro & Frenk (1998), including a 10 per cent allowance for sys-

tematic uncertainties]. The application of these priors leads to an

additional constraint on �m from the normalization of the fgas(z)

curve. Since the kinematical approach does not constrain �m, the

kinematical analysis does not involve these priors and draws infor-

mation only from the shape of the fgas(z) curve. The dynamical anal-

ysis, in constrast, extracts information from both the shape and the

normalization.

4.3 Markov Chain Monte Carlo analysis

For both the kinematical and the dynamical analyses, we sample

the posterior probability distributions for all parameter spaces using

an MCMC technique. This provides a powerful tool for cosmo-

logical studies, allowing the exploration of large multidimensional
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parameter spaces. In detail, we use the Metropolis–Hastings algo-

rithm implemented in the COSMOMC
5 code of Lewis & Bridle (2002)

for the dynamic formalism, and a modified version of this code for

the kinematic analysis.

Our analysis uses four MCMC chains for each combination of

model and data. We ensure convergence by applying the Gelman–

Rubin criterion (Gelman & Rubin 1992), where the convergence

is deemed acceptable if the ratio of the between-chain and mean-

chain variances satisfies R − 1 < 0.1. In general, our chains have

R − 1 
 0.1.

4.4 Hypothesis testing in the kinematical analysis: how many
model parameters are required?

In the first case, we examined a kinematical model in which the de-

celeration parameter q0 was included as the only interesting free

parameter [see equation (1) with q′ = 0]. This is hereafter re-

ferred to as the model Q. As detailed in Section 2, we next in-

troduced the jerk parameter, j, as an additional free parameter, al-

lowing it to take any constant value. We refer to this as model

J , which has the interesting free parameters, q0 and j. Note that

modelJ includes the set of possible �CDM models, which all have

constant j = 1.

We next explored a series of models that allow for progressively

more complicated deviations from �CDM. In each case, the im-

provement obtained with the introduction of additional model pa-

rameters, has been gauged from the MCMC chains using a variety

of statistical tests. In the first case, we follow a frequentist approach

and use the F-test, for which

F = �χ2

χ2
ν �m

, (26)

where �χ 2 is the difference in the minimum χ2 between the two

models, χ 2
ν is the reduced χ2 (χ2/ν, where ν is the number of de-

grees of freedom of the fit, d.o.f.) of the final model, and �m is

the difference in the number of free parameters in the two models.

Given �m and ν, we calculate the probability that the new model

would give �χ 2 � F χ2
ν �m by random chance. This allows us to

quantify the significance of the model extension.

The Bayesian Information Criterion (BIC) provides a more strin-

gent model selection criterion and is an approximation to the

Bayesian Evidence (Schwarz 1978). The BIC is defined as

BIC = −2 lnL + k ln N , (27)

where L corresponds to the maximum likelihood obtained for a

given model (thus, −2 lnL is the minimum χ2), k is the number of

free parameters in the model and N is the number of data points.

Values for �BIC < 2 between two models are typically considered

to represent weak evidence for an improvement in the fit. �BIC

between 2 and 6 indicates ‘positive evidence’ for an improvement,

and values greater than 6 signify ‘strong evidence’ for the model with

the higher BIC (Jeffreys 1961; Kass & Raftery 1995; Mukherjee

et al. 1998; Liddle 2004).

Finally, we have compared the full posterior probability distri-

butions for different models, using the Bayes factor to quantify the

significance of any improvement in the fit obtained. The Bayes fac-

tor is defined as the ratio between the Bayesian evidence of the two

models (Kass & Raftery 1995). If P(D|θ , M) is the probability of

5 http://cosmologist.info/cosmomc/.

the data D given a model M, the Bayesian evidence is defined as the

integral over the parameter space, θ :

E(M) ≡ P(D|M) =
∫

dθ P(D|θ, M) P(θ |M), (28)

where P(θ |M) is the prior on the set parameters θ , normalized to

unity. We employ top hat priors for all parameters and evaluate the

integrals using the MCMC samples:

E(M) ∼ 1

N�θ

N∑
P(D|θn), (29)

where �θ is the volume in the parameter space selected to have prob-

ability 1 within the top hat priors, N is the number of MCMC samples

and θn the sampled parameter space. Note that
∑N P(D|θn) is the

expected probability of the data in the posterior distribution (Lewis

& Bridle 2002). The evidence of the model E(M) can be estimated

trivially from the MCMC samples as the mean likelihood of the sam-

ples divided by the volume of the prior. It is clear, though, that this

volume will depend on our selection of the top hat priors. In order to

be as objective as possible, within the Bayesian framework, we use

the same priors for parameters in common between the two models

involved in a comparison. For parameters not in common, we calcu-

late their volumes subtracting their maximum and minimum values

in the MCMC samples.

The Bayes factor between the two models M0 and M1 is B01 =
E(M0)/E(M1). If ln B01 is positive, M0 is ‘preferred’ over M1. If

ln B01 is negative, M1 is preferred over M0. Following the scale of

Jeffreys (1961), if 0 < ln B01 < 1 only a ‘bare mention’ of the pref-

erence is considered warranted. If 1 < ln B01 < 2.5, the preference

is regarded as of ‘substantial’ significance. If 2.5 < ln B01 < 5,

the significance is considered to be going from ‘strong’ to ‘very

strong’.

5 R E S U LT S

5.1 Comparison of constant jerk and constant wmodels

We first examine the statistical improvement obtained in moving

from the simplest kinematical model Q = [q0], in which q0 is the

only interesting free parameter, to model J = [q0, j(c0)], where

we include constant jerk j = 1 + c0 (i.e. we allow j to take values

other than zero). The results obtained, using the three statistical tests

described in Section 4.1 applied to each data set alone and for all

three data sets together, are summarized in Table 1. We find that

the ‘gold’ sample is the only data set that, on its own, indicates

a ‘substantial’ preference for model J over model Q according

to the Bayes factor test. Note that this is not only due to the fact

that the ‘gold’ sample extends to higher redshifts, thereby providing

additional constraining power, but also due to the fact that the ‘gold’

sample hints a small tension in the ground-based ‘gold’ sample data

to prefer j > 1 values.6 Combining all three data sets, we obtain

a ‘strong’ preference for model J over model Q, from all three

statistical tests. Table 1 shows the mean marginalized parameters

for each model and the 1σ confidence levels. Combining all three

data sets, we obtain tight constraints on q0 = −0.81 ± 0.14 and

6 An analysis of the ‘gold’ sample data in which the HST SNeIa are excluded

leads to even stronger preference for j > 0: �χ2
JQ = 10.6. In this case, for

model J we obtain q0 = −1.17 ± 0.28 and j = 4.95+2.05
−1.84.
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Table 1. The marginalized median values and 68.3 per cent confidence intervals obtained by analysing each data set and all three data sets together. We show

these results for two kinematical models: using only q0(Q model) and extending this parameter space with the jerk parameter j (J model). We quote χ2 per

d.o.f. for each model and three different statistical tests to quantify the significance of extending the parameter space from Q (q0) to J (q0, j). We quote the

difference in �χ2
JQ, the probability given by F-test, the difference in the BIC and ln BJQ (where BJQ is the Bayes factor between the two models). Note

that combining all three data sets we obtain a significant preference for the J model within all three tests.

Data set Q model J model Improvement

q0 χ2
Q/d.o.f. q0 j χ2

J /d.o.f. �χ2
JQ F-test (per cent) �BIC ln BJQ

Clusters −0.55 ± 0.14 39.6/39 −0.61+0.38
−0.41 0.51+2.55

−2.00 39.6/38 0.01 5.6 −3.7 −3.2

SNLS SNeIa −0.417 ± 0.062 112.1/113 −0.65 ± 0.23 1.32+1.37
−1.21 111.0/112 1.1 69.4 −3.6 −2.5

Gold SNeIa −0.289 ± 0.062 182.8/155 −0.86 ± 0.21 2.75+1.22
−1.10 174.6/154 8.2 99.1 3.1 1.2

Gold+SNLS+Cl −0.391 ± 0.045 300.8/272 −0.81 ± 0.14 2.16+0.81
−0.75 290.1/271 10.7 99.8 5.1 3.0

Table 2. The marginalized median values and 68.3 per cent confi-

dence intervals obtained analysing all three data sets together. We

show the results for the constant j model (kinematical) and the con-

stant w model (dynamical) and their corresponding χ2 per d.o.f.

Approach Model parameters χ2/d.o.f.

Kinematical q0 = −0.81 ± 0.14, j = 2.16+0.81
−0.75 290.1/271

Dynamical �m = 0.306+0.042
−0.040, w = −1.15+0.14

−0.18 291.7/272

j = 2.16+0.81
−0.75. Our result represents the first measurement of the jerk

parameter from cosmological data.7

Our dynamical analysis of the same three data sets gives

w = −1.15+0.14
−0.18 and �m = 0.306+0.042

−0.040 (see Table 2). Fig. 1 shows

the constraints for both the kinematical (q0, j; top left-hand panel)

and the dynamical (�m, w; top right-hand panel) models, using all

three data sets combined. In both cases, the dashed lines indicate

the expected range of results for �CDM models (i.e. a cosmologi-

cal constant). We find that both the kinematical and the dynamical

analyses of the combined data are consistent with the �CDM model

at about the 1σ level.

It is important to recognize that the results from the kine-

matical and dynamical analyses constrain different sets of depar-

tures from �CDM. We are using two simple, but very different

parametrizations based on different underlying assumptions. The

results presented in Fig. 1 therefore provide interesting new support

for the �CDM model.

The lower panels of Fig. 1 show the constraints obtained for the

three data sets when analysed individually. It is important to note

the consistent results from the independent SNIa and X-ray cluster

data sets. Note that in the dynamical analysis, the X-ray data provide

valuable additional constraints on �m, when employing the H0 and

�bh2 priors. The overlap of all three data sets in both parameter

spaces highlights the robustness of the measurements. Comparing

the upper and lower panels of Fig. 1, we see how the combination

of data sets significantly tightens the constraints.

5.2 More-complicated kinematical models

For the combined data set, we have also searched for more-

complicated departures from �CDM by including extra model pa-

7 Note that Riess et al. (2004) measured j0 > 0 at the 2σ level, where j0 comes

from a Taylor expansion of the Hubble parameter around small redshifts

(Visser 2004). As noted in Section 2.1 such an expansion is not appropriate

when high-redshift data are included, as in the ‘gold’ sample.

rameters, as described in Section 3. We find no significant evi-

dence for models more complicated than a constant jerk model.

In particular, we find a negligible �χ2 between models with con-

stant jerk J = [q0, j(c0)] and the next most-sophisticated model

J1 = [q0, j(a; c0, c1)], and between the latter model and the next

one, J2 = [q0, j(a; c0, c1, c2)].

It is, however, interesting to plot the differences between the con-

straints obtained for each model. Fig. 2 shows the current 1 and

2σ constraints around the median values of j(a) at different scale-

factors, a, over the range where we have data [0.36, 1]. The green,

lighter contours show the constraints for the J
1

model and the red,

darker contours for the J model. From this figure, it is clear that

current data provide the best constraints around a ∼ 0.77, that is,

z ∼ 0.3, and that at higher and lower redshift more data are required.

For the low-redshift range, the forthcoming SDSS II SNIa data will

be helpful. For the high-redshift range, new HST SNIa and further

X-ray cluster data should be available in the near future. In the

longer term, SNIa data from the Large Synaptic Survey Telescope

(LSST),8 the Supernovae Acceleration Probe (SNAP),9 and X-ray

cluster data from Constellation-X10 should provide tight constraints

on both j(a) and w(a). Future galaxy redshift surveys covering a

high-redshift range will also help us to tighten these constraints, us-

ing the baryon oscillation experiment (Cole et al. 2005; Eisenstein

et al. 2005).

5.3 Comparison of distance measurements

It is interesting to compare directly the distance curves for the

kinematical (constant j) and dynamical (constant w) models, as

determined from the MCMC chains. Fig. 3 shows the 68.3 and

95.4 per cent confidence limits on the offset in distance, as a func-

tion of scalefactor, relative to a reference �CDM cosmology with

�m = 0.27, �� = 0.73. We see that the kinematical and dynam-

ical results occupy very similar, though not identical, loci in the

distance–scalefactor plane. For the dynamical analysis, the addition

of the extra constraint on �m from the normalization of the fgas curve

tightens the constraints and pushes the results in a direction slightly

more consistent with the reference �CDM cosmology.

5.4 Comparison with Riess et al. (2004)

For comparison purposes, we also present the results ob-

tained using the linear parametrization of q(z) described by

8 http://www.lsst.org/lsst home.shtml.
9 http://snap.lbl.gov/.
10 http://constellation.gsfc.nasa.gov/.
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Figure 1. A summary of the results from the kinematical (left-hand panels) and the dynamical (right-hand panels) analyses. The top left-hand panel shows

the 68.3 and 95.4 per cent confidence limits in the (q0, j) plane for the kinematical model with a constant jerk, j, obtained using all three data sets: both the

SNIa data sets (Riess et al. 2004; Astier et al. 2006) and the cluster fgas data of Allen et al. (in preparation). The top right-hand panel shows the results in the

(�m, w) plane obtained using the same three data sets and assuming HST, BBNS and b priors. (Note that the kinematical analysis does not use the HST, BBNS

and b priors.) The dashed lines show the expectation for a cosmological constant model in both formalisms (j = 1 and w = −1, respectively). The bottom

panels show the confidence contours in the same planes for the individual data sets: the SNLS SNIa data (orange contours), the Riess et al. (2004) ‘gold’ SNIa

sample (blue contours) and the cluster fgas data (green contours). Here, the dashed lines again indicate the cosmological constant model.

equation (3) and used by Riess et al. (2004). Fig. 4 shows the con-

straints in the plane (q0, dq/dz) determined from each data set, and

by combining the three data sets (solid, orange contours). It is clear

that the constraints from the three independent data sets overlap and

that by combining them we obtain significantly tighter results than

using the ‘gold’ sample alone.

6 T H E D I S TA N C E TO T H E L A S T
S C AT T E R I N G S U R FAC E

Finally, we note that there is one further pseudo-distance measure-

ment available to us – the distance to the last scattering surface from

CMB data. Although this is not a purely kinematical data point, for

illustration purposes we show the constraints on j(a) that can be

achieved if one is willing to make extra assumptions and include

this measurement. The extra assumptions involved, though strong,

are well motivated. In detail, in order to use the distance to last scat-

tering, we assume that dark matter behaves like standard CDM at all

redshifts, an assumption well tested by, for example, galaxy cluster,

weak-lensing and galaxy redshift surveys at low redshifts and CMB

experiments at high redshift. We also assume that pre-recombination

physics can be well described by a standard combination of CDM,

a photon-baryon fluid and neutrinos, and that any early dark en-

ergy component has a negligible effect on the dynamics. With these

assumptions, one can construct the comoving angular diameter dis-

tance to the last scattering surface from dA = rs(adec)/θA, where

rs(arec) and θA are the comoving sound horizon at decoupling and

the characteristic angular scale of the acoustic peaks, respectively.

For a geometrically flat Universe with a negligible early dark energy

component, we calculate the sound horizon at decoupling as (Verde

et al. 2003):

rs(adec) �
∫ adec

0

cs(a)

H0(�ma + �rad)1/2
da, (30)

where cs(a) = c/[1 + (3�b a)/(4�γ )] is the sound speed in the

photon-baryon fluid, �rad = �γ + �ν is the present radiation en-

ergy density, and �γ and �ν are the present photon and neutrino

energy densities, respectively. We use our X-ray galaxy cluster data,

assuming HST, BBNS and b priors, to determine �m = 0.27 ± 0.04

(Allen et al., in preparation; note that this constraint mainly comes

from low-redshift clusters). We also use the COBE measurement of

the CMB temperature T0 = 2.725 ± 0.002K (Mather et al. 1999)

and a standard three neutrino species model with negligible masses

to obtain �rad. For these constraints, we obtain rs(zdec) � 146 ±
10 Mpc.
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Figure 2. The 68.3 and 95.4 per cent confidence variations about the median

values for j(a) as a function of the scalefactor a, over the range where we

have data [0.36, 1]. Results are shown for the constant jerk model (model J )

(red, darker contours) and J1 model (green, lighter contours). In both cases,

the constraints for all three data sets have been combined. The dashed line in-

dicates the expectation, j=1 (constant) for a cosmological constant (�CDM)

model.

Figure 3. The 68.3 and 95.4 per cent confidence limits on the offset in dis-

tance as a function of scalefactor, relative to the reference�CDM cosmology,

for both the kinematical (constant j; green, shaded curves) and the dynamical

(constant w; dotted and dashed curves) analyses. The dotted curves show

the results for the dynamical analysis in which the additional constraint on

�m from the normalization of the fgas curve is used. The dashed curve is

for a dynamical analysis where this extra constraint on the normalization is

ignored. The same MCMC samples as used to construct Fig. 1 have been

used.

Figure 4. The 68.3 and 95.4 per cent confidence limits in the (q0, dq/dz)

plane obtained using the SNIa data from the first year of the SNLS (Astier

et al. 2006) (blue contours), the ‘gold’ sample of Riess et al. (2004) (dashed

contours), the cluster fgas data of Allen et al. (in preparation) (green contours)

and the combination of all three data sets (orange contours).

From Hinshaw et al. (2006), we have the multipole of the first

acoustic peak l1 = 220.7 ± 0.7. This is related to lA by a shift φ,

l1 = lA(1 − φ). Using the fitting formula of Doran & Lilley (2002),

the BBNS prior for �bh2, a scalar spectral index ns = 0.95 ± 0.02

(Spergel et al. 2006) and assuming no early dark energy, we find

θA = 0.◦6 ± 0.◦01. We then obtain a pseudo-model-independent

distance to decoupling, d(zdec) � 13.8 ± 1.1 Gpc, where zdec =
1088 (Spergel et al. 2006).

Fig. 5 shows the tightening of the constraints obtained using this

‘data-point-prior’ at high redshift.11 Note that Fig. 5 is plotted on

the same scale as Fig. 2 and shows J (red, darker contours) and

J1 (green, lighter contours) models as before, plus the J2 model

(blue contours). Note also that here the range of the data is [amin =
0.0009, amax = 1]. Again, using equation (15) we rescale the Cheby-

shev interval [−1, 1] to locate the functions � j(a; C) in the range

of scalefactor spanned by the data. The prior information at high

redshift, from the distance to last scattering, tightens the constraints

significantly. Evidently, the constraints from the kinematic analysis

are sensitive to the data quality at high redshift.

7 C O N C L U S I O N S

We have developed a new kinematical approach to study the ex-

pansion of the history of the Universe, building on the earlier work

of Blandford et al. (2004). Our technique uses the parameter space

defined by the current value of the cosmic deceleration parameter q0

and the jerk parameter j, where q and j are the dimensionless second

and third derivatives of the scalefactor with respect to cosmic time.

11 Note that extending the analysis to the decoupling redshift zdec = 1088

means that the radiation density becomes non-negligible. Although, j can

still be calculated as usual, j�CDM will not be equal to 1 at these redshifts.

However, the �CDM model can then be almost perfectly described as

j�CDM (a) = 1 + 2/[1 + (a/aeq)] (see for details Amin & Blandford, in

preparation), where aeq is the mean marginalized scalefactor at equality,

from WMAP data. We have explicitly verified that, within the 1σ values of

aeq, systematic offsets due to the effects of radiation have a negligible effect

on the derived distances.
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Figure 5. 1 and 2σ constraints on j(a) over the range (including the distance

to the last scattering surface) of the data [0.0009, 1]. Note that this figure and

Fig. 2 are plotted on the same scale for comparison purposes. This figure

shows the same models as shown in Fig. 2 plus the J2 model, and uses the

CMB prior as described in the text. The dotted line shows the median j(a)

curve for the J1 model.

The use of this (q0, j) parameter space provides a natural framework

for kinematical studies. In particular, it provides a simple prescrip-

tion for searching for departures from �CDM, since the complete

set of �CDM models are characterized by j = 1 (constant).

We have applied our technique to the three best available sets

of redshift-independent distance measurements, from SNIa studies

(Riess et al. 2004; Astier et al. 2006) and measurements of the X-ray

gas mass fraction in X-ray luminous, dynamically relaxed galaxy

clusters (Allen et al., in preparation). Assuming geometric flatness,

we measure q0 = −0.82 ± 0.14 and j = 2.16+0.81
−0.75 (Fig. 1). Note that

this represents the first measurement of the cosmic jerk parameter,

j. A more standard, dynamical analysis of the same data gives w =
−1.15+0.14

−0.18 and �m = 0.306+0.042
−0.040, also assuming flatness and HST,

BBNS and b priors (Fig. 1). Both sets of results are consistent with

the standard �CDM paradigm, at about the 1σ level.

In comparison to standard, dynamical approaches, our kinemat-

ical framework provides a different set of simple models and in-

volves fewer assumptions. In particular, kinematical analyses such

as that presented here do not assume a particular gravity theory. The

combination of the kinematical and dynamical approaches there-

fore provides important, complementary information for investigat-

ing late-time cosmic acceleration. The fact that both the kinematical

and the dynamical results presented here are consistent with �CDM

provides important additional support for that model. The fact that

the two independent sets of distance measurements, from X-ray

galaxy clusters and SNe, are individually consistent with �CDM,

is reassuring (Fig. 1).

We have searched for departures from�CDM using a new scheme

based on the introduction of Chebyshev polynomials. These or-

thonormal functions allow us to expand any deviation from �CDM,

� j(a; C), as a linear combination of polynomials. We use the coef-

ficients of these polynomials, C, as fit parameters. The current data

provide no evidence for a dependence of j on a more complicated

than a constant value. However, higher-order terms may be required

to describe future data sets. In that case, our scheme has the advan-

tage that, over a finite interval and using enough high-order terms, it

will provide an acceptable global approximation to the true under-

lying shape. Note that this scheme is also applicable to dynamical

studies of the evolution of the dark energy equation-of-state, w(a).

Note also that Chebyshev polynomial expansions of the same order

for w(a) and j(a) explore a different set of models. For example, a

constant j �= 1 model corresponds to an evolving w(a) model and

vice versa.

We suggest that future studies should endeavour to use both kine-

matical and dynamical approaches where possible, in order to ex-

tract maximum information from the data. The two approaches have

different strengths, can be applied to a variety of data sets, and are

highly complementary. The combination of techniques may be espe-

cially helpful in distinguishing an origin for cosmic acceleration that

lies with dark energy (i.e. a new energy component to the Universe)

from modifications to General Relativity.

AC K N OW L E D G M E N T S

We acknowledge helpful discussions with A. Frolov and technical

support from G. Morris. The computational analysis was carried

out using the KIPAC XOC compute cluster at the SLAC. SWA ac-

knowledges support from the National Aeronautics and Space Ad-

ministration (NASA) through Chandra Award Number DD5-6031X

issued by the Chandra X-ray Observatory Centre, which is operated

by the Smithsonian Astrophysical Observatory for and on behalf of

the NASA under contract NAS8-03060. RDB acknowledges sup-

port from National Science Foundation grant AST05-07732. This

work was supported in part by the US Department of Energy under

contract number DE-AC02-76SF00515.

R E F E R E N C E S

Alam U., Sahni V., Saini T. D., Starobinsky A. A., 2003, MNRAS, 344, 1057

Allen S. W., Schmidt R. W., Fabian A. C., 2002, MNRAS, 334, L11

Allen S. W., Schmidt R. W., Fabian A. C., Ebeling H., 2003, MNRAS, 342,

287

Allen S. W., Schmidt R. W., Ebeling H., Fabian A. C., van Speybroeck L.,

2004, MNRAS, 353, 457

Armendariz-Picon C., Mukhanov V., Steinhardt P. J., 2000, Phys. Rev. Lett.,

85, 4438

Armendariz-Picon C., Mukhanov V., Steinhardt P. J., 2001, Phys. Rev. D,

63, 103510

Astier P. et al., 2006, A&A, 447, 31

Bagla J. S., Jassal H. K., Padmanabhan T., 2003, Phys. Rev. D, 67, 063504

Barreiro T., Copeland E. J., Nunes N. J., 2000, Phys. Rev. D, 61, 127301

Bento M. C., Bertolami O., Sen A. A., 2002, Phys. Rev. D, 66, 043507

Blandford R. D., Amin M., Baltz E. A., Mandel K., Marshall P. J., 2004,

in Wolff S. C., Lauer T. R., eds, ASP Conf. Ser. 339, Observing Dark

Energy. Astron. Soc. Pac., San Francisco, p. 27

Borgani S. et al., 2001, ApJ, 561, 13

Cabre A., Gaztanaga E., Manera M., Fosalba P., Castander F., 2006, MNRAS,

372, L23

Caldwell R. R., Doran M., 2005, Phys. Rev. D, 72, 043527

Caldwell R. R., Kamionkowski M., 2004, JCAP, 0409, 009

Caldwell R., Dave R., Steinhardt P., 1998, Phys. Rev. Lett., 80, 1582

Capozziello S., Carloni S., Troisi A., 2003, preprint (astro-ph/0303041)

Carroll S. M., Hoffman M., Trodden M., 2003, Phys. Rev. D, 68, 023509

Carroll S. M., Duvvuri V., Trodden M., Turner M. S., 2004, Phys. Rev. D,

70, 043528

Carroll S. M., de Felice A., Duwuri V., Easson D. A., Trodden M., Turner

M. S., 2005, Phys. Rev. D, 71, 063513

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 375, 1510–1520



1520 D. Rapetti et al.

Chiba T., Nakamura T., 1998, Prog. Theor. Phys., 100, 1077

Chiba T., Okabe T., Yamaguchi M., 2000, Phys. Rev. D, 62, 023511

Cole S. et al., 2005, MNRAS, 362, 505

Copeland E. J., Liddle A. R., Wands D., 1998, Phys. Rev. D, 57, 4686

Copeland E. J., Garousi M. R., Sami M., Tsujikawa S., 2005, Phys. Rev. D,

71, 043003

Copeland E. J., Sami M., Tsujikawa S., 2006, Int. J. Modern Phys. D, 15,

1753

Corasaniti P. S., Kunz M., Parkinson D., Copeland E. J., Bassett B. A., 2004,

Phys. Rev. D, 70, 083006

Croft R. A. C., Weinberg D. H., Bolte M., Burles S., Hernquist L., Katz N.,

Kirkman D., Tytler D., 2002, ApJ, 581, 20

Deffayet C., Dvali G., Gabadadze G., 2002a, Phys. Rev. D, 65, 044023

Deffayet C., Landau S. J., Raux J., Zaldarriaga M., Astier P., 2002b, Phys.

Rev. D, 66, 024019

Doran M., Lilley M., 2002, MNRAS, 330, 965

Dvali G. R., Gabadadze G., Porrati M., 2000, Phys. Lett., B485, 208

Eisenstein D. J. et al., 2005, ApJ, 633, 560

Eke V. R., Navarro J. F., Frenk C. S., 1998, ApJ, 503, 569

Elgaroy O., Multamaki T., 2006, JCAP, 0609, 002

Ettori S., Tozzi P., Rosati P., 2003, A&A, 398, 879

Fosalba P., Gaztanaga E., Castander F., 2003, ApJ, 597, L89

Freedman W. et al., 2001, ApJ, 553, 47

Gelman A., Rubin D. B., 1992, Statis. Sci., 7, 457

Gong Y., Wang A., 2006, Phys. Rev. D, 73, 083506

Guo Z.-K., Zhu Z.-H., Alcaniz J. S., Zhang Y.-Z., 2006, ApJ, 646, 1

Hinshaw G. et al., 2006, preprint (astro-ph/0603451)

Hoekstra H., Yee H. K. C., Gladders M. D., 2002, ApJ, 577, 595

Hu W., 2005, Phys. Rev. D, 71, 047301

Jarvis M., Jain B., Bernstein G., Dolney D., 2005, ApJ, 644, 71

Jassal H. K., Bagla J. S., Padmanabhan T., 2005, MNRAS, 356, L11

Jeffreys H., 1961, Theory of Probability. Oxford Univ. Press, Oxford

Kamenshchik A. Y., Moschella U., Pasquier V., 2001, Phys. Lett., B511, 265

Kass R. E., Raftery A. E., 1995, J. Am. Stat. Assn., 90, 773

Kirkman D., Tytler D., Suzuki N., O’Meara J. M., Lubin D., 2003, ApJS,

149, 1

Knop R. A. et al., 2003, ApJ, 598, 102

Lewis A., Bridle S., 2002, Phys. Rev. D, 66, 103511

Liddle A. R., 2004, MNRAS, 351, L49

Linder E. V., 2006, Phys. Rev. D, 73, 063010

Maartens R., Majerotto E., 2006, Phys. Rev. D, 74, 023004

Mather J. C., Fixsen D. J., Shafer R. A., Mosier C., Wilkinson D. T., 1999,

ApJ, 512, 511

Mena O., Santiago J., Weller J., 2006, Phys. Rev. Lett., 96, 041103

Mukherjee S., Feigelson E. D., Jogesh Babu G., Murtagh F., Fraley C.,

Raftery A., 1998, ApJ, 508, 314

Navarro I., Van Acoleyen K., 2005, A&A, in press (astro-ph/0512109)

Nesseris S., Perivolaropoulos L., 2005, Phys. Rev. D, 72, 123519

Nojiri S., Odintsov S. D., 2006, preprint (hep-th/0601213)

Onemli V. K., Woodard R. P., 2004, Phys. Rev. D, 70, 107301

Perlmutter S. et al., 1999, ApJ, 517, 565

Rapetti D., Allen S. W., Weller J., 2005, MNRAS, 360, 555
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