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We consider particles in Rd, d�2, interacting via attractive pair and repulsive
four-body potentials of the Kac type. Perturbing about mean-field theory, valid
when the interaction range becomes infinite, we prove rigorously the existence
of a liquid�gas phase transition when the interaction range is finite but long
compared to the interparticle spacing for a range of temperature.

KEY WORDS: Continuum particle system; liquid�gas phase transition; mean-
field theory; Pirogov�Sinai theory; cluster expansion; Dobrushin uniqueness.

1. INTRODUCTION

An outstanding problem in equilibrium statistical mechanics is to derive
rigorously the existence of a liquid�vapor phase transition in a continuum
particle system. While such transitions are observed in all types of macro-
scopic systems there is at present no proof from first principles of their
existence in particles interacting with any kind of reasonable potential, say
Lennard�Jones or hard core plus attractive square well. Such potentials are
known, by comparison of experiment with low density expansions, to
accurately describe the observed behavior of gases. Furthermore the
properties of these systems at higher densities, obtained via approximate
integral equations, are in good agreement with those of liquids in the
ranges of temperatures and pressures where boiling and condensation takes
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place. In fact, computer simulations using classical statistical mechanics of
such systems, containing several hundred to several million particles, con-
vincingly show, via extrapolations which take into account finite size
effects, that systems with these type of interactions will have true liquid�
vapor phase transitions in the thermodynamic (infinite volume) limit. In
this paper we go some way toward a proof of such a transition, i.e., we
prove for the first time the existence of a liquid�vapor transition in a
continuum particle system with finite range interactions and no special
symmetry.

Historically the first proof of liquid�vapor type phase transitions was
given for lattice systems (which are isomorphic to Ising spins). These
systems can be thought of as idealizations of real fluids in which however
the natural continuous spatial translation invariance symmetry is replaced
by that of the lattice Zd, d�2. It was Peierls [P] who first gave a convincing
argument (later made fully rigorous by Dobrushin [D1] and Griffiths [G])
of the coexistence of different phases in such systems. The power of Gibbsian
statistical mechanics to produce such rigorous results was brought home to
the general science community by the dramatic work of Onsager [O] who
exhibited the detailed structure of the critical point associated with this
transition by explicitly solving the two dimensional Ising model (or lattice
gas), with nearest neighbor interactions. Since that time there have been
found many other exactly solvable two dimensional lattice systems [Bax].
At the same time the development of various types of inequalities as well
as the powerful Pirogov�Sinai formalism [PS] have resulted in a compre-
hensive rigorous theory of phase transitions in lattice systems, at sufficiently
low temperatures.

By contrast, much less is known rigorously about phase transitions in
continuum systems. There is basically only the case of the two component
Widom�Rowlinson [WR] model, in which the interaction is a hard core
repulsion between particles of different species, where Ruelle [R1] was able
to generalize the Peierls argument to prove phase coexistence in this
system. Ruelle's proof strongly exploits the symmetry between the two
components present in the WR model. The same is true, at least to some
extent, of various extensions of this model [LL], [GH], [CCK]: see,
however, [BKL] where some special multicomponent models without
symmetry were treated by an extension of the Pirogov�Sinai (hereafter
denoted by P�S) formalism. For general continuum systems without some
special symmetry the only proofs of phase transitions so far are for systems
with interactions which decay very slowly or not at all. Such one dimen-
sional models, with many particle interactions, were analyzed and proven
to exhibit phase transitions by Fisher and Felderhof [FF]. More recently
Johansson [J] has considered interactions in one dimension which decay
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as r&:, : # (1, 2), proving that at low temperatures there is phase transition
in the sense that the pressure is not differentiable.

In a genuine continuum particle system with the type of pair interac-
tions discussed above one expects several phase transitions. At high tem-
peratures and small densities we have the gaseous phase, then, lowering the
temperature, we first find the liquid and then the solid, crystalline phases,
at the appropriate values of the density. We will concentrate here on the
vapor�liquid phase transition, which is simpler to investigate than the
formation of the periodic structures of crystals. Of course we also want to
take advantage of the powerful techniques developed for proving phase
transition in lattice systems, but these are generally applicable only at tem-
peratures much smaller than those at which the vapor�liquid transition
occurs. We will overcome this problem by performing a coarse graining
which may also be considered a one step renormalization group transfor-
mation. To do this we divide space into large cubes of side l and introduce
variables *x , which are the particle densities in the cubes labeled by x. After
integrating out all the other variables, we will be left with a new system
described by the variables *x , their distribution still Gibbsian with a new
Hamiltonian and temperature. The essential point is that the ratio between
the new and old temperatures scales as l&d.

In general the verification of such statements is a very hard if not
impossible task, but it can be accomplished in a relatively simple fashion
if we consider interactions of Kac type in which the range #&1 of the inter-
action is small. By suitably choosing the side of the cubes we will then enter
into the low temperature regime where the Peierls and the P�S methods
apply. In such a new perturbative scheme, the unperturbed state is
described by mean field (formally #=0) and the small parameter of the
expansion is the inverse interaction range #, instead of the temperature in
the traditional approach. By choosing a suitable range of values of chemical
potential and temperature we will then be able to put ourselves at the
vapor�liquid phase coexistence.

The mean field or van der Waals type of phase transition was first
derived rigorously by Kac, Uhlenbeck and Hemmer [KUH] for a class of
one dimensional models, hard rods of radius one with an added pair potential

,#(qi , q j )=&: 1
2 # exp[&# |qi&qj |], #, :>0 (1.1)

in the limit 1 � 0, see also van Kampen [vK]. This was later generalized
by Lebowitz and Penrose [LP] to d-dimensional systems with suitable
short range interactions and Kac potentials of the form

,#(qi , qj )=&:#dJ(# |qi&qj | ) (1.2)
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with

|
R d

J(r) dr=1, J(r)>0 (1.3)

In the thermodynamic limit followed by the limit # � 0 the Helmholtz free
energy a takes the form, for a fixed temperature ;&1,

lim
# � 0

a(*, #)=CE[a0(*)& 1
2 :*2] (1.4)

Here * is the particle density, a0 is the free energy density of the reference
system, i.e., the system with :=0 in (1.2). a0 is convex in * (by general
theorems) and CE[ f (x)] is the largest convex lower bound of f. For :
large enough the term in the curly brackets in (1.4) has a double well shape
and the CE corresponds to the Gibbs double tangent construction. This is
equivalent to Maxwell's equal area rule applied to a van der Waals' type
equation of state where it gives the coexistence of liquid and vapor phases
[LP]; see also [vK].

As already discussed we prove the coexistence of liquid and gas phases
for systems with finite range interactions as small perturbations, at finite
#>0, from the mean field behavior at #=0. The same approach was
recently applied to the lattice case for Ising models, [CP], [BZ], [BP],
where the Peierls argument applies directly, because of the spin flip sym-
metry of the model. The absence of symmetries in our case requires instead
the whole machinery of the Pirogov�Sinai theory. To insure stabilization
against collapse, which would be induced by a purely attractive pair poten-
tial, the natural choice is to replace the point particles by hard spheres.
Our approach however does not work in such a case, as we need a cluster
expansion for the unperturbed reference system (i.e., without the Kac inter-
action) at values of the chemical potential or density for which it is not
proved to hold. We avoid the problem by considering point particles and
insuring stability by introducing a positive four body potential of the same
range as the negative two body potential. In this way we avoid having to
control strong short range interactions, something beyond our present day
abilities for dense continuum systems. A preliminary announcement of our
results is contained in [LMPI] and a fuller description of the proofs (with
some variations) can be found in [Pr].

2. DEFINITIONS AND RESULTS

For ease of reference we collect below the main definitions in con-
secutive subsections.
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Particle Configurations and Phase Space

We consider a system of identical point particles in Rd, d�2 and call
particle configurations the locally finite subsets of Rd. The collection of all
particle configurations in 4, 4/Rd, is the phase space Q(4) and we simply
write Q when 4=Rd. The particle configurations are denoted by q and
sometimes by q(4) when we want to underline that they are in Q(4). We
write q=(q1 ,..., qn) when the configuration consists of |q|=n particles posi-
tioned at points q1 ,..., qn # Rd.

Free measure

For a bounded measurable subset 4 of Rd the free measure dq on Q(4)

(also called the Liouville measure) is

|
Q(4)

dq f (q)= :
�

n=0

1
n! |

4
dq1 } } } |

4
dqn f (q1 ,..., qn) (2.1)

where f is any bounded measurable function on Q(4).

Hamiltonian

The energy of the configuration q=(qi ) is given by the formal
Hamiltonian

H#, *(q)=&* |q|&
1
2!

:
i1

:
i2{i1

J (2)
# (q i1

, qi2
)

+
1
4!

:
i1

:
i2{i1

:
i3{i1 , i2

:
i4{i1 , i2 , i3

J (4)
# (qi1

, qi2
, qi3

, qi4
) (2.2)

Here * is the chemical potential while J (2)
# ( } , } ) and J (4)

# ( } , } , } , } ) are
respectively two and four-body potentials. For notational simplicity we
choose # # [2&n, n # N] and # is a scaling factor in the definition of
J (2)

# ( } , } ) and J (4)
# ( } , } , } , } ). These are chosen of the form

J (2)
# (qi1

, qi2
)=#2d | dr `

2

j=1

1 |r&qij
|�#&1Rd

(2.3)

J (4)
# (qi1

, qi2
, qi3

, qi4
)=#4d | dr `

4

j=1

1 |r&qij
|�#&1Rd

(2.4)
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where 1A is the characteristic function of the set A and Rd is the radius of
the ball in Rd having a unit volume. Denoting by B#(r) a ball of radius
#&1Rd centered at r # Rd we have

J (2)
# (qi1

, qi2
)=#2d |B#(qi1

) & B#(qi2
)| (2.5)

and

J (4)
# (qi1

, qi2
, qi3

, qi4
)=#4d } ,

4

j=1

B#(qij
)} (2.6)

Let J (2)=J (2)
1 and J (4)=J (4)

1 . Then the scaling properties of J (2)
# and J (4)

#

can be expressed by

J (2)
# (qi1

, qi2
)=#dJ (2)(#qi1

, #qi2
) (2.7)

and

J (4)
# (qi1

, qi2
, qi3

, qi4
)=#3dJ (4)(#qi1

,..., #qi4
) (2.8)

which is similar to (1.2). It is also clear that

| J (2)
# (0, r) dr=| J (4)

# (0, r1 , r2 , r3) dr1 dr2 dr3=1 (2.9)

as in (1.3).
As both J (2)

# and J (4)
# are positive we have in (2.2) a competition

between an attractive pair and a repulsive four-body potential. When the
scaling parameter # is small (but finite), the model has a large but finite
interaction radius, 2Rd #&1, and a small interaction strength between any
given two or four particles. Nevertheless, the total strength of the interac-
tion between a given particle and all other particles in a configuration q of
bounded nonvanishing density is of order 1. These are characteristic
properties of the Kac potentials which, as noted earlier, usually reproduce
the van der Waals theory [LP] in the scaling limit # � 0. The specific form
(2.3)�(2.4) of the interaction J (2) and J (4) makes the analysis simpler; for more
general potentials see (2.14) and the discussion in the beginning of Section 3.

Finite and Infinite Volume Gibbs Measures

For any two locally finite configurations q=(qi ) and q� =(q� j ) denote
by q _ q� =(qi , q� j ) the configuration including all particles from both q and q� .
The conditional energy of q(4) given a configuration q� # Q is

H#, *(q(4) | q� )=H#, *(q(4) _ q� )&H#, *(q� ) (2.10)
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This conditional energy consist of two parts: the energy, H#, *(q(4)), of the
configuration q(4) itself and the interaction energy

U#(q(4) | q� )=H#, *(q(4) | q� )&H#, *(q(4)) (2.11)

between configurations q(4) and q� . Both (2.10) and (2.11) are finite sums
because of the finite range of the potential.

Let 4c=Rd "4 be the complement of 4. The Gibbs measure
+(4)

#, ;, *(dq(4) | q� (4c )) in the bounded measurable set 4 with boundary condi-
tion q� (4c ) and inverse temperature ;>0, is the probability measure on Q(4)

given by

+(4)
#, ;, *(dq(4) | q� (4c ))=

e&;H#, * (q (4) | q� (4c ))

5#, ;, *(4 | q� (4c ))
dq(4) (2.12)

where 5#, ;, *(4 | q� (4c )) is the partition function

5#, ;, *(4 | q� (4c ))=|
Q(4)

dq(4) e&;H#, * (q (4) | q� (4c )) (2.13)

The infinite volume Gibbs measures +#, ;, *(dq) are probabilities on Q such
that for any bounded measurable set 4 and +#, ;, * -almost any q� (4c ) # Q(4c )

the conditional measure +#, ;, *(dq(4) | q� (4c )) is equal to + (4)
#, ;, *(dq(4) | q� (4c ))

given by (2.12).
We say that a translation invariant Gibbs measure has a particle den-

sity *>0 if for any bounded set 4 the expectation of |q & 4| is equal to
* |4|.

The Main Result

Our main purpose is to investigate the phase diagram of the model
(2.2) and to prove that a phase transition of the liquid�gas type takes place
for some values of the parameters. Let ;c=( 3

2)3�2 and ;0>;c be a number
defined via (3.14) below.

Theorem 2.1. For any ; # (;c , ;0) there exist functions #0(;) and
*(#, ;) such that for 0<#<#0(;) the model (2.2) has at least two distinct
Gibbs measures +\

#, ;, *(#, ;)(dq). These measures are translation invariant
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and ergodic, with an exponential decay of correlations. They have particle
densities respectively equal to **#, ;, &>0 and **#, ;, +>**#, ;, & .

We will prove Theorem 2.1 by using the P�S theory [PS]. The restric-
tion ; # (;c , ;0) rather than ;>;c allows for a simplified proof, we hope
however to present in a forthcoming paper a proof for all ;>;c . While
technically different and applied to different settings our methods are
nevertheless conceptually close to those of [DZ].

The quantities *(#, ;) and **#, ;, \ in Theorem 2.1 have limits as # � 0,
denoted by *(;) and *;, \ , which, as already noted, are given exactly by
mean field type formulas [LP]. Our proof of Theorem 2.1 is a perturbation
theory constructed around the mean field picture.

We could extend Theorem 2.1 to slightly more general interactions
where the range of the two and four body potentials are not necessarily the
same. In particular we can make the range of the attractive two body forces
greater than that of the repulsive four body ones, according to the physical
intuition that the force is repulsive at short distances and attractive at
longer distances. For brevity we do not give the details of the proofs and
only introduce the new class of potentials. The four body interaction is
unchanged while J (2)

# (q1 , q2) in (2.3) is replaced by

W (2)
# (q1 , q2)=#2d | dr | dr$ 1 |r&q2 |�#&1Rd

1 |r$&q2 |�#&1Rd
#dw(# |r&r$| ) (2.14)

with w a smooth, non negative function having compact support and
integral equal to 1. #dw(# |q1&q2 | ) is the classical choice for a Kac pair
potential (with the right scaling properties), what we do in (2.14) is simply
to average such a function with the two arguments varied respectively on
the balls B#(q1) and B#(q2). The choice w=$(r&r$) in (2.14) gives back
(2.3).

Outline of the Remaining Sections

In Section 3 we give an outline of the proof formulating a number of
statements which are proven in the next sections. In Section 4 we prove
Peierls estimates on contours, and in Section 5 we use a cluster expansion
to investigate the properties of the effective Hamiltonian obtained after the
coarse graining transformation. In Section 6 we study the restricted ensem-
bles proving the basic property of the P�S scheme, namely that it is
possible to adjust the value of the chemical potential in such a way that the
pressures in the two restricted ensembles are equal. We will conclude from
this the proof of Theorem 2.1. Sections 7 and 8 contain more technical
material.
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3. SCHEME OF PROOF

The starting point of our approach, which as explained in the previous
section is of crucial importance, consists of coarse graining or one step
renormalization: we partition space into cubes C (l2)

x , x the centers of the
cubes, of side l2 :=#&1+:2 , :2 a small positive number, (the subscript 2
foresees the use of other scales that will be introduced later in the proof ).
Given a particle configuration q, we call *x , the particle densities in each
cube and we integrate out all the other variables, i.e., we consider the
marginal over the variables *x . The new measure is still Gibbsian and its
new effective Hamiltonian (a function of the *x) can be characterized with
remarkable accuracy by cluster expansion techniques, see Section 5. As
mentioned earlier, the main point of this procedure is that the new effective
inverse temperature becomes ;ld

2 . We can thus enter into the very low tem-
perature regime by taking # small enough and l2 correspondingly large
(in Section 5 we will absorb the temperature into the Hamiltonian). we are
then in the right setup for the P�S theory. An analysis a� la [LP], which
we here omit, would show that the new effective Hamiltonian converges
formally, in the limit # � 0, to the mean field free energy functional F;, *(*)
given in (3.1) below. We will begin our analysis by characterizing the
ground states of F;, *(*) and thereafter use the P�S theory to investigate
the perturbations at #>0.

Mean Field Free Energy Functional and Ground States

The mean field Gibbs free energy functional F;, *(*), *=*(r) denoting
a non-negative bounded measurable function in Rd, is

F;, *(*)=| dr
*(r)

;
(log *(r)&1)&| dr **(r)

&
1
2! | dr1 dr2 J (2)(r1 , r2) *(r1) *(r2)

+
1
4! | dr1 } } } dr4 J (4)(r1 ,..., r4) *(r1) } } } *(r4) (3.1)

The first integral is the entropy contribution to the free energy (more
precisely the product of the temperature times the entropy of the ideal gas
with the sign changed). The other three terms arise from the corresponding
interaction terms in (2.2). More details concerning the relation between
(3.1) and (2.2) can be found in Section 4.
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The mean field ground states are, by definition, the minimizers of
F;, *(*). To find them we set

R(r, *)=|
|r&r1 |�Rd

dr1 *(r1) (3.2)

and

I(r, *)=|
|r&r1 |�Rd

dr1

*(r1)
;

(log *(r1)&1) (3.3)

R(r, *) and I(r, *) are respectively the mean density and the mean entropy
of * in the ball B(r). With this notation we can rewrite (3.1) as

F;, *(*)=| dr \I(r, *)&*R(r, *)&
1
2!

R(r, *)2+
1
4!

R(r, *)4+ (3.4)

which is true only because of the special form, (2.3) and (2.4), of J (2) and J (4).
In fact (3.4) is the main reason for choosing J (2) and J (4) of this form.
Observe however that if the potential J (2) is replaced by W (2) as given in
(2.14) (with #=1) then the r.h.s. of (3.4) simply becomes, after some easy
manipulations,

| dr \I(r, *)&*R(r, *)&
1
2!

R(r, *)2+
1
4!

R(r, *)4+
+

1
4 | dr | dr$ w( |r&r$| )[R(r, *)&R(r$, *)]2 (3.5)

By convexity

I(r, *)�
R(r, *)

;
(log R(r, *)&1) (3.6)

and equality is achieved only if R(r, *)=*(r).
It follows then from (3.4) and (3.6) that if s�0 is a minimizer of the

function

F;, *(s)=
s
;

(log s&1)&*s&
s2

2!
+

s4

4!
(3.7)
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then *(r)=R(r, *)#s is a minimizer of F;, *(*), (and also of the functional
in (3.5), corresponding to F with the modified potential (2.14)). The
second derivative of F;, *(s),

F";, *(s)=
1
;s

&1+
s2

2
(3.8)

is positive if ;<;c=( 3
2)3�2. Hence for ;<;c and any * the function F;, *(s)

is convex and has a unique minimizer which is the root of the equation

&s+
1
3!

s3+
1
;

log s&*=0 (3.9)

On the contrary, for ;>;c this equation has three positive roots with two
of them, s=*;, *, & and s=*;, *, + , local minimizers of F;, *(s). Further-
more, there exists a unique *=*(;) for which both local minima are the
global ones and the function F;, *(s) has a ``double well'' shape. We set
*;, \=*;, *(;), \ . Clearly for ;>;c and *=*(;) the densities *(r)#*;, &

and *(r)#*;, + are distinct mean field gound states. For later purposes we
remark that

&1<*(;)<0 (3.10)

which can be checked by direct calculation.

Mean Field Equations and Contraction Property

As the ground states are minimizers of F;, *(*), they satisfy the mean
field equation $F;, *(*)�$*(r)=0. By an explicit calculation we then find
that they are fixed points of the transformation

*( } ) � 8(*( } ), } ) (3.11)

where

8(*( } ), r) :=exp {*+| dr1 J (2)(r, r1) *(r1)

&
1
3! | dr1 } } } | dr3 J (4)(r,..., r3) *(r1) *(r2) *(r3)= (3.12)
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Setting **=*;, & or **=*;, + the derivative �(r)=$8(*( } ), r)�$*(r) com-
puted at *(r)#** is equal to

�(r)=;**J (2)(0, r)[1&(**)2�2] (3.13)

We define ;0 in Theorem 2.1 so that for all ; # (;c , ;0)

| dr |�(r)|=;** |1&**2�2|<1 (3.14)

If (3.14) holds, the transformation 8 is a contraction (in a neighborhood
of the ground states and using sup norms).

The existence of ;0>;c follows by noticing that since F";, *(**)>0
then by (3.8) ;*<1 and the only condition to check for (3.14) to hold is
;**[1&**2�2]>&1. By (3.8) it can be rewritten as

F";, *(**)<
2

;**
(3.15)

and F";, *(**) � 0 as ; � ;c while both *;, \ remain bounded.
We will see in Section 5 that for ; # (;c , ;0) and #>0 small enough, the

Dobrushin uniqueness condition is satisfied by the effective Hamiltonian in
the system restricted to the ground state ensemble (defined later in Section 3).
That property is the #>0 analogue of the contraction property (3.14). We
will in the sequel restrict ourselves to ; # (;c , ;0) which ensures the following
technical conditions.

For ;c<;<;0 there exists a positive number `(;) such that

max
_1=\1, _2=\1

;(*;, _1
+2`(;)) } 1&

(*;, _1
+_22`(;))2

2 }=a(;)<1 (3.16)

Consequently there exist a positive number $(;) such that for any * #
(*(;)&$(;), *(;)+$(;)) one has

max
_1=\1, _2=\1

;(*;, *, _1
+`(;)) } 1&

(*;, *, _1
+_22`(;))2

2 }�a(;) (3.17)

Note (*;, *, _1
+`(;)) in (3.17) instead of (*;, _1

+2`(;)) in (3.16). This
allows for the same a(;) in (3.17) and (3.16) provided `(;) and $(;) are
small enough.

We expect that for # small enough the particle configurations will have
densities close to the mean field ground states. To investigate the issue we
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need a spatial scale for computing particle densities and a notion of close-
ness between densities. We will then have a picture of the particle configu-
rations in terms of spatial regions where there is agreement or disagreement
with the ground states.

The Partitions D(l), the Cubes C (l)
x and the Densities *(l)

x

Let D(l), l # [2n, n # N], be decreasing partitions of Rd into cubes C (l)

of side l, i.e., D(l) is coarser than D(l$) if l>l$. For any r # Rd we denote
by C (l)(r) the cube of D(l) that contains r. We suppose that the centers of
the cubes C (1) are in Zd. Consequently the centers of cubes C (l) are in
Zd

l=lZd+((l&1)�2,..., (l&1)�2). For x # Zd
l we denote C (l)

x the cube of
D(l) centered at x.

Given a region 4, [4](l) is the maximal D(l) measurable subset of 4,
i.e., the union of all C (l) contained in 4. We also identify [4] (l) with
[x # Zd

l | x # [4] (l)]. The Rd volume of [4] (l) is denoted by |[4] (l)| while
its Zd

l volume, i.e., the number of lattice points, is denoted by &[4] (l)&.
The density of a configuration q in a box C (l)

x is

* (l)
x (q)=l&d |q & C (l)

x | (3.18)

Accordingly *(l)(q)=(* (l)
x (q)) is called a (D(l) measurable) density configu-

ration corresponding to a particle configuration q. We denote by *(l)(4)=
(* (l)

x (4)) a density configuration in [4](l) not related to any particle con-
figuration.

The notation [q](l) is used for the configuration obtained from
q=(qi ) by shifting all qi to the centers of the corresponding boxes C (l)(qi ).
For a configuration q(4) we set

H#, *(*(l)(q(4)))=H#, *([q(4)] (l)) (3.19)

and

H#, *(*(l)(q(4)) | q� (4c ))=H#, *([q(4)] (l) | q� (4c )) (3.20)

where 4 is a region and q� (4c ) is a boundary condition.

Spatial Scales, ' Functions and Ground-State Configurations

Several scales are of special interest for us

l1=l1, #=#&1+:1, l2=l2, #=#&1+:2, l3=l3, #=#&1&:3 (3.21)

where the numbers 0<:i<1 are rational, :1=1�2 and :2+:3<<(2d )&1.
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The scale l2 is our coarse graining scale. Agreement or disagreement
with the ground state is indicated by the '-functions, '='(q)=('x(q)),
x # Zd

l2
:

&1, for |* (l2)
x (q)&*;, &|�`

'x(q)={+1, for |* (l2)
x (q)&*;, +|�` (3.22)

0, otherwise

`=`(;) being taken from (3.16). Particle configurations q or density con-
figurations *(l)(q) are called compatible with ' if '='(*(l)(q))='(q).

We then say that a particle configuration q belongs to the ground state
ensemble of the \ phase or equivalently liquid�vapor phase if '(q)#\1.
For brevity we will sometimes simply say that q is a \ ground state con-
figuration.

For a scale l we define the corresponding standard ground state configu-
rations q (l)

& and q (l)
+ as those which have * (l)(q (l)

& )#*;, & and *(l)(q (l)
+ )#*;, +

with all the particles placed at the centers of the corresponding boxes C (l).
Of course for the irrational *;, \ and even for some rational *;, \ it is
impossible to achieve these densities exactly. With an abuse of the notation
we set *(l)(q (l)

\ )#*;, \ when the densities are the closest possible to *;, \ .
When l=l2 we will drop the superscript (l).

The other scales, l3 and l1 , are used to construct contours (see below)
and to do some approximate calculations (see Section 4) respectively.

Our proof of the phase transition or coexistence of phases is based on
the following qualitative picture describing typical particle configurations
in the two pure phases. In the gas phase a typical configuration q coincides
in most of Rd with some typical configuration in the gas ground state
ensemble. Inside this ``sea'' of the gas ground state there are rare ``islands''
occupied by the liquid ground state. These two types of ground states are
separated from each other by regions in Rd which are called Peierls con-
tours. The ``excess'' free energy of q with respect to the free energy of the
gas ground state occupying all of Rd is concentrated in the vicinity of these
contours and is proportional to their volume. A similar, inverse, picture
describes typical configurations of the liquid phase; the liquid ground state
now forms a ``sea'' with rare ``islands'' of the gas ground state. Thus the
typical configurations of the gas and liquid phases are distinct with the
density of particles being an order parameter distinguishing them. A rigorous
verification of the above picture is fairly straightforward for simple lattice
gases or Ising systems, in which the gas and liquid ground states
correspond respectively to ``all sites empty'' and ``all sites occupied''. It
requires however considerable work for continuum systems and we start
with precise definitions.
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Correct and Incorrect Sets, Contours

A family of cubes from the partition D(l) is called V-connected if the
closure of the union of the cubes in this family is a connected subset of Rd;
we consider from now on d�2. We then say that r is a (+)-correct point
of a configuration q if 'x(q)=+1 whenever C (l2)

x (r)/C� (l3)(r) where the
later set is the union of all cubes of scale l3 that are V-connected to C (l3)(r).
Similarly one defines (&)-correct points. Finally, if r is not a correct point
of q it is an incorrect one. The connected components of the incorrect
points of q form the supports of the contours. The pair consisting of the
support of the contour and the restriction of '(q) to this support is called
a contour of q and is denoted 1 (q). Observe that any q uniquely defines
its contours 1i (q).

Axiomatically a contour 1=(Supp(1 ), '1 ) is defined as a pair which
consists of a bounded V-connected D(l3) measurable set Supp(1 ) called the
spatial support of 1 and a spin valued function '1 on Supp(1 ), with the
condition that there exists at least one configuration q that gives rise to 1.

To motivate the next definitions and to outline further constructions
let us consider first an oversimplified problem.

The Case of a Single Contour

We restrict in this examples the system to have only one contour 1 of
the type that we define with reference to Fig. 1 where its typical representa-
tive is drawn. To be more precise we consider the ensembles of contours
inside the finite domain 4 containing exactly one contour of the special
form shown in Fig. 1.

We choose boundary conditions q� (4c ) in the + phase and we impose
that in the region A of Fig. 1 the configuration is in the + phase, in D it
is in the & phase while in Supp(1 ) it agrees with '1. We assume that in
Fig. 1 Supp(1 ) is the whole region extending between the bold lines.

The simplified contour ensemble gives rise to the simplified partition
function Z (we are using here a notation that will be discontinued in the
sequel)

Z :=:
1

|
Q(4)

dq(4) 1'(q (A))#1 1'(q (D))# &1 1'(q (Supp(1 )))#'1 e&;H#, * (q (4) | q� (4c ))

(3.23)

Here the external sum is taken over all contours 1 of the type described by
Fig. 1 and the goal now is to rewrite Z as an integral over the + ground
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Fig. 1. A typical contour from he simplified contour ensemble.

state ensemble, i.e. as the integral over q(4) with ['(q(4))#1]. Let B and
C be the strips of width #&1 in Supp(1 ), as in Fig. 1, then we write

Z=:
1

|
Q(4)

dq(4) 1'(q (4))#1 e&;H#, * (q (4) | q� (4c ))W(1 | q(B)) (3.24)

where the statistical weight W(1 | q(B)) is

W(1 | q(B))

=
|

Q(Supp(1 )"B)
dq 1'(q)='1 e&;H#, * (q | q (B)) |

Q(D)
dq(D) e&;H#, * (q (D) | q (C )) 1'(q (D))# &1

|
Q(Supp(1 )"B)

dq 1'(q)#1 e&;H#, * (q | q (B)) |
Q(D)

dq(D) e&;H#, * (q (D) | q (C )) 1'(q (D))#1

(3.25)

In (3.24) the configuration q(4) is not related to '1 and the contours 1
appear only through their statistical weights as extra variables in the parti-
tion functions. This is the contour model in the present over-simplified con-
text. The advantage of the contour model is to work in a ground state
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ensemble, the price is the extra variables 1. The game, in the general case
with many contours, is to get good estimates on their statistical weights
(3.25) in order to control their proliferation.

Let us examine this issue in the context of the oversimplified example.
We should think of the integral in (3.25) over the region Supp(1 )"B as a
``surface term'' and of the integral over D as a ``volume term''. The second
one looks therefore more likely to take large values and we consider it first,
with reference to the numerator in (3.25) shorthanded by N. The integral
is over all configurations in the region D that are in the ground state
ensemble of the & phase. The boundary conditions for this partition func-
tion are fixed in the region C and they are also configurations of the &
phase. In fact the & phase extends over the whole l3 cubes V-connected
to D, recall the definition of contours.

The intuition (which is made rigorous in Section 6) is that since C is
well inside the & phase, then the configurations in a neighborhood of C
are actually not only in the & ground state ensemble but they are very
close to the standard ground state configuration. We thus write (recall that
N denotes the numerator in (3.25))

N=T1T2T3 (3.26)

where T1 , T2 and T3 are defined as follows:
Splitting 1�2-1�2 the interaction between Supp(1 ) and D and recalling

the intuition that the configurations involved in such interactions are very
close to the & ground state configuration, we write

T1 :=|
Q(Supp(1 )"B)

dq 1'(q)='1 e&;H#, * (q | q (B), q &
(D))+;U#(q&

(C ) | q &
(D))�2 (3.27)

Denoting by f*, & the thermodynamic limit of the pressure associated
with the partition function restricted to the & ground state ensemble we
set

T2=e ;f *, & |D| (3.28)

The third term T3 is implicitly defined so that (3.26) holds. T3 takes
into account the errors made by replacing in (3.27) the interaction

1
2U#(q(C ) | q(D)) � U#(q(C ) | q (D)

& )& 1
2U#(q (C )

& | q (D)
& ) (3.29)

and the error which comes from T2 where the partition function is replaced
by its thermodynamic limit in the sense of (3.28).
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The error term T3 appears to be bounded by

|log T3 |�c#1�4 |surface of D| (3.30)

where c is a constant. The above inequality is proven in Section 6 in the
general case.

After an analogous decomposition in the denominator, we see that the
dangerous volume terms simplify between numerator and denominator
if we are able to choose the chemical potential in such a way that
f*, &= f*, + . Once again, the possibility to solve this equation relies on a
rather explicit representation of the pressures which one is able to derive.

The ratio of the terms T1 (from numerator and denumerator) is
bounded by

exp(&cld
2 l&d

3 `2 |Supp(1 )| ) (3.31)

This is the famous Peierls estimate which is proven in the general case in
Section 4. Its proof is relatively simpler than the proof of (3.30) and relies
directly on properties of the mean free field energy functional. This step is
similar to the analogous one in Ising models [BP].

Combining (3.30) and (3.31) we conclude that the whole statistical
weight W(1 | q(B)) is bounded as in (3.31).

Let us now go from the oversimplified example to the general case.

More About Contours

Given a (large enough) region V and l>0 we call

�(l)V=[r # V c : dist(r, V )�l];
(3.32)

$(l)V=[r # V : dist(r, V c)�l]

and we set �V=�(#&1)V and $V=$(#&1)V.
Denoting by Ext(1 ) and by Intm(1 ) respectively the unbounded and

the bounded connected components of (Supp(1 ))c we observe that '1

takes the same values _(1 ) and _m(1 ) on each of the sets �(l3) Ext(1 ) and
�(l3) Intm(1 ) respectively. The regions Ext(1 ) and Int(1 )=�m Intm(1 ) are
respectively called the exterior and the interior of 1, in the previous example
they are A and D.

For a contour 1 denote

$m(1 )=� Intm(1 ) (3.33)
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(the set C in the example of Fig. 1)

$=(1 )=� Ext(1 ) _ \ .
m: _m (1 )=_(1 )

$m(1 )+ (3.34)

(the set B in Fig. 1, the last term being absent in Fig. 1)

${(1 )= .
m: _m (1 ){_(1 )

$m(1 ) (3.35)

(this is the set C in Fig. 1) and

$(1 )=$=(1 ) _ ${(1 )=$ Supp(1 ) (3.36)

Two contours are called disjoint if their supports are not V-connected. We
say that a contour belongs to a region if its support is a subset of that
region. In any collection of pairwise disjoint contours there is a uniquely
defined subcollection of external contours, i.e., contours which do not
belong to the interior of any other contour in the collection.

A contour 1 surrounds a point r if r # Supp(1 ) _ Int(1 ). A contour
13(q) separates contours 11(q) and 12(q) if Supp(11(q)) # Int(13(q)) while
Supp(12(q)) # Ext(13(q)).

Consider an arbitrary configuration q which differs from a ground
state configuration of a given phase a only inside a bounded region 4.
Then all contours of q belong to 4 and for any external contour 1 ext(q)
one has _(1 ext)=_. Note that non-external contours 1 (q) may have
_(1 (q))=&_. Moreover, the contours of q satisfy the following matching
condition. If Supp(11(q)) # Intm(12(q)) and there is no 13(q) separating
11(q) and 12(q) then _(11(q))=_m(12(q)). This matching condition is
highly non local and represents the main difficulty in understanding con-
tour statistics.

The idea of the P�S theory is to remove matching condition and to
construct an equivalent contour model with no matching rules present.
Generally this can be done by modification of the statistical weights of con-
tours and shifting the difficulty to the estimate of these modified statistical
weights.

The study of the distribution of contours is important because to
prove the existence of distinct translation invariant + and & phases it is
enough to show that the probability of the event that an external contour
surrounds the origin is sufficiently small. In a translation invariant measure
this implies that only finitely many contours surround any given point r.
Then one of the ground states occupies the infinite region �i Ext(1 ext

i (q))
which is exactly the ``sea'' discussed earlier. Furthermore, the probability of
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the event that '0(q)=1 can be taken as the order parameter distinguishing
two phases. This probability is less than 1

2 for the & phase and it is larger
than 1

2 for the + phase as follows from a bound on the probability of a
contour of the form (3.31) (which will be shown to be true for all con-
tours). As we will see even in the general case when there is more than just
one single contour in the contour model the bound (3.31) implies that the
contours are very rare and one can control them with an analysis not too
distant from the oversimplified example.

Let us recall now that the bound (3.31) on the statistical weight of a
contour was obtained after adjusting the chemical potential so that the
pressures in the two ground states ensembles are equal. In the general case
this is not a simple task because there are contours inside contours, i.e.,
inside the regions of type D of the example in Fig. 1 there are other con-
tours and so on. One needs to treat contours recursively as in the one-con-
tour example to obtain at the end of the recursion the contour model with
the properly modified statistical weights of contours. Only after that one
may try to equalize pressures in these contour models. The problem is that
even if the bound (3.31) holds, the pressures in the contour models will
depend on the contours and we are then in a sort of loop: to have the good
bound (3.31) on the contours we need to make the pressures equal, but to
control the pressures we need a good bound on the contours.

As explained by the P�S theory it is possible to overcome such an
impasse; we will do it by following the Zahradnik approach [Z]. we will
define a new cut-offed statistical weight which by its definition cannot
exceed the value (3.31) (with a suitable constant c). In this context it will
be easy to iterate the procedure of the example with one contour to derive
a contour model representation of the true partition function. Such
auxiliary partition functions (one for each phase) give rise to the corre-
sponding pressures and we will adjust the chemical potential so that these
two pressures (one for each phase) are equal. It will then turn out (see
[Z]) that for this particular value of the chemical potential the contours
satisfy the bound (3.31) without the need of the cutoff so that for this
special value of the chemical potential the auxiliary and true partition func-
tions are equal.

The next subsection contains exact definitions and statements which
are necessary for application of the general P�S theorem (see [PS], [Z]).

Auxiliary Partition Functions

Given a phase _ and boundary condition q� (4c ) belonging to the
ground state ensemble of this phase we define the auxiliary partition func-
tions and the truncated statistical weight as
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ZA
#, ;, *(4 | q� (4c ))=|

Q(4)
dq 1'(q)#_ e&;H#, * (q (4) | q� (4c ))

_ :
[1i ]

_ # 4

`
i

W T(1i | q($=(1i ))) (3.37)

and

W T(1 | q($=(1 )))=min(W A(1 | q($=(1 ))), e&(c�3) l 2
d

l3
&d ` 2 |Supp(1 )| ) (3.38)

where

W A(1 | q� ($=(1 )))

\|Q(Supp(1 )"$=(1 ))
dq 1'(q)=' 1 e&;H#, * (q | q� ($=(1 )))

=

_ `
m: _m (1 ){_(1 )

ZA
#, ;, *(Intm(1 ) | q (� Intm (1 )))+

(3.39)

\|Q(Supp(1 )"$=(1 ))
dq 1'(q)=_(1 ) e&;H#, * (q | q� ($=(1 )))

_ `
m: _m (1 ){_(1 )

ZA
#, ;, *(Intm(1 ) | q (� Intm (1 )))+

To prove that the definition is well posed, we first say that a statement
related to a D(l) measurable region is proved by induction in volume if this
statement is true for a D(l) measurable region 4 as soon as it is true for
all D(l) measurable subsets of 4. We then observe that (3.37)�(3.39) con-
stitute a single inductive definition. At the initial step of this induction
in volume one considers only contours with empty interior and uses
(3.38)�(3.39) to define their truncated statistical weights. Then (3.37)
allows one to calculate the auxiliary partition functions for sufficiently
small regions admitting inside them only contours without interior. Then
(3.38)�(3.39) are used again to define the truncated statistical weights of
contours having sufficiently small but non empty interiors and so on.

We hope that a notational similarity of the numerator and the
denominator of (3.39) does not hide from the reader the fact that these
expressions are very different. For example, in the numerator of (3.39) con-
figurations q(� Intm (1 )) belong to the ground state ensemble of the phase
_=_(1 ) while in the denominator of (3.39) these configurations belong to
the ground state ensemble of the opposite phase, &_.
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Statement 3.2. If for any contour 1 the truncated statistical
weight W T(1 | q ($=(1 ))) is smaller than the second term in the argument of
the min in (3.88) then the auxiliary partition function coincides with the
true one.

The proof of the statement is standard in the P�S theory and we omit
it (see [Z]).

Another standard observation is that for any region 4 with the bound-
ary condition q� (�4) belonging to the ground state ensemble of the phase _
the statistics of external contours in the contour model coincides with that
of the true particle model. Note that the statistics of non-external contours
are different in the contour and particle models. For example, the contours
of the opposite phase, &_, never appear in the contour model. As we
explained before the absence of the matching rules makes the analysis of
the contour model much easier than the analysis of the initial particle
model. The price paid for this simplification is a rather involved expression
for W(1 | q� ($=(1 ))).

Statement 3.3. For all # small enough and all chemical potentials
* # (*(;)&#:, *(;)+#:), :� 1

2 there are f A
+, *, # , resp. f A

&, *, # , such that for
any sequence of cubes 4 � Rd and any sequence of boundary conditions
q� (4c ) belonging to the + (resp. &) ground state ensemble

lim
4 � R d

1
; |4|

log ZA
#, ;, *(4 | q� (4c ))= f A

\, *, # (3.40)

Moreover there exists *(#, ;) such that

lim
# � 0

*(#, ;)=*(;) (3.41)

and

f A
+, *(#, ;), #= f A

&, *(#, ;), # (3.42)

The statement is proved in Section 6 using cluster expansion techniques,
together with a rather explicit representation of the auxiliary pressures
f A

\, *, # .
In analogue to the first term T1 in the decomposition (3.26) of the

statistical weight we introduce the function
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w(1 | q� ($=(1 )))

\|Q (Supp(1 )"$(1 ))
dq 1'(q)=' 1 e&;H#, *(q | q� $=(1 )), q &_(1 )

(${(1 ))

+
=

_ `
m: _m (1 ){_(1 )

e(;�2)U#(q (1 )
&_(1 ) | q&_(1 )

(${(1 )))

(3.43)

\|Q(Supp(1 )"$(1 ))
dq 1'(q)=_(1 ) e&;H#, * (q | q� $=(1 )), q_(1 )

(${(1 ))

+_ `
m: _m (1 ){_(1 )

e(;�2)U#(q (1 )
_(1 ) | q _(1 )

(${(1 )))

In Section 4 we will prove the Peierls bound (which is the analogue of
(3.31)):

Statement 3.4. For any contour 1 there is c>0 such that for all
# and * # (*(;)&#:, *(;)+#:), :� 1

2

w(1 | q� ($=(1 )))�exp(&cld
2 l&d

3 `2 |Supp(1 )| ) (3.44)

Finally in Section 6 we will prove

Statement 3.5. For any contour 1 there is c>0 such that for all
sufficiently small # and * # (*(;)&#:, *(;)+#:), :� 1

2

} log W A(1 | q� ($=(1 )))&log w(1 | q� $=(1 )))

& :
m: _m (1 ){_(1 )

(; |Intm(1 )|[ f A
&_(1 ), *, #& f A

_(1 ), *, #]) }
�c |Supp(1 )| #1�4 (3.45)

Note that the factor #1�4 is not optimal but it is enough for our purposes.
By combining the above statements and choosing *=*(;, #) we then

obtain that the auxiliary and the true partition functions are equal and
consequently that the probability of a contour in the original system is
bounded as in (3.44). This proves the existence of two different phases and
together with the exponential decay established in Sections 5 and 6 con-
cludes the proof of Theorem 2.1.
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4. PEIERLS ESTIMATE

In this section we prove Statement 3.4, i.e., we compare the partition
functions in the numerator and denominator of (3.43).

The partition function in the denominator of (3.43) is taken over
ground state configurations of the phase _=_(1 ) placed in the region
Supp(1 )"$(1 ) with the boundary condition q� ($(1 )) specified on $(1 ). This
boundary condition, q� ($(1 )), is different in $=(1 ) and in ${(1 ): it is a con-
figuration of the ground state ensemble of the phase _ in the region $=(1 )
and it is the standard configuration of the phase _ in ${(1 ).

The partition function from the numerator of (3.43) is taken over con-
tour configurations, i.e., ones compatible with '1, in the same region
Supp(1 )"$(1 ) with the same boundary condition q� ($=(1 )) in $=(1 ) but
with the different boundary condition given on ${(1 ). Contrary to the
denominator this boundary condition is the standard configuration of the
opposite phase, &_.

Scheme of Estimate

The estimate of the ratio in (3.43) is performed in several steps. At each
step we achieve a certain simplification at the price of a non essential error
which we define as a positive factor not exceeding exp(#:ld

2 l&d
3 `2 |Supp(1 )| )

with :>0. For # small enough the product of the finite number of such fac-
tors is dominated by exp(&cld

2l&d
3 `2 |Supp(1 )| ). The last factor appears

at the last step of the estimate and the preliminary simplifications make this
main step of the Peierls estimate easier.

First we exploit a superstability of the potential and in Lemmas
4.1�4.4 we show that only particle configurations of bounded density need
to be taken into account.

As soon as all considerations, are reduced to the case of bounded
density it becomes clear that one needs to check (3.44) only for *=*(;).
Indeed, varying * in the interval * # (*(;)&#:, *(;)+#:) with :�1�2
produces an error in H#, *(q | q� ($=(1 )), q (${(1 ))

\_(1 ) ) which does not exceed
#1�2 |Supp(1 )| in absolute value. Hence the total error in (3.43) is negligible
with respect to the right hand side of (3.44).

Then in Lemma 4.5 we replace every configuration q=(qi ) contributing
to the numerator or denominator of (3.43) by [q](l1). After shifting particles
into the centers of the corresponding boxes integrals over the particle con-
figurations q become sums over density configurations *(l1)(q)=(* (l1)

x (q)).
Moreover, the entropy factor coming from the summation over different
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density configurations *(l1) can be neglected and one can consider only a
contribution of two density configurations providing the minimum of the
energy in the numerator and denominator of (3.43) respectively. These
arguments are presented in (4.19)�(4.23) below.

The next observation is that the energy of density configuration is very
close to a discrete version, (4.26), of the mean field free energy functional
(3.1) with function *(r) of a continuous argument r # Rd replaced by its
lattice version * (l1)

x , x # Zd
l1

. The corresponding errors are estimated in
Lemma 4.6.

Thus, we arrive to the variational problem of finding minima of the
discrete mean field functional under the constraints corresponding to the
numerator and denominator of (3.43). The simplest of the constraints is
the discreteness of our density variables. Lemma 4.7 shows that one can
treat the density as a continuous variable for the price of non essential
error. A more serious constraint is the presence of boundary conditions.
(Our density configurations vary only inside the finite region, the support
of the contour, being fixed outside this region.) Moreover, these boundary
conditions are different for the numerator and denominator of (3.43). To
handle this problem in Lemma 4.8 we show that the dependence of the
minimizer on the boundary conditions decays exponentially with the dis-
tance from the boundary. In particular, at the distance of order #&1&:3 the
boundary condition is practically not felt. Our proof of Lemma 4.8 is based
on estimate (3.17).

Using Lemma 4.8 we perform the last of our simplifications. In
(4.57)�(4.58) we show that modulo non essential errors one can replace the
initial variational problem by a similar one in a smaller region but with
standard boundary conditions only.

Finally we come to the key Lemma 4.9 expressing the essence of the
Peierls estimate. It is obvious that for the denominator of (3.43) the mini-
mizing density is the constant density configuration coinciding with the
boundary condition *;, _ . The minimizing density configuration for the
numerator of (3.43) is not a constant and may have a complicated struc-
ture. While not trying to calculate it exactly we estimate (from below) the
corresponding value of the discrete free energy functional. This is a rather
straightforward calculation which takes into account the fact that inside
Supp(1 )"$(1 ) there are sufficiently many ``wrong boxes'' C (l2) where the
indicator function 1'(q)='1 forces the minimizing configuration to be dif-
ferent from *;, \ . Each ``wrong box'' produces an excess of energy of order
`2 and ``wrong boxes'' are distributed inside Supp(1 ) with the density
cld

2l&d
3 . This finally gives us a factor exp(&cld

2 l&d
3 `2 |Supp(1 )| ) dominat-

ing all error estimates discussed earlier.
The details are given in the rest of this section.
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Stability Estimates

First we check that the accumulation of an infinite number of particles
in a bounded region is impossible. This is a consequence of

Lemma 4.1. For any particle q0 and any configuration q=(q1 , q2 ,...)
the interaction energy

U#(q0 | q)=& :
qi1

# q

J (2)
# (q0 , qi1

)+ :
qi1

, qi2
, qi3

# q

J (4)
# (q0 , qi1

, qi2
, q i3

) (4.1)

is bounded from below

U#(q0 | q)�Hmin (4.2)

by an absolute constant

Hmin= min
N>0, 1>#>0

1
3!

(N3&3#dN2+2#2dN)&N (4.3)

Proof. Given q let

N(r, q)=#d :
qi # q

1 |r&qi |�#&1Rd
(4.4)

be the mean number of particles of q situated inside B#(r), r # Rd. Then

& :
qi1

# q

J (2)
# (q0 , qi1

)=&#2d :
qi # q

| dr 1 |r&q0 |�#&1Rd
1 |r&qi |�#&1 Rd

=&#d | dr 1 |r&q0 |�#&1Rd
N(r, q) (4.5)

Similarly

:
qi1

, qi2
, qi3

# q

J (4)
# (q0 , qi1

, qi2
, qi3

)

=#d | dr 1 |r&q0 |�#&1Rd

1
3!

(N3(r, q)&3#dN2(r, q)+2#2dN(r, q))

(4.6)
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Hence

U#(q0 | q)�#d | dr 1 |r&q0 |�#&1Rd
Hmin=Hmin (4.7)

which proves the lemma. K

Lemma 4.1 provides the lower bound

H#, *(q(4) | q� (4c ))�Hmin |q(4)|=Hmin |4| * (4.8)

where *=|q(4)|�|4| is the corresponding density. To obtain an upper
bound take some positive *max>*;, + .

Lemma 4.2. Consider configurations q(4) and q� (4c ) such that
q(4) _ q� (4c ) has at most *max(2#&1)d particles in any intersecting 4 cube
with the side 2#&1. Then

H#, *(q(4) | q� (4c ))�Hmax(*max) |4| (4.9)

where

Hmax(*max)=|*(;)| *max+23d*4
max (4.10)

Proof. It is clear that |q(4)|�|4| *max . The strength of the four-body
interaction between any four particles is less than #3d. The number of inter-
acting quadruples of particles such that one of the elements of the qua-
druple is a given particle is less than (*max 2d#&d )3. Hence the total four-
body interaction contributing to H#, *(q(4) | q� (4c )) is less than |4| *4

max23d.
The two-body interaction is negative and does not contribute to the
estimate. K

Bad Boxes

In this subsection we treat boxes containing too many particles.

Lemma 4.3. Consider a box C (l), l< 1
2 #&1, a configuration q� # Q

and an integer

N�|C (l)| ec;=ldec; (4.11)

then

|
Q(C (l) )

dq 1 |q (C (l))|=N e&;H#, * (q (C (l) ) | q� )�e&N (4.12)
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and

|
Q(C (l) )

dq 1 |q (C (l))|�|C (l)| e c; e&;H#, * (q (C (l)) | q� )�2e&|C (l)| e c;
(4.13)

Proof. According to Lemma 4.1 the interaction U#(q(C (l)) | q� ) between
particles of q(C (l)) and q� satisfies the estimate

U#(q(C (l)) | q� )�HminN (4.14)

It is clear that

H#, *(q(C (l)))�&#d N(N&1)
2!

+
1

2d
#3d N(N&1)(N&2)(N&3)

4!
&|*| N

(4.15)

as the maximal volume of the intersection of two balls of radius #&1Rd is
#&d and the minimal volume of the intersection of four such balls with the
centers in C (l) is larger than (1�2d ) #&d, Thus the logarithm of the left hand
side of (4.12) does not exceed

&N log N+N+N log |C (l)|&;HminN+; |*| N

+;#d N(N&1)
2!

&;
1

2d #3d N(N&1)(N&2)(N&3)
4!

(4.16)

It is not hard to check that for sufficiently small # and sufficiently large
absolute constant c(4.11) the last expression is smaller than &N as soon
as N�|C (l)| ec(4.11) ;. Note that the most dangerous term in (4.16) is
;#d(N(N&1)�2!). It is dominated by ;(1�2d ) #3d(N(N&1)(N&2)(N&3)�4!)
for N>c#&d and by N log N&N log |C (l)| for |C (l)| ec(4.11) ;�N�c#&d.
This implies (4.12) and hence (4.13). K

Set *max=2ec(4.11) ;. An easy consequence of Lemma 4.3 is

Lemma 4.4. For any contour 1 and any l�l2 the partition func-
tion in the numerator of (3.43) does not exceed

el&d |Supp(1 )| |
Q(Supp(1 )"$(1 ))

dq 1'(q)='1, *(l)(q)�*max
e&;H#, *(q | q� ($=(1 )), q &_

(${(1 )))

_ `
m: _m(1 ){_(1 )

e(;�2) U#(q (1 )
&_(1 ) | q &_(1 )

(${(1 ))) (4.17)
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Proof. To obtain (4.17) we perform a partial integration over the
configurations in the bad boxes. Suppose that q is fixed outside the cube
C (l) # Supp(1 ) where q has more than *max |C (l)| particles. Now applying
Lemma 4.3 we integrate over all such q's leaving exactly 1

2*max |C (l)| par-
ticles in C (l). That means that we integrate over the particles in excess of
1
2*max |C (l)|, assuming that the total number of particles in C (l) is larger
than *max |C (l)|. This produces an extra factor 1+2e&|C (l)| e c;

�e. We con-
tinue this procedure box by box and the total number of boxes in Supp(1 )
is l&d |Supp(1 )|. K

Reduction to Variational Problem

It was shown in the previous subsection that we may restrict our con-
siderations to configurations with bounded density. Now we estimate the
error which is produced by shifting particles in such a configuration into
the centers of the corresponding boxes C (l).

Lemma 4.5. Take l<#&1 and configurations q (4) and q� (4c ) with
*(l)(q(4) _ q� (�4)))�*max . Then

|H#, *(q(4) | q� (4c ))&H#, *(*
(l)(q(4)) | q� (4c ))|

�l# |4| (2d*2
max+23d*4

max) (4.18)

Proof. It is clear that |q(4)|�|4| *max . Given two interacting particles
the absolute value of the error in their interaction due to shifting these par-
ticles to the centers of the corresponding boxes is less than #dl#. Given four
interacting particles the absolute value of the error in their interaction due
to shifting these particles to the centers of the corresponding boxes is less
than #3dl#. As in Lemma 4.2 the number of interacting quadruples of par-
ticles such that one of the elements of the quadruple is a given particle is
less than (*max 2d#&d )3. Similarly the number of pairs of interacting par-
ticles such that one of the elements of the pair is a given particle is less than
(*max 2d#&d ). Hence the total error is less than l# |4| (2d*2

max+23d*4
max). K

This lemma allows us to replace the integrals over dq in the numerator
and denominator of (3.43) by the sums over density configurations *(l1).
Namely, consider the partition function on the right hand side of (4.17).
The integral over q # Q(Supp(1 )"$(1 )) with '(q)='1 and *(l1)(q)�*max can be
calculated in two steps.

First one can fix a density configuration *(l1)=(* (l1)
x ), x # [Supp(1 )"

(1 )] (l1) and integrate over configurations q(Supp(1 )"$(1 )) with *(l1)(q)=*(l1).
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Afterward one can sum over all *(l1)�*max compatible with '1. The
obvious upper estimate for this sum is the total number of density configu-
rations * (l1)

x �*max , x # [Supp(1 )"$(1 )](l1) times the maximal contribu-
tion given by a single density configuration.

The number of density configurations *(l1)�*max compatible with '1

is less than

(*max |C (l1)| ) |Supp(1 )"$(1 )|�|C (l1)| (4.19)

Given *(l1) it follows from Lemma 4.5 that the integral over configura-
tions q with *(l1)(q)=*(l1) does not exceed

exp(&F� #, ;, *(*(l1) | q� ($=(1 )), q (${(1 ))
&_ , V )

+;l1# |Supp(1 )"$(1 )| (2d*2
max+23d*4

max)) (4.20)

where

F� #, ;, *(*(l1) | q� ($=(1 )), q (${(1 ))
&_ , V )

=;H#, *(*(l1) | q� ($=(1 )), q (${(1 ))
&_ )&

;
2

:
m: _m(1 ){_(1 )

U#(q (1 ))
&_(1 ) | q (${(1 ))

&_(1 ) )

&|C (l1)| log |C (l1)| :
x # [Supp(1 )"$(1 )](l1)

* (l1)
x

+ :
x # [Supp(1 )"$(1 )](l1)

log((* (l1)
x |C (l1)| )!) (4.21)

The notations with t and V foresee forthcoming simplifications and
variations. In particular F� #, ;, *(*(l1) | q� ($=(1 )), q (${(1 ))

_ ) is defined as
F� #, ;, *(*

(l1) | q� ($=(1 )), q (${(1 ))
_ , V ) without the term (;�2) �m: _m(1 ){_(1 )

U#(q (1 ))
&_(1 ) | q (${(1 ))

&_(1 ) ) in (4.20).
Suppose that *� (l1) gives the minimum of F� #, ;, *(* (l1) | q� ($=(1 )),

q(${(1 ))
&_ , V ) among all *(l1)�*max compatible with '1. Then

&F� #, ;, *(;)(*̂
(l1) | q� ($=(1 )), q (${(1 ))

&_ , V )+|Supp(1 )"$(1 )|

_(#1�2+l&d
1 +l&d

1 log(*max |C (l1)| )+;l1 #(2d*2
max+23d*4

max)) (4.22)

is the upper bound for the log of the numerator of (3.43). Note that * #
(*(;)&#:, *(;)+#:), :�1�2 in (4.21) while *=*(;) in (4.22). The corre-
sponding error is covered by the #1�2 term in (4.22).
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Similarly if *̂(l1) gives the minimum of F� #, ;, *(;)(*
(l1) | q� ($=(1 )),

q(${(1 ))
_ , V ) among all density configurations * (l1) from the ground state

ensemble of the phase _ then

&F� #, ;, *(;)(*̂
(l1) | q� ($=(1 )), q (${(1 ))

_ , V )

&|Supp(1 )"$(1 )| (#1�2+;l1 #(2d*2
max+23d*4

max)) (4.23)

is the lower bound for the log of the denominator of (3.43).
Now denoting b#, l=&[B#( } )](l)& let

I (2)
# (x1 , x2)=b&2

#, l &[B#(x1)] (l) & [B#(x2)] (l)& (4.24)

and

I (4)
# (x1 ,..., x4)=b&4

#, l " ,
4

j&1

[B#(xj )](l)" (4.25)

be discrete versions of J (2)
# (x1 , x2) and J (4)

# (x1 ,..., x4). For any region [4](l)

(we do note exclude the case [4](l)=Zd
l ) and any density configuration

*(l)(4)=(* (l)
x ), x # [4] (l) define a functional

F#, ;, *(*(l)(4))=ld \ :
x # [4](l)

* (l)
x

;
(log * (l)

x &1)& :
x # [4](l)

** (l)
x

&
1
2!

:
x2 , x1 # [4](l)

I (2)
# (x1 , x2) * (l)

x1
* (l)

x2

+
1
4!

:
x1 , x2 , x3 , x4 # [4](l)

I (4)
# (x1 ,..., x4) * (l)

x1
} } } * (l)

x4 + (4.26)

which is a discrete analogue of the mean field free energy functional (3.1).
We also define a conditional functional

F#, ;, *(*
(l)(4) | *� (l)(4c))=F#, ;, *(*

(l)(4)+*� (l)(4c))&F#, ;, *(*� (l)(4c))

(4.27)

with the boundary condition *� (l)=(*� (l)
x ), x # [4c] (l). Here the similarity

with (2.10) is obvious and the meaning of *(l)+*� (l) becomes straight-
forward if we set *(l)#0, x # [4c] (l) and *� (l)#0, x # [4](l). Setting

U#, ;(*(l)(4) | *� (l)(4c))=F#, ;, *(*(l)(4) | *� (l)(4c))&F#, ;, *(*(l)(4)) (4.28)
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we introduce

F#, ;, *(*
(l)(4) | *� (l)(4c), V )

=F#, ;, *(*(l)(4) | *� (l)(4c))& 1
2U#, ;(* (l)

;, _(4) | * (l)
;, _(4c)) (4.29)

where * (l)
;, _#*;, _ and _=+ or _=&. With some abuse of notation we use

for F#, ;, *(*(l)(4) | *(l)(q� (�4))) the alternative notations F#, ;, *(*(l)(4) | q� (�4))
or F#, ;, *(*(l)(4) | *� (l)(q(�4))). The role which is played by the functional
(4.27) is clarified in

Lemma 4.6. Consider a D(l) measurable region 4 with the boundary
condition q� (�4) which is a ground state configuration on every connected
component of �4. Then for l�#&1 and any * (l)=(* (l)

x ), x # [4] (l) such
that *(l)

x �*max one has

|F� #, ;, *(*
(l)(4) | q� (�4))&F#, ;, *(*(l)(4) | *� (l)(q(�4)))|

�l#5(2d*2
max+23d*4

max+*4
max) |4| (4.30)

|F� #, ;, *(*
(l)(4) | q� (�4), V )&F#, ;, *(*(l)(4) | *� (l)(q(�4)), V )|

�l#5(2d*2
max+23d*4

max+*4
max) |4| (4.31)

Proof. Estimate (4.31) is an obvious consequence of (4.30) and we
concentrate on (4.30). The difference between F� #, ;, * and F#, ;, * has two
sources. The first one is due to replacement of balls B#( } ) in the definition
of J ( } )

# by their lattice versions [B#( } )] (l) in the definition of I ( } )
# . Clearly

the difference between |B#( } )|=#&d and |[B#( } )] (l)| is less than #&dl#.
Hence the error produced by the discretization of B#( } ) can be estimated
exactly as in Lemma 4.5.

The second source is due to not properly counted contribution of pairs
x1 , x2 with x1=x2 and quadruples x1 , x2 , x3 , x4 with not all xij being
different. To estimate from above the absolute value of this error let us con-
sider the following five contributions to the energy of *(l).

(i) Self-interaction of C (l)
x due to the pair interaction of particles

in C (l)
x .

(ii) Self-interaction of C (l)
x due to the four-body interaction of par-

ticles in C (l)
x .

(iii) Interaction between C (l)
x1

and C (l)
x2

due to the four-body interac-
tion of two particles in C (l)

x1
with two particles in C (l)

x2
.
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(iv) Interaction between C (l)
x1

and C (l)
x2

due to the four-body interac-
tion of three particles in C (l)

x1
with one particle in C (l)

x2
.

(v) Interaction between C (l)
x1

, C (l)
x2

and C (l)
x3

due to the four-body
interaction of two particles in C (l)

x1
with one particle in C (l)

x2
and one par-

ticle in C (l)
x3

.

All five contributions can be estimated by similar arguments. For that
reason we present these arguments only for cases (i) and (v).

The strength of self-interaction of C (l)
x due to the pair interaction of

particles in C (l)
x is less than #d (*maxld )2. The number of boxes C (l)

x in the
region 4 is l&d |4|. Hence the total contribution is less than (l#)d *2

max |4|.
The strength of interaction between C (l)

x1
, C (l)

x2
and C (l)

x3
due to the

four-body interaction of two particles in C (l)
x1

with one particle in C (l)
x2

and
one particle in C (l)

x3
is less than #3d (*max ld )4. The number of boxes C (l)

x2
and

C (l)
x3

interacting with given box C (l)
x1

is less than (#l)&2d. The number of
boxes C (l)

x1
is l&d |4|. Hence the total contribution is less than

(l#)d *4
max |4|. K

Looking for the minima of F#, ;, *(*
(l) | *� (l)(q(�4))) it is simpler to

understand * (l)
x as continuous variables. Therefore if the minimum of

F#, ;, *(*
(l) | *� (l)(q(�4))) is achieved on density configuration *̂ (l) then it may

happen that at least for some x # [4](l) the number ld*̂ (l)
x is not an integer.

The solution to this problem is given by

Lemma 4.7. For the density configuration *~ (l)
x =l&d[ld*̂ (l)

x ] one
has

|F#, ;, *(*̂ (l)(4) | *� (l)(q(�4)))&F#, ;, *(*~ (l)(4) | *� (l)(q(�4)))|�cl&d*max |4|

(4.32)

(Here [ } ] denotes the integer part of a number.)

Proof. We proceed as in the proof of Lemma 4.5. The total number
of points x # [4](l) is l&d |4|. Given point x the absolute value of the
difference in the corresponding selfinteraction is less than ;&1 log *max+
|*| *max . The difference in the two-point interaction between points x1 , x2 #
[4] (l) does not exceed in absolute value 2#d*max ld. The number of points
x2 interacting with given x1 is less than (#l)&d. The difference in four-point
interaction between points x1 , x2 , x4 , x4 # [4] (l) does not exceed in
absolute value 4#3d (*maxld )3. The number of points x2 , x3 , x4 interacting
with given x1 is less than (#l)&3d. Combining these estimates one obtains
the lemma. K
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Variational Problem (Dependence on Boundary Condition)

The results of the previous subsection reduce the Peierls estimate to
the following variational problem:

(i) Find the minimum of F#, ;, *(;)(*
(l1)(Supp(1 )"$(1 )) | q� ($=(1 )),

q(${(1 ))
_ , V ) over the density configurations *(l1)=(* (l1)

x ), x # [Supp(1 )"
$(1 )](l1) such that * (l1) belongs to the ground state ensemble of the phase _.

(ii) Find the minimum of F#, ;, *(;)(*
(l1)(Supp(1 )"$(1 )) | q� ($=(1 )),

q(${(1 ))
&_ , V ) over the density configurations *(l1)=(* (l1)

x ), x # [Supp(1 )"
$(1 )](l1) such that *(l1) is compatible with '1.

(iii) Estimate from below the difference between the minimal value of
F#, ;, *(;)(*

(l1)(Supp(1 )"$(1 )) | q� ($=(1 )), q (${(1 ))
&_ , V ) and the minimal value

of F#, ;, *(;)(*
(l1)(Supp(1 )"$(1 )) | q� ($=(1 )), q (${(1 ))

_ , V ).

The existence of the minima above is obvious as 0<* (l1)
x <*max . Following

the approach of Section 3 define

R#, l(x, *(l))=b&1
#, l :

x1 # [B# (x)](l)

* (l)
x1

(4.33)

and

I#, l(x, *(l))=b&1
#, l :

x1 # [B# (x)](l)

* (l)
x1

;
(log * (l)

x1
&1) (4.34)

where we deliberately use a general scale (l) instead of (l1) as the construc-
tions below are of general origin. In complete similarity with (3.4)

F#, ;, *(*
(l))=ld :

x # Z
d
l
\I#, l(x, *(l))&*R#, l(x, *(l))

&
1
2!

R#, l(x, *(l))2+
1
4!

R#, l(x, *(l))4+ (4.35)

implying that *(l)(Zd
l )#*;, *, & and * (l)(Zd

l )#*;, *, + are the global mini-
mizers for F#, ;, *(*(l)). The local minimizers of F#, ;, *( } ), i.e., the minima of
F#, ;, *( } | *� (l)(4c)) or F#, ;, *( } | *� (l)(4c), V ), are studied in the lemma
below. Note that in this lemma we consider not only *=*(;) but all * #
(*(;)&$(;), *(;)+$(;)). Though the lemma discusses F#, ;, *( } | *� (l)(4c))
the same argument covers the case of F#, ;, *( } | *� (l)(4c), V).
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Lemma 4.8. Consider a D(l) measurable region 4 and take a bound-
ary condition *� (l)(4c) with maxx # [�4](l) |*� (l)

x &*;, *, _ |�`, where _ is one of
the phases, + or &. Then the unique minimum of F#, ;, *(*(l)(4) | *� (l)(4c))
is achieved on the density configuration *̂(l)=(*̂ (l)

x ), x # [4] (l) such that

|*̂(l)
x &*;, *, _ |�

`a(;)[# dist(x, 4c )]

1&a(;)
(4.36)

where [ } ] denotes the integer part.

Proof. Calculating (���* (l)
x ) F#, ;, *(*

(l)(4) | *� (l)(4c)), x # [4] (l) one
obtains the necessary condition for *̂(l)

0=
1
;

log *̂ (l)
x &*&:

x1

I (2)
# (x, x1) *̂ (l)

x1

+
1
3!

:
x1 , x2 , x3

I (4)
# (x, x1 , x2 , x3) *̂ (l)

x1
*̂ (l)

x2
*̂ (l)

x3
(4.37)

It is clear that for *� (l)
x #*;, *, _ , x # [4c] (l) one has *̂ (l)

x #*;, *, _ ,
x # [4](l). Introduce an auxiliary parameter t # [0, 1] and an interpolated
boundary condition

*� (l)
x (t)=(1&t) *;, *, _+t*� (l)

x , x # [4c] (l) (4.38)

Let *̂(l)(t) be the solution of (4.37) with the boundary condition *� (l)(t).
Then

*̂(l)
x (t)=exp \;*+; :

x1 # [B# (x)](l)

I (2)
# (x, x1) *̂ (l)

x1
(t)

&
;
3!

:
x1 , x2 , x3 # [B# (x)](l)

I (4)
# (x, x1 , x2 , x3) *̂ (l)

x1
(t) *̂ (l)

x2
(t) *̂ (l)

x3
(t)+ (4.39)

for all x # [4](l). Taking the derivative with respect to t one obtains

d
dt

*̂ (l)
x (t)=;*̂ (l)

x (t) \ :
x1 # [B# (x)](l)

I (2)
# (x, x1)

d
dt

*̂ (l)
x1

(t)

&
1
2!

:
x1 , x2 , x3 # [B# (x)](l)

I (4)
# (x, x1 , x2 , x3)

d
dt

*̂ (l)
x1

(t) *̂ (l)
x2

(t) *̂ (l)
x3

(t)+
(4.40)
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Set

I (2)
# (x1 , x2 | *̂(l)(t))= :

x3 , x4

I (4)
# (x1 , x2 , x3 , x4) *̂ (l)

x3
(t) *̂ (l)

x4
(t) (4.41)

It is clear that

I (2)
# (x1 , x2)(*;, *, _&`)2�I (2)

# (x1 , x2 | *̂(l)(t))

�I (2)
# (x1 , x2)(*;, *, _+`)2 (4.42)

as soon as maxx |*̂ (l)
x (t)&*;, *, _ |�`.

Introduce a symmetric matrix

A(x1 , x2 | *̂(l)(t))=&I (2)
# (x1 , x2)+ 1

2I (2)
# (x1 , x2 | *̂(l)(t)) (4.43)

and a diagonal matrix

D(x1 , x2 | *̂(l)(t))=(;*̂ (l)
x1

(t))&1 1x1=x2
(4.44)

where x1 , x2 # [4] (l). It is not hard to see that the inverse matrix
B=(D&A)&1 exists if maxx # [4](l) |*̂ (l)

x (t)&*;, *, _ |�`. Indeed, for such
*̂(l)

x (t) this matrix is given by a convergent series

B=\ :
�

n=0

(D&1A)k+ D&1 (4.45)

because

&D&1A&=max
x1 \;*̂ (l)

x1
(t) :

x2

|A(x1 , x2 | *̂(l)(t))|+
�a(;)<1 (4.46)

where a(;) is defined in (3.16). Moreover, the representation (4.45) and the
fact that A(x1 , x2 | *̂(l)(t))=0 if dist(x1 , x2)>#&1 imply that

|B(x1 , x2 | *̂(l)(t))|�
;(*;, *, _+`)

1&a(;)
a(;)[# dist(x1 , x2)] (4.47)

Iterating (4.40) and observing that (d�dt) *� (l)
x (t)=&*;, *, _+*� (l)

x for
x # [4c] (l) we rewrite (4.40) as

d
dt

*̂ (l)
x (t)= :

x1 # [4](l)

:
x2 # [4c](l)

B(x, x1 | *̂(l)(t)) A(x1 , x2 | *̂(l)(t))(*� (l)
x2

&*;, *, _)

(4.48)
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The right hand side of (4.48) is an absolutely convergent series in terms of
*̂(l)

x (t), x # [4] (l) and solving this differential equation one finds *̂ (l)
x (t). The

solution exists at least up to t=t1 at which the condition

max
x # [4](l) } d

dt
*̂ (l)

x (t)&*;, *, _ }<` (4.49)

is violated. Suppose that t1<1, i.e.,

max
x # [4](l) } d

dt
*̂ (l)

x (t)&*;, *, _ }<` (4.50)

for t<t1 and

} d
dt

*̂ (l)
x1

(t1)&*;, *, _ }=` (4.51)

for some x1 # [4](l). Then the representation (4.48) is valid for t # [0, t1]
and

max
x # [4](l)

|*̂ (l)
x (t)&*;, *, _ |<` (4.52)

for t�t1 as follows from the obvious identity

*̂(l)
x (t)=*;, *, _+|

t

0

d
ds

*̂ (l)
x (s) ds (4.53)

Plugging (4.50)�(4.52) into (4.40) and using (3.17) one concludes that

max
x # [4](l) } d

dt
*̂ (l)

x (t)&*;, *, _ }<` (4.54)

for t�t1 which contradicts (4.51). Hence

max
x # [4](l) } d

dt
*̂ (l)

x (t)&*;, *, _ }�` (4.55)

and

max
x # [4](l)

|*̂ (l)
x (t)&*;, *, _ |�` (4.56)
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for all t # [0, 1]. Thus representation (4.48) and estimate (4.47) are valid
and being joined with (4.53) they give (4.36).

The density configuration *̂(4) was defined as the solution of (4.37)
and we just checked that such a solution exists and satisfies (4.36). On the
other hand, it follows from (4.42) and (3.17) that the Hessian matrix
(�2��* (l)

x �* (l)
y ) F#, ;, *(*

(l)(4) | *� (l)(4c)), x, y # [4] (l) is positive for any
*(l)(4) # (*;, *, _&`, *;, *, _+`)4 with the mass bounded away from 0 inde-
pendently on *(l)(4) and *� (l)(4c). Thus the function F#, ;, *( } | *� (l)(4c))
with convex domain (*;, *, _&`, *;, *, _+`)4 is convex and therefore *̂(4) is
its unique minimum. K

Variational Problem (Comparison of Two Minima)

In this subsection we return back to the case *=*(;). For any con-
tour 1 the set

S=�(l3) Ext(1 ) _ \ .
m: _m(1 )=_(1 )

�(l3)Intm(1 )+ (4.57)

is occupied by the ground state of the phase _=_(1 ). Consider a strip
$� =(1 ) of width #&1 situated in the middle of S. According to Lemma 4.8
inside $� =(1 ) the density configurations minimizing F#, ;, *(*(l1) | q� ($=(1 )),
q(${(1 ))

_ , V) and F#, ;, *(*(l1) | q� ($=(1 )), q (${(1 ))
&_ , V) differ from *;, _ by at most

(1&a(;))&1 `a(;)[#1�3#&1&:3]. Therefore the density configuration which
minimizes F#, ;, *(*(l1) | q� ($=(1 )), q (${(1 ))

_ , V ) under the additional condition
that this configuration coincides with *;, _ in $� =(1 ) gives the value of the
true minimum of F#, ;, *(*(l1) | q� ($=(1 )), q (${(1 ))

_ , V ) up to an nonessential
error. The same is true for the density configuration minimizing
F#, ;, *(*

(l1) | q� ($=(1 )), q (${(1 ))
&_ , V ) with the same additional condition.

Obviously these modified minimizing configurations coincide with each
other not only in $� =(1 ), where they both are equal to *;, _ , but in the
whole part of S stretching from $=(1 ) to $� =(1 ), i.e., in

S1=�(l3 �2) Ext(1 ) _ \ .
m: _m(1 )=_(1 )

� (l3 �2) Intm(1 )+_ $� =(1 ) (4.58)

Estimating from below the difference between the minimal value of
F#, ;, *(*

(l1) | q� ($=(1 )), q (${(1 ))
&_ , V ) and the minimal value of F#, ;, *(*(l1) |

q� ($=(1 )), q (${(1 ))
_ , V ) the contributions corresponding to S1 cancel each

other. Hence the initial variational problem in Supp(1 )"$(1 ) with a
general boundary condition imposed on $(1 ) is reduced to a similar
problem in a smaller volume Supp(1 )"S1 .
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For the sake of notational simplicity we suppose from now on that the
boundary condition is a standard one already for the initial problem, i.e.,
it is equal to *;, _ in $=(1 ). Thus all we need to finish the Peierls estimate
is the lower bound for

2F#, ;, *(*(l1), 1 )=ld
1 :

x # [Supp(1 )"$(1 )](l1) \I#, l1
(x, *(l1))&*R#, l1

(x, *(l1))

&
1
2!

R#, l1
(x, *(l1))2+

1
4!

R#, l1
(x, *(l1))4&F;, *(*;, _)+

(4.59)

We note that for x such that dist(x, $(1 ))�#&1 the values of I#, l(x, *(l))
and R#, l(x, *(l)) depend on the boundary condition which is equal to *;, _

in $=(1 ) and *;, &_ in ${(1 ).

Lemma 4.9. For any contour 1=(Supp(1 ), '1 )

min
*(l1): '(*(l1))='1

2F#, ;, *(*(l1), 1 )�cld
2l&d

3 `2 |Supp(1 )| (4.60)

Proof. Rewrite 2F#, ;, *(*
(l1), 1 ) in the form

2F#, ;, *(*(l1), 1 )=ld
1 :

x # [Supp(1 )"$(1 )](l1) \F;, *(R#, l1
(x, *(l1)))&F;, *(*;, _)

+b&1
#, l1

:
x1 # [B#(x)](l1)

* (l1)
x1

;
log * (l1)

x1

&
R#, l1

(x, *(l1))

;
log R#, l1

(x, *(l1))+ (4.61)

and observe that

F;, *(R#, l1
(x, *(l1)))&F;, *(*;, _)�0 (4.62)

by definition of *;, _ and

b&1
#, l1

:
x1 # [B#(x)](l1)

* (l1)
x1

;
log * (l1)

x1
�

R#, l1
(x, *(l1))

;
log R#, l1

(x, *(l1)) (4.63)

by convexity.
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We call C (l2)
x # Supp(1 ) a wrong box if either '1

x =0 or '1
x '1

x1
=&1 for

at least one cube C (l2)
x1

adjacent to C (l2)
x . According to the definition of the

contour there exist at least (3l3)&d |Supp(1 )| wrong boxes C (l2)
x # Supp(1 )

such that they are at a distance greater than 5#&1 from each other. In par-
ticular C (2#&1)

x1
& C (2#&1)

x2
=< for any two such boxes C (l2)

x1
and C (l2)

x2
.

Consider a wrong box C (l2)
x for which '1

x =0. If inside C (2#&1)
x there

exist at least l&d
1 ld

2 points x1 with

R#, l1
(x1 , * (l1)) � \*;, &&

`
2

, *;, &+
`
2+_ \*;, +&

`
2

, *;, ++
`
2+ (4.64)

then C (2#&1)
x contributes to 2F#, ;, *(*(l1), 1 ) by at least

cld
2`2 min(F";, *(*;, &), F";, *(*;, +)) (4.65)

This contribution comes from the terms

ld
1 F;, *(R#, l1

(x1 , *(l1)))&ld
1 F;, *(*;, _) (4.66)

in (4.61).
In the opposite situation when

R#, l1
(x1 , * (l1)) � \*;, &&

`
2

, *;, &+
`
2+_ \*;, +&

`
2

, *;, ++
`
2+ (4.67)

for not more than l&d
1 ld

2 points x1 # C (2#&1)
x we will extract a contribution

similar to (4.65) from the terms

ld
1 b&1

#, l1
:

x2 # [B#(x1)](l1)

*(l1)
x2

;
log * (l1)

x2
&ld

1

R#, l1
(x1 , *(l1))

;
log R#, l1

(x1 , *(l1))

(4.68)

in (4.61).
Indeed, consider x1 # C (2#&1)

x such that C (l2)
x # [B#(x1)] (l1) and observe

that

* (l2)
x =&[C (l2)

x ] (l1)&&1 :
x2 # [Cx

(l2 )](l1)

* (l1)
x2

(4.69)

does not belong to (*;, &&`, *;, &+`) _ (*;, +&`, *;, ++`) as '1
x =0.

Denote

Rx1
=&[B#(x1)] (l1)"[C (l2)

x ] (l1)&&1 :
x2 # [B#(x1)](l1)"[C x

(l2)](l1)

* (l1)
x2

(4.70)
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Then by convexity

:
x2 # [B#(x1)](l1)

* (l1)
x2

log * (l1)
x2

�&[B#(x1)] (l1)"[C (l2)
x ] (l1)& Rx1

log Rx1

+&[C (l2)
x ] (l1)& * (l2)

x log * (l2)
x (4.71)

implying the lower bound

&[B#(x1)] (l1)"[C (l2)
x ](l1)&

;b#, l1

Rx1
log Rx1

+
&[C (l2)

x ](l1)&
;b#, l1

*(l2)
x log * (l2)

x

&
R#, l1

(x1 , *(l1))

;
log R#, l1

(x1 , *(l1)) (4.72)

for (4.68). Now we apply the inequality

(1&:) a log a&:b log b&((1&:) a+:b) log((1&:) a+:b)

�
:
2

(a&b)2

max(a, b)
&:2 (a&b)2

a
(4.73)

which is true for any a, b>0 and 0<:<1. This leads to the lower bound

&[C (l2)
x ] (l1)&

2;b#, l1

(Rx1
&* (l2)

x )2

max(Rx1
, * (l2)

x )
&\&[C (l2)

x ] (l1)&
;b#, l1

+
2 (Rx1

&* (l2)
x )2

Rx1

(4.74)

for (4.72). Observing that (;b#, l1
)&1 &[C (l2)

x ] (l1)& is of order #:2d we con-
clude that (4.74) exceeds

c
&[C (l2)

x ] (l1)&
;b#, l1

*;, &

(R#, l1
(x1 , * (l1))&* (l2)

x )2�c#:2d `2

;*;, &

(4.75)

for # sufficiently small. The number of points x1 # C (2#&1)
x for which (4.75)

is true is not less than b#, l1
�2. Remind that for these points

R#, l1
(x1 , * (l1)) # \*;, &&

`
2

, *;, &+
`
2+_ \*;, +&

`
2

, *;, ++
`
2+ (4.76)

and [B#(x1)] (l1)
% C (l2)

x . Thus (4.75) again gives us a lower bound

cld
2`2(;*;, &)&1 (4.77)

similar to (4.65).

995Liquid�Vapor Phase Transitions



Finally for the wrong box C (l2)
x of the second type, i.e., when

'1
x '1

x1
=&1 for an adjacent box C (l2)

x1
, we can consider C (l2)

x _ C (l2)
x1

instead
of C (l2)

x and repeat all the arguments above. They will work perfectly
because

&[C (l2)
x ] (l1) _ [C (l2)

x1
](l1)&&1 :

x2 # [C x
(l2)](l1) _ [Cx1

(l2)](l1)

* (l1)
x2

(4.78)

is again outside (*;, &&`, *;, &+`) _ (*;, +&`, *;, ++`). K

To finish the proof of the Peierls estimate we need to compare all
the errors which are at most of the order cl1# |Supp(1 )|=c#:1 |Supp(1 )|
(see (4.22) and (4.23)) with the contribution coming from Lemma 4.9. The
last is of order cld

2l&d
3 |Supp(1 )|=c#d:2+d:3 |Supp(1 )| and dominates

c#:1 |Supp(1 )| since d:2+d:3<:1 .

5. AUXILIARY MODEL

In this section we study metastable models and we prove that the
corresponding measures satisfy the Dobrushin uniqueness condition and
hence exhibit an exponential decay of correlations. We note again that the
configuration q(4) in a D(l2) measurable region 4 belongs to the ground
state ensemble of the phase _ iff in every cube C (l2)

x # 4 the density of par-
ticles

*(l2)
x (q(4))=l&d

2 |q(4) & C (l2)
x | (5.1)

belongs to the interval

(*;, _&`, *;, _+`) (5.2)

The partition function of the auxiliary model is given by (3.37), i.e., it is the
integral over ground state configurations of the corresponding contour par-
tition function.

In the previous section we have shown that some partition functions
initially defined in terms of particle configurations can be approximated by
partition functions written in terms of density configurations related to
some scale l. Now we go further and show that the auxiliary model for
each of the two phases can be equivalently rewritten in terms of density
configurations. Such an equivalent model is defined on the lattice Zd

l2
with

the density variables * (l2)
x taking discrete values nl&d

2 , n=1, 2... from the
bounded interval (5.2). The corresponding Hamiltonian is of infinite range
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but with sufficiently fast decaying interactions. Quite naturally this
Hamiltonian is close to (4.27) (with l=l2) and it can be understood as a
small perturbation of a positive definite quadratic form. The treatment of
the equivalent model is based on a specific approach [COPP] to the
Dobrushin uniqueness theorem developed initially for unbounded lattice
spin systems.

From now on we fix l2 as the scale at which we define density con-
figurations. Thus all regions are assumed to be D(l2) measurable and we
often drop the superscript (l2) from notations.

In the next subsection we construct the effective Hamiltonian, the
exact form of which is stated in Lemma 5.2 at the very end of the next sub-
section. Then in the last two subsections we prove Lemma 5.3 saying that
the effective Hamiltonian satisfies the Dobrushin uniqueness condition.

Reduction to Density Model

The technical part of the reduction is based on the cluster or polymer
expansion technique. For the convenience of the reader Section 7 quotes a
version of the general cluster expansion theorem which is suitable for our
purposes.

Consider a region 4 with the boundary condition q� (4c ) belonging to
the ground state ensemble of the phase _. For the partition function
ZA

#, ;, *(4 | q� (4c )) we decompose the integral in (3.37) into a sum of
integrals. In this decomposition the external sum is taken over all density
configurations *x , x # [4](l2) satisfying (5.2). Given such a density con-
figuration *(4) an internal integral is taken over all particle configurations
q(4) such that * (l2)

x (q(4))=* (l2)
x (4) for all x # [4] (l2). The reduction we per-

form is nothing but the calculation of

log |
Q(4)

dq(4) 1*(l2)(q)=*(4) e&;H#, *(q (4) | q� (4c )) :
[1i ]

_ # 4

`
i

W T('1i | q($=(1i )))

(5.3)

as a function of *x(4). Denote by qx, i the particles of q (4) situated inside
C (l2)

x and set nx=ld
2*x=|q(4) & C (l2)

x |. Then �Q(4) dq is

\ `
x # [4](l2 )

ldnx
2

nx !
l&dnx

2 + | } } } | \ `
x # [4](l2)

`
nx

i=1

1qx, i # C x
(l2) dqx, i + e&;H#, *(q (4) | q� (4c ))

_ :
[1i ]_ # 4

`
i

W T('1i | q($=(1i ))) (5.4)
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where the integral can be understood as an expectation with respect to the
system of independent particles qx, i uniformly distributed in the corre-
sponding boxes C (l2)

x .
The Hamiltonian H#, *(q(4) | q� (4c )) can be decomposed into the sum of

a *-dependent Hamiltonian

H#, *(*(l2)(Q(4)) | q� (4c ))=H#, *([q(4)] (l2) | q� (4c ))=H#, *(*(4) | q� (4c )) (5.5)

and error terms

2H#, *(q(4) | q� (4c ))=H#, *(q(4) | q� (4c ))&H#, *(*
(l2)(q(4)) | q� (4c )) (5.6)

Clearly exp(&;H#, *(* | q� (4c ))) can be taken outside the integral in (5.4)
leaving us with the calculation of the log of the partition function

\ `
x # [4](l2 )

l&dnx
2 + | } } } | \ `

x # [4](l2 )

`
nx

i=1

1qx, i # Cx
(l2 ) dqx, i + e&; 2H#, *(q (4) | q� (4c ))

_ :
[1i ]

_ # 4

`
i

W T('1i | q($=(1i ))) (5.7)

where the first product is included for the convenience of treating this parti-
tion function as an expectation over a system of independent particles.

Observe that the error part of the Hamiltonian is given by

2H#, *(q(4) | q� (4c ))

=& :
qi1

, qi2
# q

2J (2)
# (qi1

, qi2
)+ :

qi1
, qi2

, qi3
, qi4

# q

2J (4)
# (qi1

, qi2
, q i3

, qi4
) (5.8)

where 2J (2)
# (qi1

, qi2
) and 2J (4)

# (qi1
, qi2

, q i3
, qi4

) are much smaller than 1. The
estimates

0<2J (2)
# (qi1

, qi2
)<c#:2 J (2)

# (q i1
, qi2

) (5.9)

and

0<2J (4)
# (qi1

, qi2
, qi3

, qi4
)<c#:2 J (4)

# (q i1
, qi2

, qi3
, qi4

) (5.10)

are true unless some of the interacting particles are at the distance larger
than #&1&#&1+:2 from each other. In the last case 2J (2)

# (qi1
, q i2

) and
2J (4)

# (qi1
, qi2

, qi3
, qi4

) are extremely small

0<#&d 2J (2)
# (q i1

, qi2
), #&3d 2J (4)

# (qi1
, qi2

, qi3
, qi4

)<c#3d�2&:2�2 (5.11)
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Denoting

w(2)
# (qi1

, qi2
)=e ; 2J #

(2)(qi1
, qi2

)&1 (5.12)

and

w(4)
# (qi1

, qi2
, qi3

, qi4
)=e ; 2J #

(4)(qi1
, qi2

, qi3
, qi4

)&1 (5.13)

we have

e&; 2H#, *(q (4) | q� (4c ))= `
qi1

, qi2
# q

(1+w (2)
# (qi1

, q i2
))

_ `
qi1

, qi2
, qi3

, qi4
# q

(1+w (4)
# (qi1

, qi2
, qi3

, qi4
)) (5.14)

First we obtain the polymer expansion for the log of the partition
function

\ `
x # [4](l2)

l&dnx
2 + | } } } | \ `

x # [4](l2)

`
nx

i=1

1qx, i # Cx
(l2) dqx, i + e&; 2H#, *(q (4) | q� (4c ))

(5.15)

containing no contours. Opening all brackets in (5.14) we rearrange the
expression under the integral in (5.15) in the following way.

Let a 2-link, L(2)=(q1 , q2), be a couple of particles q1 , q2 such that
W(L(2))=w (2)

# (q1 , q2){0. Similarly a 4-link, L(4)=(q1 , q2 , q3 , q4), is a
quadruple of particles q1 , q2 , q3 , q4 such that W(L(4))=w (4)

# (q1 , q2 , q3 , q4)
{0. The quantities W(L(2)) and W(L(4)) are called the statistical weights of
the 2-link and 4-link respectively. Two links are connected if they have a
common particle. We stress that if two links have no common particles but
have a common space point occupied by one particle from the first link
and another particle from the second link then these links are not connected.
A pre-diagram, %, is a connected set of links. Denote by q(%)=(qi (%)) the
particles of q(4) which influence %, i.e., the endpoints of links of %. The
statistical weight, w(%), of the pre-diagram is the product of the statistical
weights of the contributing links. Two pre-diagrams are compatible if they
are not connected. Finally, a compatible collection of pre-diagrams consists
of mutually compatible pre-diagrams.

The definitions above justify the representation for (5.15) of the form

\ `
x # [4](l2)

l&dnx
2 + | } } } | \ `

x # [4](l2)

`
nx

i=1

1qx, i # Cx
(l2) dqx, i + :

[%j ] � 4c

`
j

w(%j )

(5.16)
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where the sum goes over compatible collections, [%j ], of pre-diagrams and
[%j ] � 4c means that every %j has at least one particle inside 4.

We call two pre-diagrams equivalent if they can be transformed one
into another by shifting some particles such that every shifted particle qx, i

remains in its initial box C (l2)
x . The corresponding equivalence classes, 3,

are called diagrams. To have a geometrical interpretation of the diagram 3
we identify it with the pre-diagram % # 3 having all particles at the centers
of the corresponding cubes C (l2)

x . We say that two diagrams 31 and 32 are
compatible if any %1 # 31 and %2 # 32 are compatible. Setting

W(3)=l&d |q(3)|
2 | } } } | w(%) `

|q(3)|

i=1

1qi (%) # C (l2)
qi (3)

dqi (%) (5.17)

we rewrite the partition function (5.15) in the so called cluster form

:
[3j ] � 4c

`
j

W(3j ) (5.18)

where the sum is extended to all compatible collections of diagrams. The
transition from (5.16) to (5.18) relies on the fact that for compatible %j1

and
%j2

the corresponding sets of particles q(%j1
) and q(%j2

) do not intersect each
other.

Lemma 5.1. Let

a(3)=|q(3)| (5.19)

Then

:
3 $t% 3

|W(3 $)| ea(3 $)�a(3) (5.20)

where 3 $t% 3 denotes a diagram 3 $ not compatible with a given diagram 3.

Proof. We say that a diagram 3 is not compatible with a particle q
and we denote it 3t% q if q # q(3). From our definition of compatibility of
diagrams it is clear that (5.20) follows from

:
3t% q

|W(3)| ea(3)�1 (5.21)

Note that for each box C (l2)
x , x # [4(l2)] the number of particles inside C (l2)

x

is fixed once the density * of the configuration is fixed. Hence when *
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belongs to the interval (5.2) there are at most c(*;, *, _+`) #&d 2-links and
at most c(*;, *, _+`)3 #&3d 4-links passing through any given particle. The
statistical weights of links satisfy

|W(L(2))|�c#:2 #d (5.22)

and

|W(L(4))|�c#:2 #3d (5.23)

as follows from (5.9)�(5.11) and (2.3)�(2.4).
We provide a diagram with an abstract tree structure according to the

following algorithm. The root of the tree is the particle q1 . Links which
start from q1 are called links of the first level. Links which start at
endpoints of the links of the first level and are different from them are the
links of the second level. Generally, links which starts at the endpoints of
nth level links and are different from all links of levels 1, 2,..., n are called
links of level n+1.

Denote by n(3) the maximal level of links in 3. It is clear that for #
small enough

:
3t% q: n(3)=1

|W(3)| ea(3)

� `
L(2)

% q

(1+e2 |W(L(2))| ) `
L(4)

% q

(1+e4 |W(L(4))| )&1�1 (5.24)

By induction suppose that

:
3t% q: n(3)�N

|W(3)| ea(3)�1 (5.25)

and consider 3 with n(3)�N+1. Take a link of the first level in such 3.
From every non root endpoint of this link ``grows'' a subdiagram 31 with
n(%1)�N. Hence

:
3t% q: n(3)�N+1

|W(3)| ea(3)� `
L(2)

% q

(1+|W(L(2))| (e+1)2)

_ `
L(4)

% q

(1+|W(L(4))| (e+1)4)&1

�1 (5.26)
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Here e correspond to the case when nothing is ``growing'' from a given
endpoint of the first level link while 1 is the inductive estimate for the case
when nonempty subdiagram 31 with n(%1)�N is ``growing'' from this
endpoint. K

From Lemma 5.1 applying Theorem 7.1 one obtains the polymer
expansion

:
? � 4c

W(?) (5.27)

for the log of (5.18). The precise definition of the polymer ?=[3 =j
j ] and

its statistical weight W(?) can be found in Section 7. Geometrically a
polymer is again a diagram-like object probably with some links entering
it more than once. We underline that constructing pre-diagrams, diagrams
and polymers one considers all particles entering these object as distinct,
say having unique indices or labels. For that reason we call polymers from
(5.27) labeled polymers. To clarify the dependence of (5.27) on *x we per-
form another factorization and define unlabeled polymers.

Suppose that from the total nx=*xld
2 particles situated inside a box

C (l2)
x exactly k(?) particles contribute to the labeled polymer ?. Replacing

these k(?) particles with another k(?) particles from the same box C (l2)
x one

obtains different labeled polymer with the same statistical weight. Two
labeled polymers which can be transformed one into another after several
replacements, possibly taking place in different boxes, are called equivalent.
The corresponding equivalence classes are called unlabeled polymers and
are denoted by {. In other words, an unlabeled polymer is obtained from
a labeled one by dropping the labels of the particles.

Denote by X({)�[4] (l2) the set of the centers of all boxes C (l2)
x con-

taining particles from {. For x # X({) let kx({) be the number of particles
from C (l2)

x contributing to {. Then the total number of different labeled
polymers ? # { is a polynomial function of *x ld

2 , x # X({)

0<P({)� `
x # X({)

(*xld
2 )kx({) (5.28)

Setting W({)=W(?), where ? is an arbitrary labeled polymer from {, we
obtain the expression for the log of the partition function (5.15)

:
{ # 4

W({) P({) (5.29)

1002 Lebowitz et al.



written in terms of *x . Despite its involved structure we need only a few
simple estimates on this sum.

It follows from Corollary 7.2 in Section 7 that the sum of statistical
weights of all labeled (and hence unlabeled) polymers passing through a
given particle and containing not less than k links does not exceed #&k:2 �2.
Hence the sum of the statistical weights of all labeled (or unlabeled)
polymers containing two given particles q1 and q2 at a distance r>#&1

from each other satisfies the bound

:
? % q1 , q2

|W(?)|= :
{ % q1 , q2

|W({)| P({)�#&[#r] :2 �2 (5.30)

Similarly for any given particle q and sufficiently large absolute constant c

:
? % q: L({)�c

|W(?)|= :
{ % q: L({)�c

|W({)| P({)�#4d (5.31)

where L({) denotes the number of links contributing to ? or {.
Polymer sum (5.29) can be viewed as a Hamiltonian which we

separate into two parts. The first one is

2H (1)
#, *(* | q� (4c ))= :

{ � 4c: L({)<c

W({) P({) (5.32)

and the second is

2H (2)
#, *(* | q� (4c ))= :

{ � 4c: L({)�c

W({) P({) (5.33)

It is not hard to see that 2H (1)
#, *(* | q� (4c )) is simply a finite radius

Hamiltonian of the polynomial type

2H (1)
#, *(* | q� (4c ))=ld

2 :
D � 4c

W(D) `
q # D

*q (5.34)

Here the sum is taken over connected sets of links (with no restriction for
a given link to enter this set more than once) containing less than c(5.31)

links and the product is over all endpoints of the links. The notation *q

instead of *x is not ambiguous as all endpoints of the links are assumed to
be at the centers of the corresponding boxes C (l2)

x . The statistical weights
W(D) are obtained by resummation from (5.32).

From (5.15) we pass to partition function (5.7) containing contours.
For the log of the ratio between (5.7) and (5.15) we also obtain a polymer
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expansion exploiting the theory of contour models with interactions [DS],
[BKL]. This expansion has the form

:
! � 4c

W(!) (5.35)

where ! are other polymers constructed from labeled polymers ? and con-
tours 1 in the same way as polymers ? are constructed from diagrams 3.
The statistical weights W(!) are local functions of *x and we interpret the
whole sum as the Hamiltonian

2H (3)
#, *(* | q� (4c ))= :

! � 4c

W(!) (5.36)

The only property of this Hamiltonian used later is the estimate

:
! % q

|W(!)|�#4d (5.37)

Since all details can be found in [DS] and [BKL] we give only a sketch
of the proofs pointing out few technically important points.

Denote by &( } | q(4c )) the Gibbs distribution of �x # [4](l2) ld
2*x par-

ticles given by the Hamiltonian 2H#, *(q(4) | q� (4c )) with the corresponding
partition function (5.15). For every contour 1 consider region R(1 )=
�(l3 �3) Supp(1 ) with empty boundary condition <(R(1 )c ) and define a
modified statistical weight

W� T('1 | q($=(1 )))=&(q($=(1 )) | <(R(1 )c )) W T('1 | q($=(1 ))) (5.38)

Then the ratio of partition functions (5.7) and (5.15) can be rewritten as

:
[1i ]

_ # 4
| `

i

dq($=(1i )) exp \ :
? � 4c: _i, ? & $=(1i ){<

? & R(1i )
c{<

(W(? | q (�i $=(1i )))&W(?))+
_`

i

W� T('1i | q$=(1i ))) (5.39)

Here the statistical weight W(? | q(�i $=(1i ))) is defined respecting an addi-
tional boundary condition q(�i $=(1i )) which is imposed in �i $=(1i ). We
note that only q� (4c ) affects W(?) if ? & 4c{<.

The polymer sum in (5.39) describes the interaction between contours
1i . It is important that every polymer contributing to (5.39) is sufficiently
long and contains at least [#l3 �3] links. In view of (5.30) such a polymer
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has a very small statistical weight. Therefore, in complete similarity with
(5.12)�(5.14) expanding

eW(? | q (�i $=(1i )))&W(?)=1+(eW(? | q (�i $=(1i )))&W(?)&1) (5.40)

and integrating over >i dq($=(1i )) one can derive for (5.39) a representation
analogous to (5.18). In this representation newly defined diagrams are con-
structed from contours 1 connected via polymers ?. Taking logarithms and
applying Theorem 7.1 one obtains (5.35) with correspondingly defined
polymers !. The key fact ensuring the condition (7.3) of Theorem 7.1 is that
for # small enough the sum of absolute values of statistical weights of all
polymers ? containing a given particle and being longer than l3�3 is much
smaller than the quantity cld

2l&d
3 ` entering the Peierls estimate (3.44).

The route to (5.35) looks rather involved and tedious but it is a
standard one in the cluster expansion technique. On the other hand we
need only minor knowledge about !, namely (5.37). This estimate is
obtained by the methods of [DS] and [BKL] along the following way.

The sum over all polymers ! containing a given particle q1 is equal to

:
1: $=(1 ) % q1

:
!: ! % 1

|W(!)|+ :
?: ? % q1 , L(?)�c(5.31)

:
!: ! % ?

|W(!)| (5.41)

By (7.6) the first internal sum does not exceed cW T('1 | q($=(1 ))) and the
second internal sum does not exceed c |W(?)|. In turn

:
1: $=(1 ) % q1

cW T('1 | q($=(1 )))+ :
?: ? % q1 , L(?)�c(5.31)

c |W(?)|�#4d (5.42)

because of (3.38) and (5.31).
The final result of this subsection can be stated now as

Lemma 5.2. The expression (5.3) is equal to

:
x # [4](l2)

log \ldnx
2

nx ! +&;H#, *(* | q� (4c ))+ :
3

i=1

2H (i)
#, *(* | q� (4c )) (5.43)

Expression (5.43) without the last sum is nothing but ;F� #, ;, *(*(l2) | q� (4c ))
defined in (4.21) with its main part ;F#, ;, *(*(l2) | q� (4c )) given by
(4.26)�(4.27).

Dobrushin Uniqueness (Basic Calculation)

Lemma 5.3. The effective Hamiltonian (5.43) satisfies the
Dobrushin uniqueness condition.
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Proof. For the sake of simplicity we first check that the Dobrushin
uniqueness condition is true for the Hamiltonian F#, ;, *(*(l2)). Then in the
next subsection we show that only minor modifications are necessary to
treat (5.43).

Take any site x # Zd
l2

and consider two boundary conditions *� (0)

and *� (1) on Zd
l2

"x such that they both belong to the interval (5.2) and
differ only at a site y # Zd

l2
. For definiteness we assume that *� (1)

y >*� (0)
y .

Denote by &(0)(d*x) and &(1)(d*x) conditional Gibbs distributions defined
by the Hamiltonians F#, ;, *(*x | *� (0)) and F#, ;, *(*x | *� (1)) respectively. The
Vasserstein distance between &(0)(d*x) and &(1)(d*x) is

R(&(0), &(1))=|
�

&�
dz } |

z

&�
(&(0)(d*x)&&(1)(d*x)) }

=|
�

0
dz } |

z

0
(&(0)(d*x)&& (1)(d*x)) } (5.44)

where the last equality utilizes the positivity of *x .
The Dobrushin uniqueness condition is satisfied if one is able to find a

function rxy such that

R(&(0), &(1))�rxy |*� (0)
y &*� (1)

y | (5.45)

and

:
y

rxy<1 (5.46)

To check this condition we follow the strategy of [COPP] and define
&t(d*x), t # [0, 1] as a Gibbs measure corresponding to the interpolated
Hamiltonian

F#, ;, *(*x | t)=F#, ;, *(*x | *� (0))+t(F#, ;, *(*x | *� (1))&F#, ;, *(*x | *� (0)))

(5.47)

This measure has the density

p(*x | t)=
exp(&;F#, ;, *(*x | t))

��
0 exp(&;F#, ;, *(*x | t)) d*x

(5.48)

which is differentiable in t and therefore from (5.44) we have

R(&(0), &(1))�|
1

0
dt |

�

0
dz } |

z

0

�
�t

p(*x | t) d*x } (5.49)
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Denoting

2F#, ;, *(*x | *� (0), *� (1))=(F#, ;, *(*x | *� (1))&F#, ;, *(*x | *� (0))) (5.50)

one has

�
�t

p(*x | t)=;p(*x | t)(2F#, ;, *(*x | *� (0), *� (1))&(2F#, ;, *(*x | *� (0), *� (1))) t)

(5.51)

where ( } ) t denotes the expectation with respect to p(*x | t) d*x . Observe
that

2F#, ;, *(*x | *� (0), *� (1))=ld
2 \I (2)

# (x, y)&
1
2!

I (2)
# (x, y | *� )+ (*� (1)

y &*� (0)
y ) *x

(5.52)

where I (2)
# (x, y | *� ) is defined by (4.41) (with *� (4 " x " y)=*� (0)(4 " x " y)=

*� (1)(4 " x " y) instead of *̂) and satisfies (4.42). by direct calculation

|
�

0
dz } |

z

0
(*x&(*x) t) p(*x | t) d*x }=(*2

x) t&(*x) 2
t (5.53)

For sufficiently small # and therefore sufficiently large ld
2 the last

expression can be estimated by the Laplace method and it is equal to

l&d
2 *

*
(t)+O(l&2d

2 ) (5.54)

where ld
2*

*
(t)&1 is the value of ;(�2��*2

x) F#, ;, *(*x | t) at the point *
*

(t) of
the minimum of F#, ;, *(*x | t). As we know from Lemma 4.8 such a mini-
mum exists, is unique and lies strictly inside the interval (5.2). Hence
O(l&2d

2 ) in (5.54) is uniform in t (see [F]).
Combining (5.49)�(5.54) we obtain that

R(&(0), &(1))�|
1

0
dt(;*

*
+O(l&d

2 )) \I (2)
# (x, y)&

1
2!

I (2)
# (x, y | *� )+ (*� (1)

y &*� (0)
y )

(5.55)

Setting

rxy=max
*� } I (2)

# (x, y)&
1
2!

I (2)
# (x, y | *� ) } |

1

0
dt(;*

*
(t)+O(l&d

2 )) (5.56)

one concludes that (5.46) is true for sufficiently small # because of (3.17),
(4.42) and the fact that �y I (2)

# (x, y)=1.
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Dobrushin Uniqueness (General Case)

We turn now to the complete effective Hamiltonian (5.43) and show
that only nonessential modifications of the calculation of the previous sub-
section are required to cover this case.

The first correction is due to the difference between F#, ;, *(*(l2) | q� (4c ))
and F� #, ;, *(*

(l2) | q� (4c )). This difference is discussed in detail in Lemma 4.6.
The corresponding modifications of our previous arguments are the following.

The difference between volumes of B#( } ) and [B#( } )] (l2) produces a
factor (1+O(#:)), :>0, in front of I (2)

# ( } , } ) and I (4)
# ( } , } , } , } ) which

clearly is not essential.
The self interactions like I (2)

# (*x , *x) or I (4)
# (*x , *x , *y , *z) produce

nonlinear terms in F� #, ;, *(*x | t) which is defined similarly to (5.47). Their
contribution to F� #, ;, *(*x | t) has the form

c2*2
x+c3*3

x+c4*4
x+t(c5*2

x+c6*3
x)(*� (1)

y &*� (0)
y ) (5.57)

where ci does not depend on t, *x and * (i)
y . Only the last, t-dependent, part

from (5.57) contributes to 2F� #, ;, *(*x | *� (0), *� (1)) which is defined similarly
to (5.50). The corresponding effect on ��

0 dz |�z
0 (���t) p(*x | t) d*x | result

in terms of the form

;c5(*� (1)
y &*� (0)

y ) |
�

0
dz } |

z

0
(*2

x&(*2
x) t) p(*x | t) d*x }

=;c5(*� (1)
y &*� (0)

y )((*3
x) t&(*2

x) t (*x) t) (5.58)

and

;c6(*� (1)
y &*� (0)

y ) |
�

0
dz } |

z

0
(*3

x&(*3
x) t) p(*x | t) d*x }

=;c6(*� (1)
y &*� (0)

y )((*4
x) t&(*3

x) t (*x) t) (5.59)

in addition to ld
2;(I (2)

# (x, y)&(1�2!) I (2)
# (x, y | *� ))(*� (1)

y &*� (0)
y )((*2

x) t&
(*x) 2

t ). Clearly

|ci |�ld
2#: (5.60)

with some :>0.
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Applying the Laplace method one has

(*k+1
x ) t&(*k

x) t (*x) t=
k*

*
(t)k

;(�2��*2
x) F� #, ;, *(*x | t)|**(t)

+O(l&2d
2 ) (5.61)

where again *
*

(t) is the minimum of F� #, ;, *(*x | t). Since

;
�2

�*2
x

F� #, ;, *(*x | t)=ld
2*&1

x +;2c2+;6c3*x

+;12c4*2
x+;t(2c5+6c6*x)(*� (1)

y &*� (0)
y ) (5.62)

and because of (5.60) all corrections above do not destroy the arguments
of the previous subsection.

As the next step we incorporate in our calculation 2H (1)
#, *(* | q� (4c )).

According to (5.34) this is the same type of a polynomial correction which
was just discussed. Thus the same arguments work. The necessary small-
ness, like in (5.60), of coefficient W(D) is a consequence of the smallness of
the statistical weights of links (5.22)�(5.23) and the definition of W(D) (see
also (5.30)).

Finally, to treat �i=2, 3 2H (i)
#, *(* | q� (4c )) we simply observe that for any

boundary condition *� given on Zd
l2

"x

R(&(*x | *� ), &2, 3(*x | *� ))<#d (5.63)

where &(*x | *� ) is the conditional Gibbs distribution given by the whole
Hamiltonian (5.43) while &2, 3(*x | *� ) is a similar distribution given by the
Hamiltonian (5.43) without �i=2, 3 2H (i)

#, *(* | q� (4c )). This estimate is
obvious in view of definition (5.44) and bounds (5.31) and (5.37). One can
comment that the contribution of contours or long polymers to the free
energy of the auxiliary model is too small to affect anything at all. K

6. PROPERTIES OF AUXILIARY MODEL

In this section we use the Dobrushin uniqueness result established for
the auxiliary model in the previous section to prove Statements 3.3 and 3.5.
We begin with a construction which is necessary for the proof of both
statements. Namely, given a phase _ and a particle configuration q� from
the ground state ensemble of the phase _ we derive an appropriate
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representation for the logarithm of partition function (3.37). Lemma 5.2
gives

ZA
#, ;, *(4 | q� (4c ))= :

*(l2)(4)

exp \&;F� #, ;, *(*
(l2)(4) | q� (4c ))

& :
3

i=1

2H (i)
#, *(*(l2)(4) | q� (4c ))+ (6.1)

Below we consider density configurations, lattice volumes, etc. related to the
scale l2 and in most cases we omit the superscript (l2) from the notations.
On few occasions when we need other scales we specify them explicitly.

In Section 4 we studied in detail the minimizers of F#, ;, *(*(4) | q� (4c ))
for bounded 4 and 4=Zd

l2
. Now we need to study minimizers for

H� #, *(*(4) | q� (4c ))=;F� #, ;, *(*(4) | q� (4c ))+2H (1)
#, *(*(4) | q� (4c )) (6.2)

where both q� (4c ) and *(4) belong to the ground state ensemble of the
phase _. This is a finite range translation-invariant Hamiltonian similar to
F#, ;, *(*(4) | q� (4c )) but not allowing a simple representation of the type
(4.35). For a bounded 4 the existence of at least one minimizer of
H� #, *(*(4) | q� (4c )) follows from the compactness of its domain, (*;, _&`,
*;, _+`)4. This domain is convex and the minimizer is unique because the
function H� #, *(*(4) | q� (4c )) (of the finite number of variables *x , x # 4) is
also convex. This is a consequence of estimate (3.17) from which it is not
hard to see that for any q� (4c ) and *(4) the Hessian matrix of H� #, *( } | q� (4c ))
calculated at *(4) is positive definite with the mass bounded from 0 inde-
pendently of q� (4c ) and *(4). Depending on the context we denote the
unique minimizer of H� #, *(*(4) | q� (4c )) by *̂, *̂(4) or *̂q� (4c )

.
To clarify the structure and convexity of H� #, *(*(4) | q� (4c )) we introduce

2H� #, *(*(4) | q� (4c ))=H� #, *(*(4) | q� (4c ))&H� #, *(*̂(4) | q� (4c )) (6.3)

It is not hard to check that

2H� #, *(*(4) | q� (4c ))=ld
2 :

x # [4](l2)

:
�

n=2

1
n(n&1) *̂n&1

x

2*n
x

+ld
2 :

D/3 [4c](l2)

W(D) :
X1(D), X2(D)

`
x # X1(D)

*̂x(4) `
x # X2(D)

2*x

(6.4)
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Here 2*x=*x&*̂x(4) and D is a connected family of links with endpoints
forming a set X(D)/Zd

l2
. The number of links in D is less than c(5.31) . The

subsets X1(D) and X2(D) form a partition of X(D) with at least two
elements in X2(D). The second internal sum is taken over all partitions of
that type. For W(D) one has the estimate

:
D: X(D) % x
D{L(2), L(4)

|W(D)| * |X(D)|
max �#:2 �3 (6.5)

as follows from (5.30). Also

|2*x |�2` (6.6)

The quadratic part of (6.4) is

1
2!

ld
2 :

x # [4](l2)

1
*̂

2*2
x&

1
2!

ld
2 :

x1 , x2: x1 _ x2 � [4c](l2)

I� (2)(x1 , x2 | *̂(4)) 2*x1
2*x2

(6.7)

with

1
*̂x1

(4)
&:

x2

I� (2)(x1 , x2 | *̂(4))�m(;)>0 (6.8)

for any x1 # [4] (l2). Here I� (2)(x1 , x2 | *̂(4)) is an analogue of (4.41) and
satisfies the same estimate (4.42) for # small enough. (By construction
|I (2)(x1 , x2 | *̂(4))&I� (2)(x1 , x2 | *̂(4))|�c#:2I (2)(x1 , x2)). Moreover, in
view of (6.5) and assuming that ` is chosen to be small enough with respect
to m(;)

2H� #, *(*(4) | q� (4c ))=
1
2!

ld
2 :

x # [4](l2)

m(;)
2

2*2
x+U(*̂(4), 2*(4)) (6.9)

with positive convex U(*̂(4), 2*(4)) having minimum at 2*(4)#0.
Along with the minimizers of H� #, *(*(4) | q� (4c )) for bounded regions 4

we also need a global minimizer, i.e., an analogue of *;, _ . To find such a
minimizer and to show its uniqueness (for given _) we consider a suf-
ficiently large (with respect to the range of H� #, *( } )) periodic box 4 and the
corresponding Hamiltonian H� #, *(*(4). All convexity considerations remain
true for H� #, *(*(4)) such that H� #, *(*(4)) has a unique minimizer *̂(4).
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Because of the translation invariance of H� #, *(*(4)) this minimizer is a con-
stant configuration *̂x(4)#*̂, x # 4. (Otherwise one is able to construct
another minimizers by space translations.) Since H� #, *(*(4)) is of finite
range we observe that *̂ is independent on 4 for all sufficiently large peri-
odic 4 and hence *̂ is the global minimizer we are looking for. Note that
the specific energy h� #, ;, *(s)=lim4 � Z

d
l2

|4| &1 H� #, *(*(4)) of any constant
density configuration *(4)#s is just a finite sum and *̂ is nothing but the
value of s at which h� #, ;, *(s) achieves its minimum. Thus given _ such a
minimum is unique for s # (*;, _&`, *;, _+`) and we have different values
*̂;, *, & and *̂;, *, + corresponding to _=&1 and _=+1.

Denote by *� (;, #) the value of * at which h� #, ;, *(*̂;, *, &)=
h� #, ;, *(*̂;, *, +) and set *̂;, _=*̂;, *� (;), _ . The important consequences of the
representation of *̂;, *, _ via h� #, ;, *(s) are the existence of *� (;, #) and the
estimates

|*;, _&*̂;, *, _ |�c#:1�2 (6.10)

and

|*(;)&*� (;, #)|�c#:1 (6.11)

Indeed, let h#, ;, *(s) be the specific energy of *#s calculated via the
Hamiltonian H� #, *(*(4))+2H (2)

#, *(*(4)) with periodic 4. Then

|h� #, ;, *(s)&h#, ;, *(s)|�c#4d (6.12)

as follows from (5.31).
Another way to calculate h#, ;, *(s) is the approach of Section 4. Here

the starting point is the partition function (5.15) with fixed density con-
figuration *(l2)#s. Then one approximate this partition function by using
the density configurations defined with respect to the scale l1<<l2 . (Note
that the density configuration which is constant in the scale l2 is not
necessarily a constant one in the finer scale l1 .) As the first step of the
approximation one shifts all particles to the centers of the corresponding
boxes C (l1) for the price of the error (in the value of H� #, *(*(l1)(4))+
2H (2)

#, *(*
(l1)(4))) which in absolute value does not exceed c#:1 |4| (see

Lemma 4.5). Lemmas 4.6 and 4.7 then show that up to the same error the
Hamiltonian H� #, *(*(l1)(4))+2H (2)

#, *(*(l1)(4)) can be approximated by
(4.26).

Now the convexity considerations (see (3.6)) imply that among all
density configurations *(l1)(4) such that *(l2)(*(l1)(4))#s the configuration
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*(l1)(4)#s has the minimal value of the mean field functional (4.26). Hence
(see (4.19) and above) counting only the contribution of *(l1)(4)#s
produces the error which again in absolute value does not exceed c#:1 |4|
(in fact it is much smaller). The specific energy of the constant density con-
figuration *(l1)#s calculated via (4.26) is nothing but the mean field
specific energy F;, *(s) and therefore

|F;, *(s)&h#, ;, *(s)|�c#:1 (6.13)

Since h� #, ;, *(s)=F;, *(s)+�K
k=2 aksk with |ak |<c#:2, i.e., h� #, ;, *(s) is a

small polynomial perturbation of F;, *(s), and

|F;, *(s)&h� #, ;, *(s)|�c#:1 (6.14)

as follows from (6.12) and (6.13), one immediately obtains (6.10) and
(6.11). (The existence of *� (;, #) follows from an elementary linear analysis
and continuity of h� #, ;, *(s).)

Finally observe that a straightforward modification of the arguments
of Lemma 4.8 shows that |*̂;, *, _&*̂q� (4c )

| satisfy (4.36).
With *̂;, *, _ and *̂q� (4c )

being properly defined we construct now a con-
venient representation for the log of the partition function (6.1) using the
following interpolation trick. For t # [0, 1] and s # [0, 1] introduce an
interpolated Hamiltonian

2H#, *(2*(4) | q� (4c ); t, s)=ld
2 :

x # [4](l2)

:
�

n=2

1
n(n&1) *̂n&1

x

2*n
x

+tld
2 :

D/3 [4c](l2)

W(D) :
X1(D),
X2(D)

`
x # X1(D)

*̂x(4) `
x # X2(D)

2*x

+s :
i=2, 3

2H (i)
#, *(*(4) | q� (4c )) (6.15)

The Hamiltonian 2H#, *(2*(4) | q� (4c ); t, s) satisfies the Dobrushin unique-
ness condition similarly to 2H#, *(2*(4) | q� (4c ); 1, 1). We denote by
( } ) t, s, 4, q� (4c ) the expectation with respect to the corresponding Gibbs
measure in the finite domain 4 with the boundary condition q� (4c ) and we
denote by ( } ) t, s the expectation with respect to the corresponding unique
limit Gibbs distribution.
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From (6.1) and (6.15) by direct calculation one obtains

log ZA
#, ;, *(4 | q� (4c ))

=&H� #, *(*̂(4) | q� (4c ))+ld
2 :

D/3 [4c](l2)

W(D) :
X1(D),
X2(D)

`
x # X1(D)

*̂x

_|
1

0
dt � `

x # X2(D)

2*x� t, 0, 4, q� (4c )

+ :
{ # 4: L({)�c(5.31)

W({) |
1

0
ds(P({, 2*)) 1, s, 4, q� (4c )

+ :
! # 4

|
1

0
ds(W(!, 2*)) 1, s, 4, q� (4c ) (6.16)

Here *̂(4)=*̂q� (4c )
is the minimizer of H� #, *( } | q� (4c )) and notations P({, 2*)

and W(!, 2*) are used instead of P({) and W(!) to underline the density
configuration *̂(4)+2*(4) with respect to which these quantities are
calculated. We use two parameters s and t instead of a single one for the
technical transparency. In models ( } ) t, 0, 4, q� (4c ) , i.e., with s=0, the range of
interaction is finite so it is simpler to control decay of correlations.

Namely, a standard consequence of the Dobrushin uniqueness theorem
[D2] is the estimate

|(2*x) t, 0, 4, q� (4c )&(2*x) t, 0 |�2` :
�

n=2

:

yn # [4c](l2)

y1=x
y2 ,..., yn&1 # [4](l2)

`
n&1

i=1

ryi yi+1
(6.17)

where rxy are defined by (5.56) with nonessential modification discussed
below (5.62). Similarly

}� `
x # X

2*x� t, 0, 4, q� (4c )
&(2*x) t, 0 }

�(2`) |X | :
�

n=2

:

yn # [4c](l2)

y1 # X
y2 ,..., yn&1 # [4](l2)

`
n&1

i=1

ryi yi+1
(6.18)

Now if follows from definition (5.56) of rxy and estimate (3.17) that

|(2*x) t, 0, 4, q� (4c )&(2*x) t, 0 |�
c`

1&a(;) \
1+a(;)

2 +
[# dist(x, 4c )]

(6.19)
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and

}� `
x # X

2*x� t, 0, 4, q� (4c )
&(2*x) t, 0 }

�|X |(2`) |X | c`
1&a(;) \

1+a(;)
2 +

[# dist(X, 4c )]

(6.20)

which are similar to (4.36). Also given x

:
�

n=2

:
y1=x

y2 ,..., yn # Z
d
l2

`
n&1

i=1

ryi yi+1
�

2
1&a(;)

(6.21)

In fact is easily follows from the structure and smallness of |W({)| and
|W(!)| expressed by (5.31) and (5.37) that the same exponential decay of
correlations takes place for models with s{0 which include the infinite
range part s �i=2, 3 2H (i)

#, *(*(4) | q� (4c )) of the Hamiltonian (6.15)
The final representation of log ZA

#, ;, *(4 | q� (4c )) is

log ZA
#, ;, *(4 | q� (4c ))

=&H� #, *(*̂(4) | q� (4c ))

&ld
2 :

D/3 [4c](l2)

W(D) :
X1(D),
X2(D)

`
x # X1(D)

*̂x |
1

0
dt � `

x # X2(D)

2*x� t, 0

& :
{ � 4c: L({)�c

W({) |
1

0
ds(P({, 2*)) 1, s

& :
! � 4c

|
1

0
ds(W(!, 2*)) 1, s

+ld
2 :

D/3 [4c](l2)

W(D) :
X1(D),
X2(D)

`
x # X1(D)

*̂x |
1

0
dt

_\� `
x # X2(D)

2*x� t, 0, 4, q� (4c )
&� `

x # X2(D)

2*x� t, 0 +
+ :

{ � 4c: L({)�c

W({) |
1

0
ds((P({, 2*)) 1, s, 4, q� (4c )&(P({, 2*)) 1, s)

+ :
! � 4c

|
1

0
ds((W(!, 2*)) 1, s, 4, q� (4c )&(W(!, 2*))1, s) (6.22)
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Here speaking about ( f (2*x)) t, s, 4, q� (4c ) we assume that 2*x=*x&*̂x(4)
while for ( f (2*x)) t, s we mean 2*x=*x&*̂;, *, _ such that ( f (2*x)) t, s is
truly independent on any boundary conditions.

Proof of Statement 3.3. From the interpolation trick we have a
representation for the metastable free energy

f A
_, *, #=ld

2 *̂;, *, _(log *̂;, *, _&1)&ld
2**̂;, *, _&ld

2

1
2!

:
x # Z d

l2

J (2)
# (0, x) *̂2

;, *, _

+ld
2

1
4!

:
x1 , x2 , x3 # Z

d
l2

J (4)
# (0, x1 ,..., x3) *̂4

;, *, _

&ld
2 :

D: X(D) % 0

D{L(2), L(4)

W(D)
|X(D)|

*̂ |X(D)|
;, *, _

& :
{: X({) % 0

W({)
|X({)|

P({, *̂;, *, _)& :
!: X(!) % 0

W(!, *̂;, *, _)
|X(!)|

&ld
2 :

D: X(D) % 0
|X2(D)|�2

W(D)
|X(D)|

:
X1(D),
X2(D)

*̂ |X1(D)|
;, *, _ |

1

0
dt � `

x # X2(D)

2*x�t, 0

& :
{: X({) % 0

W({)
|X({)| |

1

0
ds(P({, 2*)) 1, s

& :
!: X(!) % 0

|
1

0
ds

(W(!, 2*)) 1, s

|X(!)|
(6.23)

Here the definition of X({) and X(!) is similar to that of X(D) and 2* is
defined with respect to *̂;, *, _ .

The difference g_(4 | q� (4c )) between RHS of (6.22) and f A
_, *, # |4| can

be estimated as

| g_(4 | q� (4c )|�cld
2

|4� & 4� c|
ld&1

2

#&:2�c#&1 |4� & 4� c| (6.24)

Here |4� & 4� c| is the (d&1)-dimensional volume (area) of hypersurface
separating 4 and 4c and |4� & 4� c| l&d+1

2 #&:2 is the number of lattice
points in [$4](l2). The first factor cld

2 is the upper estimate for the sum of
the absolute values of the error terms associated with given site x #
[�4](l2). To be more precise, the contribution to g_(4 | q� (4c )) is given by
terms in (6.22) and (6.23) crossing the boundary of 4 directly or indirectly.
Directly crossing terms are D's with X(D) intersecting both 4 and 4c,
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{'s with X({) intersecting both 4 and 4c, ! 's with X(!) intersecting both 4
and 4c and links with endpoints in both 4 and 4c. Indirectly intersection
terms come from estimate (6.18) for the difference terms in the last three
lines of (6.22). Graphically those terms can be represented by chains of r's
joining something inside 4, say some D # 4, with the sites outside 4. It is
important for us that geometrically any of the terms crossing the boundary
passes through some site x # �4. This site x may be: one of the endpoints
of the link, contributing itself or as a part of D, { or !, or the endpoint of
some rxy or it may belong to the support of some contour which is a part
of some polymer !. For all these involved weighted objects we always keep
the property that the sum of the absolute values of the statistical weights
of all objects passing through given point is less than absolute constant.
Multiplying this constant by the factor ld

2 , which depending on the notations
is present explicitly or implicitly in front of the sums just discussed, we
reproduce (6.24). We need now some additional work to improve on (6.24).

The simplest observation is that using (5.43) and (5.37) one obtains
that the sum over the objects containing { with L({)>c(5.31) or ! as a con-
stituting element is less than c#4d.

Another source of smallness are various expectations (>x 2*x) in the
corresponding terms. In particular we check that given x and for any k�1

( |2*x |k)�c(ld
2 )&k(5�12) (6.25)

where the expectation means any one of those contributing to (6.22) and
(6.23). The power & 5

12 is taken for the definiteness only and it can be
replaced by &1

2+=. We prove (6.25) adapting to our situation relatively
abstract Lemma 8.1 in the spirit of [R2]. The correspondence between
current notations and those of Section 8 is given by the following list of
analogous objects: ,x and 2*x , } and ld

2 , a and 2`, M and 2`ld
2 , R and

c(5.31) #&1, Jxy and *̂I� (2)(x, y | *̂) and so on. The bound (6.25) is an easy
consequence of Lemma 8.1 (which deals the finite range interactions) as the
infinite radius part, s �i=2, 3 2H (i)

#, *(*
(l2) | q� (4c )), of (6.15) is so small that it

can not increase the expectation of |2*x | more than in 1+c#4d times. Note
also that in (6.22) and (6.23) we have terms ( |2*x |k) only with k�2.

In a similar way applying estimate (8.12) to |(>x # X2(D) 2*x) t, 0, 4, q� (4c )

&(>x # X2(D) 2*x) t, 0 | we obtain improved (6.20). Indeed, the RHS of
(6.18) is nothing but the upper bound for the Vasserstein distance and a
square root of this estimate produces an exponential bound just with twice
smaller exponent than in (6.20).

These improvements reduce by the same factor, (ld
2 )&2(5�12), the

estimates of the cross boundary terms coming from lines 2 and 5 in (6.22)
and line 7 in (6.23).
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As an immediate consequence of these improvements we can see that
the contribution, e(*), to the difference l&d

2 ( f A
+, *, #& f A

&, *, #) coming from
the non energy terms (lines 7, 8, 9 in (6.23)) is a continuous function of
* and |e(*)|�c(ld

2 )&2(5�12). The energy parts (lines 1�6 in (6.23)) of
l&d

2 f A
+, *, # and l&d

2 f A
&, *, # coincide with each other at *=*� (;, #) and they

contain explicitly terms which are linear in *. Hence shiftig *� (;, #) by at
most c(ld

2 )&2(5�12) one can find the solution, *=*(;, #) of (3.42) which
proves Statement 3.3. K

A useful consequence of our improvements is the estimate

| g_(4 | q� (4c ))+(H� #, *(*̂;, *, #(4) | *̂;, *, #(4c))& 1
2U� #(*̂;, *, #(4c) | *̂;, *, #(4c))

&H� #, *(*̂(4) | q� (4c )))|�c#&1(ld
2 )&2(5�12) |4� & 4� c|�#1�2 |4� & 4� c| (6.26)

where U� #(*̂;, *, #(4) | *̂;, *, #(4c)) is defined as in (2.11) but in terms of the
Hamiltonian H� ( } ). (We remind that |4 & 4c| is the (d&1)-dimensional
volume of the hypersurface separating closed domains 4 and 4c.) Observe
that H� #, *(*̂;, *, #(4) | *̂;, *, #(4c))&H� #, *(*̂(4) | q� (4c )) is rather small while the
compensating term &1

2U� #(*̂;, *, #(4) | *̂;, *, #(4c)) is of order c#&1 |4 & 4c|.

Proof of Statement 3.5. To check estimate (3.45) consider Int{(1 )
=�m: _m(1 ){_(1 ) Intm(1 ) and introduce a strip S(1 )=� (l3 �2) Int{(1 )"
$� {(1 ), where $� {(1 ) is defined similarly to $� =(1 ) (see (4.57) and below).
First we rewrite the numerator of (3.39) as

|
Q(Supp(1 )"S(1 ))

dq 1'(q)='1 e&;H#, *(q | q� ($=(1 ))) ZA
#, ;, *(Int{(1 ) _ S(1 ) | q ($� {(1 )))

(6.27)

Observe that for any q contributing to (6.27) the restriction of q to $� {(1 )
belongs to the ground state ensemble of the phase &_(1 ). Given such
q($� {(1 )) denote by *̂(Int{(1 ) _ S(1 ))=*̂q ($� {(1 ))

the minimizer of (6.2). Then
using representation (6.22) and definition (6.23) one can see that

ZA
#, ;, *(Int{(1 ) _ S(1 ) | q($� {(1 )))

=ZA
#, ;, *(S(1 ) | q($� {

(1 )) , *̂q ($� {(1 ))
(Int{(1 ))) exp(l&d

2 f A
&_(1 ), *, # |Int{(1 )|

& 1
2U(*̂q ($� {(1 ))

(Int{(1 )) | *̂q ($� {(1 ))
(� Int{(1 )))

&(H� #, *(*̂q ($� {(1 ))
(Int{(1 )) | *̂q ($� {(1 ))

(� Int{(1 )))

&H� #, *(*̂;, *, _(Int{(1 )) | *̂;, *, _(� Int{(1 ))))

+ g~ &_(1 )(Int{(1 ) | *̂q ($� {(1 ))
(� Int{(1 )))) (6.28)
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The term g~ &_(1 )(Int{(1 ) | *̂q ($� {(1 ))
(� Int{(1 ))) is the sum over ``polymer

type'' terms cross the boundary of Int{(1 ) and it can be estimated (see
(6.26)) by

| g~ &_(1 )(Int{(1 ) | *̂q ($� {(1 ))
(� Int{(1 )))|�c#1�2 |Int{(1 ) & Int{(1 )c|

(6.29)

On the other hand the strip S(1 ) is so wide that in the #&1 neighborhood
of Int{(1 ) & Int{(1 )c the difference |*̂q ($� {(1 ))

&*̂;, *, _ | is exponentially
small as follows from a straightforward analogue of (4.36). Thus

ZA
#, ;, *(Int{(1 ) _ S(1 ) | q ($� {(1 )))

=ZA
#, ;, *(S(1 ) | q($� {(1 )), *̂;, *, _(Int{(1 ))) exp(l&d

2 f A
&_(1 ), *, # |Int{(1 )|

& 1
2U(*̂;, *, _(Int{(1 )) | *̂;, *, _(� Int{(1 )))+ g� &_(1 )(Int{(1 )))

(6.30)

where

| g� &_(1 )(Int{(1 ))|�c#1�2 |Int{(1 ) & Int{(1 )c| (6.31)

Here g� &_(1 )(Int{(1 )) collects the contribution of g~ &_(1 )(Int{(1 ) |
*̂q ($� {(1 ))

(� Int{(1 ))) together with corrections due to replacement of
U(*̂q ($� {(1 ))

(Int{(1 )) | *̂q ($� {(1 ))
(� Int{(1 ))) by U(*̂;, *, _(Int{(1 )) | *̂;, *, _

(� Int{(1 ))) and the estimate of H� #, *(*̂q ($� {(1 ))
(Int{(1 )) | *̂q ($� {(1 ))

(� Int{(1 )))&H� #, *(*̂;, *, _Int{(1 )) | *̂;, *, _(� Int{(1 ))).
Using (6.10) we obtain from (6.30) our last estimate

ZA
#, ;, *(Int{(1 ) _ S(1 ) | q$� {(1 )))

=ZA
#, ;, *(S(1 ) | q($� {(1 )), *;, *, _(Int{(1 ))) exp(l&d

2 f A
&_(1 ), *, # |Int{(1 )|

& 1
2U(*;, *, _(Int{(1 )) | *;, *, _(� Int{(1 )))+ g� &_(1 )(Int{(1 ))+2

(6.32)

where |2|�c#1�4 |S(1 ).
A similar estimate is true for the denominator of (3.39) which after

integration over q($� {(1 )) implies (3.45). K

7. APPENDIX. POLYMER EXPANSION THEOREM

Consider a finite or countable set 3 the elements of which are called
(abstract) diagrams and denoted %, %$, etc. Fix some reflexive and sym-
metric relation on 3_3. A pair %, %$ # 3_3 is called incompatible (%t% %$)
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if it satisfies given relation and compatible (%t%$) in the opposite case.
A collection [%j ] is called a compatible collection of diagrams if any two its
elements are compatible. Every diagram % is assigned a complex-valued
statistical weight denoted by w(%), and for any finite 4�3 an (abstract)
partition function is defined as

Z(4)= :
[%j ]�4

`
j

w(%j ) (7.1)

where the sum is extended to all compatible collections of diagrams %i # 4.
The empty collection is compatible by definition, and it is included in Z(4)
with statistical weight 1.

A polymer ?=[%=i
i ] is an (unordered) finite collection of different

diagrams %i # 3 taken with positive integer multiplicities =i , such that for
every pair %$, %" # ? there exists a sequence %$=%i1

, %i2
,..., %is=%" # ? with

%ij t% %ij+1
, j=1, 2,..., s&1. The notation ?�4 means that %i # 4 for every

%i # ?.
With every polymer ? we associate an (abstract) graph G(?) which

consists of �i =i vertices labeled by the diagrams from ? and edges joining
every two vertices labeled by incompatible diagrams. It follows from the
definition of G(?) that it is connected and we denote by r(?) the quantity

r(?)=`
i

(=i !)&1 :
G$/G(?)

(&1) |G$| (7.2)

where the sum is taken over all connected subgraphs G$ of G(?) containing
all of �i =i vertices and |G$| denotes the number of edges in G$. For any
% # ? we denote by =(%, ?) the multiplicity of % in the polymer ?.

The polymer expansion theorem below is a modification of results of
[Se] and [KP] proven in [MSu]. See also [D3] for similar results.

Theorem 7.1. Suppose that there exists a function a(%): 3 [ R+

such that for any diagram %

:
%$: %$t% %

|w(%$)| ea(%$)�a(%) (7.3)

Then for any finite 4,

log Z(4)= :
?�4

w(?) (7.4)

where the statistical weight of a polymer ?=[%=i
i ] equals

w(?)=r(?) `
i

w(%i )
=i (7.5)
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Moreover, the series (7.4) for log Z(4) is absolutely convergent in view of
the estimate

:
?: ? % %

=(%, ?) |w(?)|�|w(%)| ea(%) (7.6)

which is true for any diagram %.

Corollary 7.2. For any function b(%): 3 [ R+ consider modified
statistical weights of diagrams

w~ (%)=w(%) eb(%) (7.7)

and suppose that still

:
%$: %$t% %

|w~ (%$)| ea(%$)�a(%) (7.8)

Then for any family, 6, of polymers such that any ? # 6 contains given
diagram %

:
? # 6

=(%, ?) |w(?)|�|w~ (%)| ea(%) _min
? # 6 \ `

%$ # ?

eb(%$)+&
&1

(7.9)

8. APPENDIX. A TECHNICAL LEMMA

Consider a spin model on the lattice Zd given by the formal
Hamiltonian

H(,)=:
x

,2
x+ 1

2 :
x{ y

Jxy,x,y+ :
A # A

KA ,A (8.1)

Here the spin variable ,x takes M discrete values, including 0, from the
bounded interval [&a, a]. The last sum runs over some family A of set
A=[x1 ,..., x |A| # Zd ] containing |A| not necessarily different sites x and
,A=>x # A ,x . The interaction, Jxy and KA , is of finite range R<�, i.e.,
Jxy=0 if dist(x, y)�R and KA=0 if diam(A)�R. Suppose that

:
y{x

|Jxy |=1&:, 0<:<1 (8.2)

and

:
A % x

a |A| |KA |<<: (8.3)
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and denote by +(,(4)) the corresponding Gibbs distribution in the finite
domain 4/Zd with zero (#empty) boundary condition in 4c.

Lemma 8.1. For any c>1 and sufficiently large inverse temperature

}>
M+R

c
(8.4)

one has

+( |,x |�}&5�12)�e&c}1�6
, \x # 4 (8.5)

Proof. for an arbitrary configuration ,(4) define spots S(,(4)) as
R-connected components of site x # 4 with |,x |�}&5�12. Taking x # S set

h(x, ,(4))= :
y{x

Jxy,x,y 1 |,x |�|,y |+ :
A # A: A % x

KA,A 1 |,x |�maxy # A
y{x

|,y | (8.6)

Then

H(,(S) | ,(4"S ))= :
x # S

h(x, ,(4)) (8.7)

and

h(x, ,(4))�
:
2

,2
x (8.8)

Here in (8.7)�(8.8) we used (8.2), (8.3) and the fact that |,x |�|,y | for any
x # S and y # �(R)S.

Now the probability that ,(4) contains a spot S with the fixed value
of ,(S) can be estimated as

+(,(S))=
�,(4"S) exp(&}H(,(S) | ,(4"S))&}H(,(4"S)))

�,(4) exp(&}H(,(4)))

�exp \&}
:
2

:
x # S

,2
x+

�,(4"S) exp(&}H(,(4"S)))

�,(4): ,(S)#0 exp(&}H(,(4)))

�exp \&
:
2

}1�6 |S |+
�,(4"S) exp(&}H(,(4"S)))

�,(4): ,(S)#0 exp(&}H(,(4)))

=exp \&
:
2

}1�6 |S |+ (8.9)
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Hence the probability of the spot S

+(S)= :
,(S)

+(,(S))�(c(8.4) }) |S | exp \&
:
2

}1�6 |S |+
�exp \&

:
4

}1�6 |S |+ (8.10)

where the last inequality is true for } large enough.
Finally for any x # 4

+( |,x |�}&5�12)= :
S % x

+(S)

� :
�

|S |=1

(c(8.4)}) |S | exp \&
:
4

}1�6 |S |+
� :

�

|S |=1

exp \&
:
8

}1�6 |S |+
�e&c}1�6

(8.11)

where again } is large enough. K

Let now +(0)(,x , ,y) and +(1)(,x , ,y) be a distribution at sites x, y # 4
of conditional Gibbs measures in 4 with two arbitrary boundary conditions
,� (0)(4c) and ,� (1)(4c) respectively. The Vasserstein distance R(+(0), +(1))
between +(0) and +(1) is given by some coupling +(, (0)

x , , (0)
y ; , (1)

x , ,(1)
y ). Denote

by ( } ) (0), ( } ) (1) and ( } ) the expectation with respect to +(0), + (1) and +
and suppose that 2a<1. Then

|(,x , ,y) (0)&(,x , ,y) (1)|

=( (, (0)
x &, (1)

x ) , (0)
y +(, (0)

y &, (1)
y ) , (1)

x )

�( (, (0)
x &, (1)

x )2) 1�2 ( (, (0)
y )2) 1�2+( (, (0)

y &,(1)
y )2) 1�2 ( (, (1)

x )2)1�2

�( |, (0)
x &, (1)

x |)1�2 ( (, (0)
y )2) 1�2+( |, (0)

y &, (1)
y |) 1�2 ( (, (1)

x )2) 1�2

�max(((,2
x) (0))1�2, ((,2

y) (1))1�2)

_max(R(+(0)(,x), +(1)(,x))1�2, R(+(0)(,y), +(1)(,y))1�2) (8.12)

Similarly one can estimate via the Vasserstein distance and the second
moment the difference |(>x # X ,x) (0)&(>x # X ,x) (1)| for any X/4.
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