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The variational principles called maximum entropy (MaxEnt) and maximum caliber (MaxCal)

are reviewed. MaxEnt originated in the statistical physics of Boltzmann and Gibbs, as a

theoretical tool for predicting the equilibrium states of thermal systems. Later, entropy

maximization was also applied to matters of information, signal transmission, and image recon-

struction. Recently, since the work of Shore and Johnson, MaxEnt has been regarded as a principle

that is broader than either physics or information alone. MaxEnt is a procedure that ensures that

inferences drawn from stochastic data satisfy basic self-consistency requirements. The different

historical justifications for the entropy S ¼ �Pipi logpi and its corresponding variational prin-

ciples are reviewed. As an illustration of the broadening purview of maximum entropy principles,

maximum caliber, which is path entropy maximization applied to the trajectories of dynamical

systems, is also reviewed. Examples are given in which maximum caliber is used to interpret

dynamical fluctuations in biology and on the nanoscale, in single-molecule and few-particle systems

such as molecular motors, chemical reactions, biological feedback circuits, and diffusion in

microfluidics devices.
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I. INTRODUCTION

The basic principles of statistical physics with applications
to physics and chemistry are given in standard texts (Tolman,
1938; Landau and Lifshitz, 1951; Hill, 1956; de Groot and
Mazur, 1962; Balescu, 1975; Chandler, 1987; Pathria, 1996;
McQuarrie, 2000; Dill and Bromberg, 2011). Even so, in
recent years, statistical physics developed in important new
ways. As its foundations became more rigorous and better
understood, it is now clear why entropy maximization prin-
ciples (MaxEnt) also apply beyond problems of equilibrium
statistical physics to other areas of science and technology
(Ben-Naim, 1985; Denbigh and Denbigh, 1985). Entropy
maximization principles provide a framework for understand-
ing dynamics that is as sound as its foundations of equilibria.
We refer to path entropy maximization principles applied to
dynamics as maximum caliber (MaxCal) (Jaynes and Haken,
1985). Entropy maximization is poised to play a role in
interpreting a growing number of new experiments on single
molecules or few-particle systems, particularly in biophysics
and nanoscience (Hamill et al., 1981; Methfessel et al., 1986;
Livesey and Brochon, 1987; Siemiarczuk, Wagner, and Ware,
1990; Steinbach et al., 1992; Hille, 1994; Schnitzer and
Block, 1995; Lu, Xun, and Xie, 1998; Liphardt et al., 2001;
Elowitz et al., 2002; Yang and Xie, 2002; Yang et al., 2003;
Rhoades et al., 2004; Witkoskie and Cao, 2004, 2008;
Cecconi et al., 2005; Lezon et al., 2006; Schneidman et al.,
2006; Huang et al., 2007; Vergassola, Villermaux, and
Shraiman, 2007; Sanchez and Kondev, 2008; Shahrezaei
and Swain, 2008; Southworth and Agard, 2008; Moffitt
et al., 2009; Tkacik, Walczak, and Bialek, 2009; Eldar and
Elowitz, 2010; Walczak, Tkacik, and Bialek, 2010; Yu et al.,
2010; Bustamante, Cheng, and Mejia, 2011).

In some cases, MaxEnt and MaxCal differ from more
traditional methods of model making (Gillespie, 1977; van
Kampen, 1981; Arkin and Ross, 1995; Qin, Auerbach, and
Sachs, 1997, 2000; Rao and Arkin, 2003; Ross, 2003;
Paulsson, 2004, 2005; Bratsun et al., 2005; El Samad et al.,
2005; Flomenbom, Klafter, and Szabo, 2005; Kaern et al.,
2005; Kou et al., 2005; Milescu, Akk, and Sachs, 2005;
Samoilov, Plyasunov, and Arkin, 2005; Warren and ten
Wolde, 2005; Flomenbom and Silbey, 2006; Lipshtat et al.,
2006; McKinney, Joo, and Ha, 2006; Schultz et al., 2007; Cao
and Silbey, 2008; Raj and van Oudenaarden, 2008; Wang, Xu,
and Wang, 2008; Çağatay et al., 2009; Munsky, Trinh, and
Khammash, 2009). Rather than assuming a model and adjust-
ing parameters to fit data, MaxEnt and MaxCal are often used
in the reverse direction, to infer models more directly from
the data themselves.

We first review the history of thought about the foundations
of MaxEnt in statistical physics. It has been known for more
than a century how to apply the methods of equilibrium
statistical physics, namely, how to find equilibrium states

on the basis of maximizing entropy or minimizing free energy
and how to apply the Boltzmann distribution law. There have
been changing viewpoints on how to justify those methods.
Such foundations are important because they determine the
extent of applicability of the method. We describe three main
mileposts along the way: (1) Boltzmann’s maximum-
multiplicity justification and Gibbs’ ensemble method for
predicting the equilibrium properties of gases; (2) Jaynes’
formulation, based on Shannon’s information theory, in
which statistical physics is regarded as a matter of making
predictions from limited data by assuming maximal igno-
rance about the unknown degrees of freedom; and (3) more
recently, the formulation of Shore and Johnson that views the
maximization of entropy in a much broader light, as a fun-
damental requirement for ensuring that inferences drawn
from data satisfy basic self-consistency requirements of
probabilities.

II. A BRIEF HISTORY OF MAXIMUM ENTROPY

Statistical physics originated in the mid-1800s in an effort
to understand the gas laws. The gas laws were crucial for
understanding how to convert heat to motive force during the
industrial revolution (Brush, 1975, 1976, 1983). Statistical
physics is the story of entropy and its usage as a variational
principle for making predictions (Clausius, 1850a, 1850b).
In 1865, Clausius coined the term entropy to refer to the
quantity q=T (Brush, 1975), where q is the heat and T is
temperature. Entropy arose as a key predictor of equilibria
when used in conjunction with its maximization principle,
called the second law. The average velocity of gas molecules
at equilibrium in a container is h ~vi ¼ 0. However, the mean-
square velocity is not zero; early theoretical developments
showed it to be h ~v2i ¼ 3kBT=m, where kB is Boltzmann’s
constant, T is temperature, and m is the mass of the gas
molecule. This expression was central to formulating the
kinetic theory of gases. The implication of this nonzero
variance is that understanding gas behavior requires distri-
bution functions, not just average quantities. In 1858,
Clausius derived the mean free paths of gas molecules using
probabilistic arguments based on the law of the distribution
of errors (Brush, 1976). Maxwell made more quantitative
arguments in the 1860s, predicting that such velocity distri-
butions were Gaussian (Brush, 1975). Boltzmann general-
ized this further, treating gases in the presence of potentials
(Lindley, 2001), and deriving what is now called the
Maxwell-Boltzmann distribution, thus establishing the basis
for the kinetic theory of gases, a major success for theoreti-
cal physics at the time.

Boltzmann’s justification of theMaxwell-Boltzmann distri-
bution was based on the following ideas. Gas particles occupy
small volumetric cells i ¼ 1; 2; 3; . . . ; s of phase space, with
occupation numbers ni. Particle number is conserved soP

ini ¼ N, where the constant N is the number of gas mole-
cules. The number of ways W that any particular distribution
fnig of particles will fall within their respective volumetric
cells in phase space is given by the multinomial formula

W ¼ N!=ðn1! . . . ns!Þ: (1)

Boltzmann recognized that the entropy S was propor-
tional to the logarithm logW of the multiplicity. Taking the
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logarithm of W and approximating the factorial for large N
using Stirling’s formula gives

logW ¼ logN!�X
i

logni! � �N
X
i

ðni=NÞ logðni=NÞ

¼ �NX
i

pi logpi; (2)

where pi ¼ ni=N is taken to be the probability that a particle
is in cell i, provided N is sufficiently large. Boltzmann then
asserted that the occupation probabilities fpig of the most
probable state at equilibrium are those that maximize the
entropy, S ¼ �kB

P
ipi logpi / logW, and which also satisfy

two constraints on the total particle number N, and on the
average energy (per particle) �",X

i

pi ¼ 1;
X
i

pi"i ¼ �": (3)

The proportionality constant kB, Boltzmann’s constant, sets
the units of S. The state of equilibrium is computed by
maximizing the entropy subject to the constraints, using the
variational function

SðfpigÞ=kB � �

�X
i

pi"i � �"

�
� �

�X
i

pi � 1

�
; (4)

where � and � are Lagrange multipliers. This variational
function has sþ 2 unknowns: s different pi’s and two
Lagrange multipliers. Variation of Eq. (4) with respect to
each pi and the Lagrange multipliers uniquely determines the
sþ 2 unknowns. The fpig values that maximize the varia-
tional function are

p�i ¼
e��"iP
k e
��"k : (5)

This is called the Boltzmann distribution. The fp�i g values
predict the most probable occupation probabilities at equilib-
rium. Boltzmann’s approach did not require more detail, such
as knowledge of the individual trajectories of the particles. His
reasoning provided the logic for solving a highly underdeter-
mined problem. He was able to assign a value to the large
number of unknowns, the fp�i g and the Lagrange multipliers,

from two simple constraints. Boltzmann’s reasoning has been
described as a ‘‘superefficient’’ way to capture the essential
mathematical ingredients (Jaynes, Levine, and Tribus, 1979):
‘‘Whether by luck or inspiration, he [Boltzmann] put into his
equations only the dynamical information that happened to be
relevant to the questions he was asking.’’

However, Boltzmann’s neglect of the details of individual
trajectories was controversial at the time. Justifying his pre-
dictions without using a system’s dynamics appeared to
require the ergodic hypothesis, the assertion that the time
average of a property taken over its dynamical trajectory
equals the equilibrium average of that property over its
equilibrium ensemble. Much work followed and continues
to explore the relevance of treating the detailed dynamics.
Boltzmann’s own work beginning in 1872 led to his cele-
brated H theorem and the Boltzmann transport equation
(Fowler, 1938; Tolman, 1938). Objections about the ergodic-
ity assumption were raised by Loschmidt (Jaynes, Levine,
and Tribus, 1979; Brush, 1983), Poincaré, and Zermelo
(Brush, 1983) throughout the 1890s.

To circumvent the problems of dynamics and ergodicity,
J.W. Gibbs applied the method of ensembles to equilibrium
statistical mechanics (Boltzmann, 1896; Gibbs, 1902; Fowler,

1938; Tolman, 1938). Gibbs noted that ‘‘here we may set the
problem, not to follow a particular system through its succes-
sion of configurations, but to determine how thewhole number
of systems (an ensemble) will be distributed among the various
conceivable configurations and velocities at any required

time.’’1 An advantage of ensemble-based reasoning was its
ability to predict experimentally observed system properties
without the need to invoke ergodicity. Gibbs argued that at
equilibrium the classical phase-space distributions must de-
pend only on conserved quantities, such as energy, in order to

preserve the time invariance of the phase-space density (Gibbs,
1902). In addition, he noted that the phase-space density must
also be non-negative and normalizable. These conditions,
energy conservation and normalizability of the phase-space

density, resemble Boltzmann’s conditions for deriving the
equilibrium distribution of particles. Gibbs noted that the
exponential form of canonical equilibrium weights had
‘‘the property that when the system consists of parts with
separate energies, the laws of the distribution in phase of the

separate parts are of the same nature (Gibbs, 1902).’’ Gibbs
reasoned that a closed system’s phase-space distribution,while
depending on all coordinates and momenta, must depend on
these only through conserved quantities such as energyE from
Liouville’s equation. Then, by subdividing a system into two

parts, having energies EA and EB, the phase-space distribution
�ðAþ BÞ must satisfy �ðAþ BÞ ¼ �ðAÞ�ðBÞ to be of the
same ‘‘nature’’ for separate system parts. Gibbs showed that
the only function that can satisfy this equality is the exponen-
tial �ðAÞ / expð�EAÞ, where both � and the proportionality

constants are independent of A. This ensemble-based logic
leads to the Maxwell-Boltzmann velocity distribution (Gibbs,
1902). While Gibbs’ derivation was different from
Boltzmann’s, its key property �ðAþ BÞ ¼ �ðAÞ�ðBÞ is the
same as the key property of Boltzmann’s, namely, that the

multiplicity of a system is the product of multiplicities of two
independent subsystems WAþB ¼ WAWB.

Presciently, Gibbs noted that (Gibbs, 1902) ‘‘although, as a
matter of history, statistical mechanics owes its origin to
investigations in thermodynamics, it seems eminently worthy
of an independent development, both on account of the ele-
gance and simplicity of its principles, and because it yields new

results and places old truths in a new light in departments quite
outside of thermodynamics.’’ We next describe various steps
taken in more recent years toward fulfilling that ambition:
(1) C. Shannon (1948) developed information theory, based

on a quantity that he also called entropy, S ¼ �Pipi logpi;
(2) E. T. Jaynes, assembling insights from both Gibbs and
Shannon, formulated statistical physics as a tool to draw
inferences about unknown quantities from limited data
(Jaynes, 1957a, 1957b); (3) more recently, Shore and

Johnson (1980), Livesey, Skilling and Gull, and others in the
1980s–1990s (Skilling, 1984; Skilling and Bryan, 1984;
Livesey and Skilling, 1985; Livesey and Brochon, 1987;
Skilling, Erickson, and Smith, 1988; Gull and Skilling, 1989;

1Jaynes (Jaynes, Levine, and Tribus, 1979) notes that the idea of

ensembles predates Gibbs and is attributable to Maxwell.
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Bryan, 1990; Skilling and Gull, 1991) broadened the
intellectual landscape beyond the idea that entropy maximi-
zation was either just a matter of information or just of
physics, to the perspective that entropy maximization is the
only self-consistent procedure for inferring a probability
distribution.

III. SHANNON’S INFORMATION THEORY AND THE

MAXIMIZATION OF UNCERTAINTY

A. In information theory, entropy serves as a measure of

uncertainty

In 1948, Claude Shannon considered a very different prob-
lem. Shannon was interested in the capacities of telecommu-
nication lines to transmit information (Shannon, 1948). He
wanted to minimize the average number of bits needed to
encode characters in messages that were sent through noisy
channels. For this problem, he derived a variational procedure
that resembles the entropy maximization described above.

To illustrate Shannon’s idea, consider a signal that passes
through a communication channel. Suppose the message is a
linear string of symbols that isM characters long, where each
character is drawn independently from an r-letter alphabet,
with probability pi. Let mi (i ¼ 1; 2; 3; . . . ; r) represent the
number of times that the ith type of character is observed in
the message. When M is large, the most likely M-letter
message will have the composition mi ¼ Mpi, and this oc-
curs with probability

P � pm1

1 � � �pmr
r ¼ pMp1

1 � � �pMpr
r : (6)

In the limiting case of an alphabet having only a single letter,
the probability of knowing the message is P ¼ 1, because
there is only one possible string of characters. The larger the
alphabet is, the smaller the value of P and the greater the
uncertainty of receiving a particular message. The logarithm
of 1=P, H ¼ logð1=PÞ ¼ �MP

pi logpi, is sometimes
called the uncertainty or missing information. Jaynes credits
Graham Wallis with similar reasoning in arguing for the
mathematical form of the uncertainty (Jaynes, 2003).

Throughout this review, we use the notation HðfpigÞ not
only to mean the entropy function SðfpigÞ itself. We also use
this notation in derivations to denote a hypothetical functional
form that will satisfy certain requirements and axioms.
Shannon noted that this mathematical form of H given above
is the same as the entropy function SðfpigÞ of Gibbs and
Boltzmann. It can also be seen as follows. Note that there
are many particular sequences consistent with the most likely
message. Each of these most likely messages, having com-
position mi ¼ Mpi, will occur with probability P. Other
messages with mi � Mpi are exponentially less likely, in
the limit of large N. This result is called the asymptotic
equipartition theorem (Shannon, 1948; Feinstein, 1958). If
each of the most likely messages has probability P, then there
are a total of 1=P of them. The value 1=P is the degeneracyW
of the most likely message. Thus, maximizing W is equiva-
lent to maximizing 1=P. By maximizing the function H with
respect to the fpig’s, we can predict what composition of
letters (fpi ¼ p�i g) will be observed in the most probable

message sent using a given alphabet. This argument shows
how the maximization of the quantity�P

pi logpi arises just

as naturally in matters of information theory as the max-

imization of W arises in equilibrium physics.
Before discussing the relevance of information theory to

statistical physics, we first describe the limitations of this
simple argument, and efforts to find a sounder justification of

�P
pi logpi as a maximization principle. First, the argument

above is based on the frequentist interpretation of probabil-

ities. In the frequentist interpretation, a probability is esti-

mated as the fraction of times an outcome is observed in a

large number of random trials. The frequency of appearance

of each face of a die is readily determined by rolling a die

many times, then dividing the number of appearances of each
outcome by the total number of dice rolls.

In the example above, we assumed that we see a large

number of messages, from which we can compute the fre-

quencies pi ¼ mi=M of the different letters. But what if only

one message is seen? Such considerations are relevant to

interpreting single-molecule experiments, for example, where

only a single trajectory is observed.
Alternative to the frequentist interpretation is the subjective

interpretation of probabilities. In the subjective interpretation,

the concept of probability is not limited to situations that are

replicable. Rather, in the subjective interpretation, a probabil-

ity characterizes an observer’s inference based on prior knowl-

edge (Cox, 1961; Jaynes, 2003). In this perspective, the rules of

probability are simply ways to draw inferences from premises.
For instance, the probability of rain tomorrow, say pi, is a

quantity that can be estimated, even though it is not describable

by a repeatable experiment. In this instance it makes no sense

to speak of a ratio such as pi ¼ mi=M because the number of

times it rains tomorrow is not an enumerable quantity. Jaynes

attributes to Bernoulli (Jaynes, Levine, and Tribus, 1979) the

thought that the enumeration of options ‘‘may be done in a very

few cases and almost nowhere other than in games of chance
the inventors of which, in order to provide equal chances to all

players, took pains to set up so that the numbers of cases would

be known.’’ For themessaging problem above, wewant amore

general derivation that does not require observing a large

number of messages.
In short, the subjective interpretation of probability is

broader than the frequentist interpretation. There has been
much interest in learning whether �P

pi logpi and its usage

as a maximization principle are also justified when probabil-

ities are interpreted subjectively, rather than just as frequen-

cies. Shannon developed such a derivation.

B. Shannon derived H ¼ �P
pi logpi as a measure of

uncertainty

We return to the channel-capacity argument of Shannon,
but now framed in the broader terms of probabilities, fpig; i ¼
1; 2; 3; . . . ; N, interpreted subjectively. Shannon began with

some basic premises. He then derived a variational function

H which, when maximized subject to certain properties of the

data, returns the minimal number of bits required to represent

each character. Following Jaynes (1957a), here are the three

axioms that Shannon asserted must be satisfied by a proper
measure of uncertainty HðfpigÞ over a set of probabilities

fpig. The principles, described below, lead to the conclusion

that H must be proportional to �Pipi logpi.
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The axioms are as follows: (1) H must be a continuous
function of the pi’s; (2) if the pi’s are all equal (pi ¼ 1=N),
then the uncertainty H must be a monotonically increasing
function of N. That is, the larger the size of the alphabet of
characters, the larger the uncertainty. And (3) H must satisfy
the following composition property:

Hðp1; . . . ;pNÞ¼HðP1;P2; . . .ÞþP1H

�
p1

P1

; . . . ;
pn1

P1

�

þP2H

�
pn1þ1
P2

; . . . ;
pn1þn2
P2

�
þ��� ; (7)

where we regrouped terms, such that p1 þ � � � þ pn1 ¼ P1,

and pn1þ1 þ � � � þ pn1þn2 ¼ P2, and so forth.

We now briefly motivate Shannon’s composition property
with a simple example. Following Skilling (1984), we imagine
a collection of kangaroos. Kangaroos are either left handed (‘)
or right handed (r), with probabilitiesp‘ orpr, respectively. In
addition, kangaroos are either blue eyed (b), green eyed (g), or
hazel eyed (h), with probabilities pb, pg, or ph, respectively.

Suppose handedness is independent of eye color. We have two
normalization conditions for these outcomes, p‘ þ pr ¼ 1
andpb þ pg þ ph ¼ 1.We express the uncertainty of handed-

ness alone as the quantity Hðp‘; prÞ, the uncertainty of eye
color alone as Hðpb; pg; phÞ, and the uncertainty of eye color

and handedness combined as Hðp‘b; prb; p‘g; prg; p‘h; prhÞ.
We refer to p‘b, prb, p‘g, prg, p‘h, prh as the probabilities for

suboutcomes to distinguish these from the probabilities for
outcomes, p‘, pr, pb, pg, ph. For the function H to properly

reflect our uncertainty, it must be additive across the indepen-
dent variables (Livesey and Skilling, 1985),

Hðp‘b; prb; p‘g; prg; p‘h; prhÞ
¼ Hðp‘; prÞ þHðpg; pb; phÞ: (8)

For instance, the uncertainty in eye color must be equal to
Hðpg; pb; phÞ, irrespective of whether it is applied to all

kangaroos or to only left-handed kangaroos [that is, when
Hðp‘; prÞ ¼ 0], since handedness and eye color are indepen-
dent properties. Equation (8) expresses that eye color and
handedness obey system independence.

Next we expand Eq. (8) using p‘ þ pr ¼ 1,

Hðp‘b;prb;p‘g;prg;p‘h;prhÞ
¼Hðp‘;prÞþp‘Hðpg;pb;phÞþprHðpg;pb;phÞ: (9)

The independence of the two systems requires that pg ¼
p‘g=p‘ ¼ prg=pr, pb ¼ p‘b=p‘ ¼ prb=pr, ph ¼ p‘h=p‘ ¼
prh=pr, leading to

Hðp‘b; prb; p‘g; prg; p‘h; prhÞ

¼ Hðp‘; prÞ þ p‘H

�
p‘g

p‘

;
p‘b

p‘

;
p‘h

p‘

�

þ prH

�
prg

pr

;
prb

pr

;
prh

pr

�
: (10)

Equation (10) says that the uncertainty over the suboutcomes
Hðp‘b; prb; p‘g; prg; p‘h; prhÞ is the uncertainty of the out-

comesHðp‘; prÞ plus the weighted sum of the uncertainties of
the suboutcomes in each case. However, Eq. (10) is not quite
Shannon’s composition property. In Shannon’s expression,

the ni’s need not be identical; in contrast, by construction
they are identical in Eq. (10). Shannon’s composition prop-
erty is a generalization of Eq. (10) for arbitrary regroupings of
suboutcomes where suboutcomes are assumed to be indepen-
dent of one another. As we will see shortly, this is related to
the concept of subset independence.

The composition property, Eq. (7), is a recursion equation
forH. We can use it to solve forH as follows. First, we define
pi¼1=N�1=

P
ini and Pi ¼ ni=

P
ini. From Eq. (7) we have

Hð1=N; . . . ; 1=NÞ ¼ HðP1; P2; . . .Þ

þX
i

PiH

�
1

ni
; . . . ;

1

ni

�
: (11)

Defining AðmÞ�Hðfp1¼1=m; . . . ;pm¼1=mgÞ, we rewrite
the above as

AðNÞ ¼ A

�X
i

ni

�
¼ HðP1; P2; . . .Þ þ

X
i

PiAðniÞ: (12)

Choosing all ni ¼ m, we have

AðNÞ ¼ AðN=mÞ þ AðmÞ: (13)

Equation (13) is sufficient to specify the functional form for
H. To see this, we take the derivative of Eq. (13) with respect
to m to get

� dAðmÞ=dm ¼ � N

m2

dAðN=mÞ
dðN=mÞ : (14)

Now, substitute m ¼ 1 into Eq. (14) to get

A0ð1Þ
N
¼ A0ðNÞ; (15)

where A0ð1Þ is defined as dAðmÞ=dm evaluated at m ¼ 1.
Solving Eq. (15) gives

AðNÞ ¼ K logN; (16)

where we set the arbitrary integration constant 0 to satisfy
Að1Þ ¼ 0, and we choose K ¼ A0ð1Þ> 0 because condition 2
requires that H increase monotonically with N.

Substituting AðNÞ ¼ K logN back into Eq. (12), we find

HðfPigÞ ¼ �K
X
i

Pi logPi; (17)

where Pi ¼ ni=
P

ini. Shannon argues that if Pi is an irratio-
nal number, then Pi may be approximated by a rational
fraction. Condition 1 (the continuity premise) thereby ensures
that Eq. (17) must hold in general.

Since the variable labels fPig in Eq. (17) are arbitrary, we
can rewrite the above using fpig instead. The state of maxi-
mum uncertainty is then predicted as the distribution that
maximizes H,

maxHðfpigÞ ¼ max

�
�X

i

pi logpi

�
; (18)

where the maximization is with respect to each member of the
set fpig. Equation (18) gives the same expression as the simpler
frequentist argument of Boltzmann, namely, that the most
probable message is simply the one that can be produced in
the largest number of ways. Shannon’s derivation, however,
has the advantage of showing that the quantity H satisfies
axiomatic properties expected of a measure of uncertainty,

Pressé et al.: Principles of maximum entropy and maximum . . . 1119

Rev. Mod. Phys., Vol. 85, No. 3, July–September 2013



even when the pi’s are not drawn from frequencies of
replicable experiments and even if the pi’s are not proper
probabilities [i.e., not normalized to sum to 1 (Skilling and
Gull, 1991)].

IV. JAYNES REGARDED STATISTICAL PHYSICS

AS AWAY TO DRAW INFERENCES FROM

INCOMPLETE INFORMATION

In 1957, E. T. Jaynes brought the information-theoretic
arguments of Shannon to bear on statistical physics (Jaynes,
1957a, 1957b). Shannon had already noted that (Shannon,
1948) ‘‘Quantities of the form H ¼ �P

pi logpi . . . will be
recognized as that of entropy as defined in certain formula-
tions of statistical mechanics where pi is the probability of a
system being in cell i of its phase-space.’’ However, Jaynes
(1957a) remarked that ‘‘The mere fact that �Pipi logpi

occurs both in statistical mechanics and in information
theory does not in itself establish any connection between
these fields.’’ Jaynes then argued that the business of statis-
tical physics was to infer which particular probability distri-
bution fpig is (1) consistent with data (such as the measured
average energy per particle �"), and (2) that otherwise has the
least possible bias with respect to all other degrees of free-
dom. In this way, Jaynes recast statistical mechanics as a
method of inferring probability distributions from limited
data.

In Jaynes’ procedure, inferences are drawn by maximizing
the entropy S ¼ �kB

P
pi logpi subject to constraints. Since

the data are limited, many different probability distributions
are consistent with the data. The choice is made by finding the
set fpig that both maximizes the entropy and satisfies the
constraints. For instance, to infer the canonical distribution of
particles, two constraints are imposed: (1) the normalizationP

ipi ¼ 1 and (2) the given value of the average energy �E
estimated as hEi � P

ipiEi, where hEi is the theoretical
expectation value based on the set fpig. Note that, Ei denotes
energy levels of a system of particles in contrast to "i, used
earlier, to denote single-particle energy levels. Operationally,
this is done by solving the equation

�

�
S=kB��

�X
i

piEi� �E

�
��

�X
i

pi�1

��
¼0; (19)

where the variation is with respect to each pi and the Lagrange
multipliers. As before, the Lagrange multiplier � assures the
normalization of thepi’s and� enforces the knownvalue of the
average energy (which is identical to fixing the temperature in
the canonical ensemble). The solution is

p�i ¼ Q�1 expð��EiÞ; (20)

where Q ¼ P
i expð��EiÞ is the partition function for the

canonical ensemble. The starred probabilitiesp�i are the values
of the pi’s that maximize the entropy and satisfy the con-
straints. While this procedure gives exactly the same distribu-
tion law that Boltzmann obtained much earlier, Jaynes’
justification for it was quite different. His derivation was based
on maximizing H while satisfying data constraints, not on
the basis of dynamical considerations (Jaynes, 1957a).
This appears to be close to Gibbs’ own earlier perspective

(Gibbs, 1902). Jaynes’ ideas immediately extend to the micro-
canonical formalism of statistical mechanics.2

In thermodynamics, the relevant predictor of equilibrium is
not the general entropy function SðfpigÞ but rather the post-
maximization value of the entropy

Smax ¼ Sðfp�i gÞ ¼ �kB
X
i

p�i logp�i

¼ kB logQþ kB�hEi ¼ ð�Fþ hEiÞ=T;
where F ¼ �kBT logQ is the free energy, and � ¼ 1=kBT,
obtained from @Smax=@hEi ¼ 1=T.

Jaynes’ information-theoretic perspective on statistical
physics, however, was not unanimously embraced. Why
should someone’s state of knowledge or uncertainty have
any bearing on physics? H, as uncertainty, was construed as
a property of an observer, whereas the physical state of a
system should not depend on the observer. Jaynes cites
G. Uhlenbeck (Jaynes, Levine, and Tribus, 1979) who re-
marked that ‘‘Entropy cannot be a measure of ‘amount of
ignorance,’ because different people have different amounts
of ignorance; entropy is a definite physical quantity that can
be measured in the laboratory with thermometers and calo-
rimeters.’’ Tikochinsky, Tishby, and Levine (1984) noted that
‘‘there are many scientists who are reluctant to use the
procedure (MaxEnt) because of its reliance on the so-called
subjective notion of missing information. Others consider that
the concept of the entropy function should not be used outside
of its original contexts.’’

V. SHORE AND JOHNSON: MAXIMIZING ENTROPY

IS AWAY TO DRAW CONSISTENT INFERENCES

In response to these objections, another view emerged in the
1980s, due to Shore and Johnson (1980, 1981), Livesey,

2Using a similar reasoning to that of Eq. (19), it is also possible to

fix the total energy E to infer the microcanonical distribution of

statistical mechanics. In this case, the constraint is pi ¼ 0 for

microstates with Ei � EX
i;Ei�E

pi ¼ 0; (21)

which we rewrite asX
i

pið1� �Ei;EÞ ¼ 0: (22)

We then vary the entropy under the constraints above in addition to

the normalization over the pi’s imposed using Lagrange multipliers

� and �, respectively,

�

�
S=kB � �

�X
i

pið1� �Ei;EÞ
�
� �

�X
i

pi � 1

��
¼ 0: (23)

Variation with respect to pi yields

pi ¼ e���1 ðEi ¼ EÞ; pi ¼ e���1�� ðEi � EÞ: (24)

The constraints determine the values for � and �. The resulting

probability distribution is (Lee and Pressé, 2012b)

pi ¼ �Ei;E=�ðEÞ; (25)

which is that expected for the microcanonical ensemble with �ðEÞ
denoting the total number of microstates with energy E.

1120 Pressé et al.: Principles of maximum entropy and maximum . . .

Rev. Mod. Phys., Vol. 85, No. 3, July–September 2013



Skilling, Gull, and others (Skilling, 1984; Skilling and Bryan,
1984; Livesey and Skilling, 1985; Livesey and Brochon, 1987;
Skilling, Erickson, and Smith, 1988; Gull and Skilling,
1989; Skilling and Gull, 1991). Described next, this perspec-
tive embodied a transition from seeingH ¼ �P

pi logpi as a
measure of uncertainty, to seeing the maximization ofH as the
only self-consistent way to draw inferences about probability
distributions. Shore and Johnson state that ‘‘We offer an alter-
native approach to the problem of induction which does not
involve Shannon’s entropy nor any references to subjective
considerations. Rather, we start from consistency conditions
which must be satisfied by any algorithm for inducing a
probability distribution, for a reproducible experiment. Our
approach does not rely on intuitive arguments or on the
properties of entropy and cross-entropy as information mea-
sures. Rather, we consider the consequences of requiring that
methods of inference be self-consistent.’’

The approach of Shore and Johnson (1980) (SJ) represents
a shift away from the view (of Shannon and Jaynes) in which
H is the central object of interest to the view in which the
maximum of H subject to constraints is the central object of
interest.3 SJ assert that the maximum of H with constraints
should be (1) unique, (2) invariant with respect to coordinate
transformation, (3) subset-independent (i.e., the relative prob-
abilities for two subsets of outcomes within a system should
not depend on other subsets if data are provided on each
subset independently), and (4) system independent (i.e., the
joint outcome for two independent systems must be the
product of marginal probabilities if data are provided for
systems independently), as described below.

The starting point for SJ is the function

Hðfpi; qigÞ � �

�X
i

aipi � �a

�
; (26)

where a is some property of interest of the distribution
function pi, �a is a known average, and � is the Lagrange
multiplier that enforces the constraint.4 The quantity qi is the
prior distribution for pi (that is, the value to which each pi

defaults when no data are known) and therefore no constraints
are imposed. Fixing some quantities or obtaining new knowl-
edge can lead us to infer a distribution fpig that is not equal to
the prior.

We follow loosely the derivation given by SJ and others
(Livesey and Skilling, 1985). Since we are only concerned
with the maximum of Eq. (26) with respect to each of the
fpig’s, we can neglect the term � �a above. In order to deter-
mine the functional form of H, we first invoke SJ’s axiom 3,
subset independence. Suppose that the probability of cell
j is increased while that of cell k is decreased (subject toP

ipi ¼ 1), as a consequence of some observation or knowl-
edge of a property of the distribution. In other words, we
apply the operator @pj

� @pk
to H � �

P
iaipi. How is the

location of the maximum of this function altered with respect
to all the other cells, l � k, j? According to SJ axiom 3, this
redistribution of probability among the j and k bins does not
change the probability in other cells l, so

@pl
ð@pj
� @pk

Þ
�
H � �

X
i

aipi

�
¼ 0: (27)

Since l can label any other cell (l � k, j), Eq. (27) shows that
this particular derivative ð@pj

� @pk
ÞH must depend only on j

and k. Following that logic one step further, the derivative of
each such variable j and kmust depend only on its own index.
That is, @pm

H (m � l) must depend only on m. Thus, we find

that, when H is used within a maximization procedure, it is
decomposable into a sum over cell-level quantities,

H ¼X
i

fðpi; qiÞ; (28)

where qi is a prior for pi which we will discuss shortly. So
far, we considered a discrete system, over states i, for
simplicity. However, for the next steps in the SJ argument,
we switch to a continuum representation. Equation (28)
becomes H¼RD½x�fðpðxÞ;qðxÞÞ with D½x� denoting the

integration measure.
Next we impose SJ’s axiom 2, coordinate invariance.

Under any coordinate transformation, x! y, we have
D0½y� ¼D½x�J, where J is the corresponding Jacobian. By
assuring that both p and q remain normalized upon any
coordinate transformation, we have p0 ¼ J�1p, q0 ¼ J�1q.
In addition, in order to ensure that the constraint quantityR
D½x�pðxÞaðxÞ is also preserved under coordinate transfor-

mation, we find that a0 ¼ a. Thus, under coordinate
transformation we have H0 ¼ R

D½x�JfðJ�1pðxÞ; J�1qðxÞÞ.
What functional form of H leaves the maximum of
H � �

R
D½x�pðxÞaðxÞ invariant with respect to coordinate

transformation? The maximum with respect to p of
H � �

R
D½x�pðxÞaðxÞ is obtained by solving

� �aðxÞ þ g½pðxÞ; qðxÞ� ¼ 0; (29)

where g½pðxÞ; qðxÞ� ¼ @f½pðxÞ; qðxÞ�=@pðxÞ. Next, the maxi-
mum with respect to p0 of H0 � �0

R
D0½y�p0ðyÞa0ðyÞ is ob-

tained by solving

��0a0ðyÞþg½p0ðyÞ;q0ðyÞ�
¼��0aðxÞþg½J�1pðxÞ;J�1qðxÞ�¼0: (30)

Combining Eqs. (29) and (30) we have

g½J�1pðxÞ;J�1qðxÞ�¼ ð�0 ��ÞaðxÞþg½pðxÞ;qðxÞ�: (31)

The Jacobian J is an arbitrary function and � and �0 are
constants. Therefore Eq. (31) can only be true if the Jacobian
vanishes from the left-hand side of Eq. (31). This happens
when g½J�1pðxÞ; J�1qðxÞ� ¼ g½pðxÞ=qðxÞ� and, therefore,
f½pðxÞ; qðxÞ� ¼ pðxÞh½pðxÞ=qðxÞ� þ �½qðxÞ�, where h is thus
far an unspecified function of pðxÞ=qðxÞ and where we can
drop the irrelevant constant � depending only on qðxÞ.53We present the argument of Shore and Johnson with a sign

change: their focus was a function to be minimized.
4Here we use a single constraint on the quantity a, and we take it

to be an equality. Also, for now we consider the discrete index i,
rather than the more general continuum function considered by SJ.

We do this for simplicity here. These assumptions are all readily

generalized. We also add that SJ label pi their prior and qi their
posterior; this is the opposite of how these are introduced here.

5For a discussion on the issue of coordinate invariance, see

Jaynes’ discussion of transformation groups as well as discussions

on Jeffreys’ prior, the uninformative prior which is invariant with

respect to coordinate transformation (Jeffreys, 1946, 1948; Jaynes,

1968, 2003).
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Finally, we invoke SJ’s axiom 4, system independence.
Consider two independent systems described by the coordi-
nates x1 and x2, with independent constraintsZ

D½x�akðxkÞpðx1; x2Þ ¼ Ak ðk ¼ 1; 2Þ: (32)

Defining H ¼ R
D½x�pðxÞhðrÞ, where rðxÞ � pðxÞ=qðxÞ and

x � fx1; x2g, variation with respect to p of Eq. (26) gives

�

�pðxÞ
�
H � �1

Z
D½x�pðx1; x2Þa1ðx1Þ

� �2

Z
D½x�pðx1; x2Þa2ðx2Þ

�
¼ h½rðxÞ� þ rðxÞh0½rðxÞ� � �1a1ðx1Þ � �2a2ðx2Þ
¼ h½r1ðx1Þr2ðx2Þ� þ r1ðx1Þr2ðx2Þh0½r1ðx1Þr2ðx2Þ�
� �1a1ðx1Þ � �2a2ðx2Þ ¼ 0; (33)

where rðxÞ is equated to r1ðx1Þr2ðx2Þ in the last line using the
system independence. Taking derivatives of the rightmost
equality of Eq. (33) with respect to x1 and x2, yields

r01ðx1Þr02ðx2Þ½r21r22h000ðr1r2Þ
þ4r1r2h

00ðr1r2Þþ2h0ðr1r2Þ�¼0; (34)

from which we obtain

r2h000ðrÞ þ 4rh00ðrÞ þ 2h0ðrÞ ¼ 0: (35)

The solution of Eq. (35) is hðrÞ ¼ �K logðrÞ þ Bþ C=r
where K, B, C are constants. We conclude that H must
have the functional form

H ¼ �K
Z

D½x�pðxÞ log½pðxÞ=qðxÞ� (36)

up to a positive multiplicative factorK, and additive constants
B and C that we are free to set to zero. Alternatively, we can
express this in a discrete form as H ¼ �KPipi logðpi=qiÞ.
Therefore, the SJ axioms specify that H, or any function
having the same maximum as H, can be used to draw self-
consistent inferences.6 In information geometry the H in
Eq. (36), called the cross entropy, is regarded as a measure
of distance between two distribution functions, p and its prior
q (Kullback and Leibler, 1951; Amari and Nagaoka, 2000).
Maximizing H corresponds to finding the minimum distance
between the two distribution functions. Others presented
arguments similar to those of SJ (Livesey and Skilling,
1985; Skilling, Erickson, and Smith, 1988). Frequentist deri-
vations allow for some simplifications; see Tikochinsky,

Tishby, and Levine (1984) but see criticisms in Skilling
(1984). Even the methods of SJ presented above are not
entirely free of criticism. For instance, Csiszár (1991) starts
from a different set of axioms in an effort to address what he
believed were shortcomings of SJ, notably starting from the
assumption that inference should be based on a variational
principle.

In summary, on the one hand, Jaynes was criticized for
justifying MaxEnt in statistical physics in terms of informa-
tion, uncertainty, incomplete knowledge, and maximal igno-
rance. For some, those terms implied a physical reality thatwas
not independent of themind of an observer. Jaynes’H quantity
was seen as being too grounded in Shannon’s axioms about
what properties would be ‘‘desirable for a measure of uncer-
tainty.’’Denbigh andDenbigh (1985), for example, argued that
heat capacities of materials reflect more than our lack of
knowledge; heat capacities are measurable quantities.

SJ give a very different justification for entropy maximi-
zation in physics in that they regard statistical physics as an
enterprise of making models for otherwise underdetermined
probability distributions. This approach is different from
quantifying an observer’s uncertainty. In model making, we
start with some initial model assumptions or priors. Those
premises may be good or bad. Maximizing the entropy is seen
as a procedure that enforces certain requirements for the
logical consistency of nature from basic premises, not as a
procedure for finding a state of maximal ignorance.

A prior distribution can reflect empirical features or intrin-
sic physical features of nature that are deemed relevant to the
problem, such as scale invariance. For instance, for dice rolls
or coin flips, an obvious choice of prior is a flat distribution. If
experiments were to then show that the predictions from
maximizing the entropy of a model were inadequate, it would
imply the inadequacy of the prior, or that the model should be
informed by additional data.

Nothing within the SJ derivation limits the applicability of
entropy maximization just to systems that are at or near
equilibrium. Entropy maximization is rigorous and relevant
across a broad range of applications.

VI. WHAT TYPES OF CONSTRAINTS ARE APPROPRIATE

FOR MaxEnt?

In applying entropy maximization principles, are there
limitations on the types of constraints that can be used? We
assumed that a system has some property a and that some
constraints are imposed that fix the value of its average �a. A
common textbook example is the canonical ensemble. The
constraint is the temperature, which is equivalent to the
average energy h"i, a first-moment quantity. Is it valid to
use higher moments or combinations of moments instead?
What constraints are appropriate for application within the
principle of maximum entropy? Shore and Johnson express
constraints in terms of the quantity

R
D½x�pðxÞaðxÞ. We

consider two aspects of this constraint quantity: how it de-
pends on pðxÞ and what forms of aðxÞ are justifiable. These
considerations are important for determining the full breadth
of applicability of MaxEnt, including to dynamical systems.

Are constraints nonlinear in pðxÞ appropriate for MaxEnt?
SJ assert a requirement that the function H must have a

6Note that this derivation of H ¼ �KPipi logðpi=qiÞ is not in

any way limited to systems that are independent of each other.

Rather, it simply says that if u and v are independent of each other,

then this functional form of H enforces satisfaction of the rules of

addition and multiplication of probabilities for independent events,

such as pðuvÞ ¼ pðuÞpðvÞ for multiplication. The reason we note

this is because there are instances when data are correlated. In this

formalism, correlations in the model for pðuvÞ should emerge from

correlations in the data between u and v. In different formalisms,

correlations were also introduced by using target functions other

than H ¼ �KPipi logðpi=qiÞ, such as the Tsallis entropy (Tsallis,

1988).
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unique maximum, axiom 1. The function
R
D½x�pðxÞ logpðxÞ

is convex, so it has a unique maximum, provided that the
constraints are also convex (Shore and Johnson, 1980). The
number of such constraints can be unlimited, provided these do
not change the convexity of the function to be maximized and
thus continue to satisfy the SJ axioms. For instance, any
number of either equalities or inequalities that are linear in
pi are appropriate. In contrast, some constraints that are non-
linear in pi may result in degenerate maxima of H, and so
would violate the premises of SJ (Livesey and Skilling, 1985).

What functional forms of the property aðxÞ are valid for
MaxEnt? The axioms of SJ are found to be satisfied by many
mathematical functions aðxÞ, including any polynomial of x
and therefore any moment of the distribution function.
However, higher moment data constraints may not provide
additional independent information beyond lower moments
(Shore and Johnson, 1981). Furthermore highermoments have
larger associated error bars than lower moments. We discuss
how we can incorporate error bars around constraints in
Sec. VIII. However, for now, we point out that the larger the
error bars around the data, the less this constrains the model.
Next we focus on first-moment constraints, which play a
particularly prominent role in physics.

A. First-moment constraints in thermodynamics are associated

with large baths

Although a wide variety of constraints are used with
entropy maximization principles, first-moment constraints
(such as the average energy, average volume, or average
particle number) often arise in equilibrium statistical physics.
First-moment quantities arise because of how constraints are
imposed in thermodynamic experiments. In typical experi-
ments, a system is put into contact with a surrounding bath or
reservoir, which holds the system at a fixed value of the
macroscopic average, such as energy. We show below that
first-moment constraints are a natural consequence of a sys-
tem being in contact with an infinite bath. Higher moments
used as constraints are negligible when constraints are im-
posed by such baths. Since the system of interest and the heat
bath comprise a closed universe, the target function to be
maximized can be written as

�X
i;a

pia logpiaþ�

�X
i;a

pia�1

�
þ�

X
i;a

piað1��EiþEa;Etot
Þ;

(37)

where indices i and a label the microstates of the open system
and the heat bath, respectively, and Etot designates the total
system plus bath energy which is a fixed constant.

We now change variables so that the target function is
expressed in terms of the marginal probability pi for the open
system and the conditional probability pðajiÞ for the heat
bath, where

pi �
X
a

pia; pðajiÞ � pia=pi: (38)

Both probabilities satisfy the normalization conditionsX
i

pi ¼ 1;
X
a

pðajiÞ ¼ 1: (39)

Using Eqs. (38) and (39), the entropy in the target function
becomes

�X
i;a

pia logpia¼�
X
i

pi logpi�
X
i;a

pðajiÞpi logpðajiÞ:

(40)

Our new target function with the entropy given by Eq. (40)
constrained by Eqs. (38) and (39), with correspondingly new
Lagrange multipliers, is

�X
i

pi logpi�
X
i;a

pðajiÞpi logpðajiÞþ
X
i

�i

�X
a

pðajiÞ�1
�

þ�

�X
i

pi�1

�
þ�

X
i;a

pipðajiÞð1��EiþEa;Etot
Þ: (41)

The target function in Eq. (41) is varied with respect to pðajiÞ,
�i, and � for given values of the open system variables pi and
�. From this we obtain

�pi logpðajiÞ�piþ�iþ�pið1��EiþEa;EÞ¼0; (42)X
a

pðajiÞ ¼ 1; (43)

X
i;a

pipðajiÞð1� �EiþEa;EÞ ¼ 0: (44)

From Eq. (42) we have

pðajiÞ ¼ exp

�
�i

pi

� 1

�
ðEa ¼ Etot � EiÞ;

pðajiÞ ¼ exp

�
�i

pi

� 1þ �

�
ðEa � Etot � EiÞ:

(45)

The constraints Eqs. (43) and (44) fix both �i and �, which
yields

pðajiÞ ¼ �Ea;Etot�Ei

�ðEtot � EiÞ ; (46)

where�ðEÞ is the number of bath microstates with energy E.
Substituting Eq. (46) into Eq. (41), we now have (Lee and
Pressé, 2012b)

�X
i

pi logpiþ
X
i

pi log�bathðEtot�EiÞþ�
X
i

ðpi�1Þ:

(47)

In the limit of large bath size Etot � Ei, we expand
log�bathðEtot � EiÞ to leading order in Ei. This yields
log�bathðEtot � EiÞ ’ log�bathðEtotÞ � �Ei, where � is the
inverse temperature of the bath. Therefore we see that, in
this limit, the target function Eq. (47) reduces to the one given
in Eq. (19), where the average energy of the system is con-
strained. Higher order moment constraints drop out. Exactly
the same argument follows when we consider macroscopic
parameters such as volume or particle numbers, which can be
exchanged between the system and the environment. From
this we conclude that first-order moments arise as constraints
when we can control the macroscopic parameters of a system
by providing contact with the environment whose size is
much larger than the system under study.

Jaynes also addressed the issue of using only first-order
moments by noticing equilibrium physics is usually applied to
systems having large numbers of particles (Jaynes and Ford,
1963). Jaynes argued that first moments are the only quantities
(per particle) that remain nonzero in the thermodynamic limit,
i.e., as the system size grows large,N ! 1. In particular, for a
partition function Q ¼ P

EgðEÞ expð��EÞ, where gðEÞ is the
energy level degeneracy, the fluctuations hE2i � hEi2 inferred
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fromQ become vanishingly small with increasing system size
compared with hEi2. Higher cumulants also vanish.

It follows too, however, that higher moment constraints can
be useful in applications to physical systems of small sizewhere
fluctuations may be substantial (for example, in some glass-
forming liquids and ferromagnetic materials) (Chamberlin,
1999, 2000; Chamberlin and Wolf, 2009; Chamberlin,
Vermaas, and Wolf, 2009). ‘‘Nanothermodynamics’’ is a
name given to the active field that studies small system sizes
and finite-size effects in thermodynamics (Hill, 1962, 2001a,
2001b; Chamberlin, 2002; Balian, 2007). For the example
considered above, we see that when the size of the heat bath
is finite, a nonlinear constraint follows from Eq. (47),X

i

pifðEiÞ; (48)

where fðEÞ � ln�bathðEtot � EÞ is constrained instead of the
average energy. However, the general principle of entropy
maximization still holds.

B. Entropies other than Gibbs-Shannon can be used when the

system-independence axiom is not assumed

According to Shore and Johnson, the entropy function
�Pipi logpi satisfies the system-independence axiom.
That is, the Gibbs-Shannon entropy for two independent
systems (A and B) is the sum of the entropies for both
systems. This gives rise to the probability multiplication
rule PðA; BÞ ¼ PðAÞPðBÞ. However, there are systems where
the assumption of system independence is inconvenient. If a
system is small relative to the range of interactions in it, it
may be difficult to subdivide it into independent subsystems.
An example is a box that contains charged particles, where
the box is smaller than the range of the interactions. These are
called nonextensive systems. Nonextensive systems were
studied in detail, particularly by Tsallis (see also
Landsberg, 1972, 1984; Tsallis, 1988; Abe, 2000, 2001;
Tsallis, Abe, and Okamoto, 2001; and Tsallis, Gell-Mann,
and Sato, 2005). For such systems, an entropy function which
is not of the form �Pipi logpi has been suggested (Tsallis,
1988; Tsallis, Abe, and Okamoto, 2001; Tsallis, Gell-Mann,
and Sato, 2005). In Shannon’s terminology, nonextensive
systems are characterized by an ‘‘uncertainty’’ quantity that
is not additive,

HðAþ BÞ ¼ HðAÞ þHðBÞ þ �HðAÞHðBÞ; (49)

for subsystems A and B.

VII. ENTROPY MAXIMIZATION HAS BROAD

APPLICABILITY BEYOND STATISTICAL PHYSICS

In summary, views changed over time about how to justify
the principle of entropy maximization. Boltzmann recog-
nized that the entropies that give second-law predictions of
material systems at equilibrium are related to the states of
maximum multiplicity of their macroscopic states. Gibbs
expressed this idea in terms of ensembles of options. The
arguments of both Boltzmann and Gibbs were based on the
frequentist view of probabilities. Gibbs’ ensembles were
envisioned as imaginary replicas of all the different ways

the microstates of a system could lead to the given macro-

state, simply a way of satisfying a frequentist view of

probabilities. Following Shannon’s introduction of informa-

tion theory, Jaynes reframed statistical thermodynamics as a

business of making inferences about statistical systems that

satisfied limited data and otherwise had the least possible

bias. The foundations were reformulated yet again when

Shore and Johnson proved that the principle of entropy

maximization is a fundamental requirement for consistency

that must be satisfied by any statistical distribution function.

Maximization of entropy is now seen as broader than matters

of equilibrium physics. Entropy maximization is now seen as

a procedure that leads to distribution functions that satisfy

basic self-consistency requirements of an inference drawn

from limited data.
The broad applicability of entropy maximization can be

expressed in terms of what we call Tisza cells. To illustrate,

first consider equilibrium statistical mechanics for concrete-

ness. Entropy maximization applies to situations involving

multiple individual equivalent particles. Each particle can

take on an instantaneous value of energy while the total

average energy can be fixed by the temperature of a heat

bath. Individual particles freely exchange energies with other

particles, leading to increases or decreases in their own

energies, but only in ways that leave the total energy un-

changed over the whole system plus bath. Conserved prop-

erties, such as energy, can ‘‘flow’’ or ‘‘exchange’’ from one

part of a system to another, since conserved properties

cannot be created nor destroyed. Energies are not the only

exchangeable conserved properties. Volumes and particle

numbers are also conserved and exchangeable between sub-

systems. The power of thermodynamics comes from the

ability to divide systems into subsystems, to consider the

flows of conserved properties from one subsystem to an-

other, and to predict the tendencies toward equilibrium by

applying entropy maximization principles at all such scales

of systems and subsystems (Tisza, 1963; Tisza and Quay,

1963; Wright, 1970). Tisza and Quay expressed this by

noting that the independent variables in thermodynamics,

such as particle number, volume, and energy, are ‘‘additive,

conserved quantities, briefly additive invariants’’ (Tisza and

Quay, 1963). They noted that, ‘‘Disjoint simple systems can

be built up into composite systems or, conversely, we may

divide a system into subsystems, sometimes referred to as

cells’’ (Tisza and Quay, 1963). Conserved quantities can

transfer, or be swapped, freely from cell to cell, subsystem

to subsystem, or system to system, as when heat flows

between two subsystems as the whole system approaches

equilibrium. A Tisza cell can be as small as a single particle

having a particular energy, to as large as a macroscopic

subdivision, such as a half glass of water. Entropy max-

imization describes the tendencies of flows of conserved

properties among Tisza cells.
Tisza cells and entropy maximization are relevant over

contexts much broader than flows of energy, volume, or

particles, or thermal equilibria in material systems. Not only

might a Tisza cell represent one particle in a particular energy

level �i, a Tisza cell could also represent a video pixel having

a particular light level, an audio voxel having a particular

sound level, or a dice roll having a particular score from 1 to 6.
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Or a Tisza cell could represent chosen sets of pixels or dice
rolls. For example, consider rolling a die many times. Suppose
only the average score per roll is known. In this case, the
dice-roll score is regarded as a quantity that can be swapped
between one roll and any other. Maximizing the entropy S or
the multiplicityW will predict the distribution of outcomes of
the dice rolls. In general, any independent variable xi is a
type of ‘‘score’’ on one of Tisza’s cells. Each cell has a
numerical value xi, for example, an energy per particle,
volume per particle, etc. These score quantities xi are not
only additive, XN ¼

P
ixi=N; these scores are also swap-

pable. That is, one possible arrangement of the system, say
cell i has score xi, can be converted into another possible
arrangement by ‘‘exchanging’’ some amount of its score with
cell j. Such swaps ensure that the observable (the total value
XN) neither gains nor loses value. The quantity W then
counts the numbers of different ways the total score can be
distributed across the cells. MaxEnt applies to Tisza cells of
any type.

VIII. MaxEnt IS USEFUL FOR MODELING IN

CONJUNCTION WITH BAYES THEOREM

In this section, we describe the relationship between
maximum entropy and Bayesian methods of inference
(Gull and Daniell, 1978; Jaynes, Levine, and Tribus, 1979;
Skilling and Gull, 1991; Caticha and Preuss, 2004). We start
with Bayes’ theorem, which follows from propositional logic
(Cox, 1946; Aczél, 1966; Skilling and Gull, 1991; Jaynes,
2003). Given two events A and B, the probability pðA \ BÞ of
their intersection A \ B is

pðA \ BÞ ¼ pðAjBÞpðBÞ ¼ pðBjAÞpðAÞ; (50)

where pðAÞ is the probability of A, pðAjBÞ is the probability
of observing A given B, for example. The pair of equalities in
Eq. (50) is because the set-theoretic intersection operation is
symmetrical in A and B. Equation (50) is Bayes’ theorem.
Substituting the symbols A and B with D (for data) and M
(for model) gives

pðMjDÞpðDÞ ¼ pðDjMÞpðMÞ; (51)

where pðMÞ is called the model prior and pðDjMÞ is the
probability of the data given the model, which is often called
the likelihood of the model. The conditional probability
pðMjDÞ is the posterior, and pðDÞ is the probability of the
data. Equation (51) is the Bayesian framework for building
mathematical models. Given data D, the goal is to search
through possible models M to find the one model that max-
imizes the posterior, pðMjDÞ. Bayes’ theorem, Eq. (51), does
not tell us how to choose a functional form for any of the
conditional or marginal probabilities. Bayes’ theorem does
not specify how such probabilities depend on data and model
variables.

The role of MaxEnt here is to assert a particular choice for
pðMÞ. To obtain a model probability distribution M ¼ fpig
from data, MaxEnt says that the probability of a model pðMÞ
should be a monotonically increasing function of the entropy
(H) of the model. That is, the greater the entropy of a model
distribution function, the higher its prior probability. Since

any monotonic function of the entropy will capture this
property, we choose

pðMÞ / expð�HÞ; (52)

where � is some positive constant.
The choice of pðDjMÞ depends on the type of data

available. For instance, suppose data are given as N inde-
pendent quantities �aj, where the index j runs from 1 to N,

and each has an associated standard deviation 	j around �aj.

Given a set fpig, the observables are estimated from theory
as

P
ipiaij. The uncertainty values 	j set an approximate

bound on where the prediction
P

ipiaij should lie (Csiszár,

1991),

�aj � 	j �
X
i

piaij � �aj þ 	j: (53)

As before, the ensemble average is defined as haji �P
ipiaij. This can be different than the observed average,

which we denote as �aj because of the associated error bars.

Now rewrite Eq. (53) as�X
i

piaij � �aj

�
2 � 	2

j : (54)

For many problems, it is reasonable to assume that
errors are distributed as Gaussians. Then, the likelihood
PðDjMÞ of observing the set f �ajg is proportional to the product
of N independent Gaussians, exp½�ðPipiaij � �ajÞ2=2	2

j �, so

PðDjMÞ / exp

�
�X

j

ðPi piaij � �ajÞ2
2	2

j

�
� expð�
2=2Þ:

(55)

The so-called 
2 misfit statistic gives a smooth measure of
deviation of the model prediction from the data weighted by
the data uncertainty for this Gaussian model.

Fitting a model to data that has Gaussian errors, the
combination of Eqs. (51), (52), and (55) gives

pðMjDÞ / pðDjMÞpðMÞ / e�H�ð1=2Þ
2
; (56)

where we can drop the term pðDÞ from the left-hand side of
Eq. (56), since this term is irrelevant for the maximization
with respect to the model variables M. Taking the logarithm
gives

logpðMjDÞ ¼ ��X
i

pi log
pi

qi

þ
�
�X

j

ðPi piaij � �ajÞ2
2	2

j

�
; (57)

where all terms not explicitly depending on model variables
were dropped. The best possible model fpig is the one that
maximizes Eq. (57), that is, pðMjDÞ or logpðMjDÞ, with
respect to the variables M for a fixed value of �.

The value of � itself can be set by imposing the approxi-
mate condition
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X
j

ðPi piaij � �ajÞ2
	2

j

� N; (58)

which follows from a frequentist line of reasoning (Skilling,
1984).7

The treatment above resolves a puzzle attributed to Forney
(Jaynes, Levine, and Tribus, 1979). Forney criticized MaxEnt
on the grounds that it only allows the input of an average �aj,

whereas we should also be able to use knowledge or estimates
of error bars 	j on these averages. However, the derivation

above and Eq. (57) show exactly how MaxEnt can handle
error bars, if they are available, around averages.
Furthermore, it is also clear from Eq. (57) that those data
with larger associated error bars contribute proportionately
less to the 
2 misfit statistic. Finally, we note that although we
described here only Gaussian noise, the same approach read-
ily generalizes to other noise statistics (Meinel, 1988).

In the idealized world of perfect data where the averages
are known with no error (i.e., when

P
ipiaij is strictly equal

to �aj), Eq. (56) reduces to

pðMjDÞ / lim
f	jg!0

expð�HÞY
j

	
�

1ffiffiffiffiffiffiffi
2�
p

	j

exp

�
�ð

P
i piaij � �ajÞ2

2	2
j

��

¼ expð�HÞY
j

�

�X
i

piaij � �aj

�
; (59)

where the limit is understood to be taken after performing any
integration or extremization with respect to the set fpig.

To see that the right-hand side of Eq. (59) is the MaxEnt
recipe for constraining averages, first rewrite Eq. (59) by
Fourier decomposing the Dirac delta function using the aux-
iliary variable kj,

pðMjDÞ / lim
f	jg!0

Z Y
j

dkj exp

�
�HðfpigÞ

þX
j

�
ikj

�X
i

piaij � �aj

�
� 	2

jk
2
j

2

��
; (60)

where we are free to bring the constant with respect to kj,

exp½�HðfpigÞ�, into the integrand. The model and Lagrange
multiplier which maximize the posterior pðMjDÞ must be
those which simultaneously maximize the integrand.
Therefore, extremizing

�HðfpigÞ þ
X
j

�j

�X
i

piaij � �aj

�
þN ; (61)

with respect to both fpig and f�j � ikjg, when 	j ! 0 and

whereN is all irrelevant constants, is the MaxEnt prediction
in Jaynes’ limiting case that the average value is known exactly

with no errors. This problem is equivalent to finding the
maximum of H under the strict constraint

P
ipiaij� �aj¼0

for each j.

A. MaxEnt is used as a tool for image reconstruction

Inferring a model by maximizing Eq. (57) has been one
technique used in image reconstruction (Gull and Daniell,
1978; Skilling and Bryan, 1984; Gull and Skilling, 1989;
Jaynes, 2003). In image reconstruction, the aim is to extract
an image I from data D. The data and image are related by
D ¼ F � I, where F � I denotes the transformation of the
image by an operator F via some linear operation �. For
instance, I may be an image of a moving car, F is the operator
that describes how the camera blurs that image, and D is the
blurry image of the moving car (Skilling and Gull, 1991;
Steinbach et al., 1992). In principle, obtaining the image I
from the data D should be simple. If the transform is inver-
tible, we have I ¼ ðF�Þ�1D. In reality because the data are
noisy, the operation is ill-conditioned. MaxEnt provides one
way of regularizing this inversion.

As an example, MaxEnt has been used to obtain real-space
images from x-ray scattering data (Gull and Daniell, 1978).
The data are in the form of a probability density in Fourier
space fpkg, the image is in real space fpxg, and the convolu-
tion operator is the Fourier transform F � I �P

x expði2�kx=NÞ � I. Here the analog of Eq. (57) is (Gull
and Daniell, 1978)

logpðMjDÞ¼��X
x

px log
px

qx
þ
�
�X

k

jFpx�pkj2
2	2

k

�
:

(62)

Other regularization methods also exist, such as the com-
monly used method of Tikhonov regularization (Engl,
Kunisch, and Neubauer, 1989), although such methods are
not consistent with the axioms of Shore and Johnson.

Image-reconstruction methods were used to extract models
from different types of spectroscopic data. For instance,
consider a noisy fluorescence decay signal fðtÞ. It is possible
to express fðtÞ as follows:

fðtÞ ¼
Z 1
0

d��ð�Þe�t=�; (63)

where �ð�Þ is a distribution of decay rates, interpretable as
the image I. In this case, the linear operator that relates �ð�Þ
to fðtÞ is the Laplace operator. The signal decay of the
experiment IðtÞ is given by

IðtÞ ¼ EðtÞ � fðtÞ ¼ EðtÞ �
Z 1
0

d��ð�Þe�t=�; (64)

where EðtÞ is the temporal shape of the excitation pulse
relating the observed decay intensity to the fluorescence
decay curve.

The MaxEnt approach infers �ð�Þ from a noisy decay
curve. The advantage of MaxEnt here is that it does not
impose features on this distribution of rates that are not
otherwise warranted by the data (Livesey and Brochon,
1987). It does not require prior knowledge of how many
exponential components contribute to the decay. Using
Eq. (57), we have

7Skilling and Gull (1991) argued that this frequentist line of

reasoning to set the constraint, Eq. (58), and thus to back out �,
undermines the meticulous effort that has been put into deriving the

Shannon-Jaynes measure from the self-consistent reasoning argu-

ments of Shore and Johnson. Instead, they proposed a recipe based

on a hierarchical Bayesian model to find the Lagrange multiplier

that yields small improvements for the problems they examined.
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logpðMjDÞ ¼ �
Z

d��ð�Þ log
�
�ð�Þ
mð�Þ

�

� �
Z

dt

�½ItheoðtÞ � IobsðtÞ�2
2	ðtÞ2

�
; (65)

where ItheoðtÞ is the theoretical intensity which is set equal to
EðtÞ � R10 d��ð�Þe�t=� and IobsðtÞ is the observed intensity, �
is the Lagrange multiplier, and mð�Þ ¼ 1=� is the scale-
invariant prior.

Livesey and Brochon (1987) probed the fluorescence of
L-tryptophan at two emission wavelengths, 390 and 320 nm.
The unexpected outcome, shown in Fig. 1, was that �ð�Þ is
qualitatively different at different wavelengths. The power of
themethod of image reconstruction is that the decay curve need
not be fit to one, two, three, or more exponentials. Rather, the
data are inverted directly, minimizing the biases that would
otherwise be introduced in more traditional modeling.

MaxEnt has been widely useful in physical modeling:
finding the continuous distribution of rates of rebinding a
carbon monoxide ligand to a heme protein (Steinbach et al.,
1992); measuring the static and dynamic properties of bind-
ing flavin adenine dinucleotide (FAD) ligand to flavin reduc-
tase protein (Yang et al., 2003); measuring the complex
folding kinetics of dihydrofolate reductase (Steinbach,
Ionescu, and Matthews, 2002); determining the fluorescence
of donor-acceptor distance distribution function for the con-
formational states of a simple polymer, poly-(L-proline),
from single-molecule Foerster resonance energy transfer
(FRET) data (Watkins, Chang, and Yang, 2006); inferring
the firing patterns of arrays of neuronal cells (see below)
(Schneidman et al., 2006); inferring the structures of net-
works of proteins (Locasale and Wolf-Yadlin, 2009) and
genes (Lezon et al., 2006) from proteomics and microarray
data; modeling low-noise regulatory networks assuming there
is maximal information transmission from transcription fac-
tors (input) to gene products (output) (Tkacik, Walczak, and
Bialek, 2009; Walczak, Tkacik, and Bialek, 2010); inferring
diffusion coefficient distributions from fluorescence correla-
tion spectroscopy data (Sengupta et al., 2003); and modeling
the apparent search strategy, called ‘‘infotaxis,’’ of moths
seeking the source of pheromones that are delivered in bursts,

rather than from a stable gradient (Vergassola, Villermaux,
and Shraiman, 2007).

IX. MAXIMUM CALIBER IS THE MAXIMUM-ENTROPY

PRINCIPLE APPLIED TO DYNAMICAL PATHWAYS

The developments of Shore and Johnson show that the
principle of entropy maximization is not limited to material
particles or states of equilibrium. Entropy maximization is as
rigorously applicable to computing the probabilities of dy-
namical pathways, often called the principle of maximum
caliber (MaxCal) (Jaynes and Haken, 1985).

Rather than seeking distributions of equilibrium states, we
seek probability distributions over dynamical trajectories.
Before giving the details, here is an overview. In equilibrium
physics, many possible probability distributions pðEÞ over
energies E are consistent with an observed average energy.
The preferred probability distribution pðEÞ is that which is
inferred bymaximizing an entropy overmicrostates, subject to
a known value of an observable, such as the average energy.
Now, for nonequilibrium physics, the maximum caliber ap-
proach infers the probabilities of different possible trajectories
by maximizing a ‘‘route entropy’’ over all the possible dy-
namical pathways, subject to a known value of an observable
dynamical quantity, say an average velocity or flux. To give
some intuition, consider all the roads from New York to
Chicago as a metaphor for all the possible dynamical paths
from one physical state to another. Suppose a single quantity is
known, namely, the average rate at which cars reach Chicago
fromNewYork. The problem is then to predict the distribution
of fluxes of cars through all the possible routes.

For dynamical problems of this type, we define the path
entropy as

HðfpCgÞ ¼ �
X
C

pC logpC; (66)

where pC is the probability that the dynamical process fol-
lows one particular path C. We suppose that there are con-
straints on the dynamics, indexed by �,

Fð�ÞðpCÞ ¼ 0; (67)

where � runs from 1 to the total number of constraints. While
this formalism is valid for general forms of the constraint,
Eq. (67), following Shore and Johnson (1980), we are often
interested in constraints that are linear in pC (such as average
fluxes, velocities, or rates of conversion),X

C

Að�ÞC pC � �Að�Þ ¼ 0; (68)

where �Að�Þ is the measured average of the quantity Að�ÞC over

the paths C.
In order that pC quantities represent proper probabilities,

one constraint that must be satisfied is the normalization over
the path probabilities,X

C

pC � 1 ¼ 0: (69)

The principle of MaxCal is to maximize the entropy over
pathways, Eq. (66), subject to constraints given by Eq. (68),
yielding the probability distribution over pathways,

FIG. 1 (color online). The rate distribution �ð�Þ taken from pulse

fluorimetry experiments on L-tryptophan - vs � on a logarithmic

scale at two emission wavelengths (390 nm solid line, 320 nm with

circles). From Livesey and Brochon, 1987.
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pC ¼ expðP� ��A
ð�Þ
C Þ

Q
; (70)

where the f��g are the Lagrange multipliers that enforce the
constraints and

Qðf�gÞ ¼X
C

exp

�X
�

��A
ð�Þ
C

�
(71)

is the sum of statistical weights over pathways, called the
dynamical partition function. The dynamical partition func-
tion plays the same role here that the equilibrium partition
function plays in equilibrium statistical mechanics. MaxCal is
a procedure for predicting the relative probability that a system
will take trajectory C from one physical state to another. It is
not approximate, and is not limited to near-equilibrium pro-
cesses. It follows from the derivation of Shore and Johnson that
MaxCal is as sound a basis for nonequilibrium processes as the
maximization of entropy is for equilibrium.8

Equations (70) and (71) are formalistic. They are not
explicitly computable unless the set of pathways is specified.
Jaynes was interested in continuous pathways C that satisfy
deterministic Hamiltonian equations of motion. However, for
continua, constructing a path ensemble using the microscopic
dynamics is difficult. Although some formal relations in
linear nonequilibrium thermodynamics (Onsager and
Machlup, 1953a,1953b) were derived from such a formalism
(Jaynes, Levine, and Tribus, 1979; Jaynes and Haken, 1985;
Haken, 1986; Dewar, 2005, 2009), the practical applicability
has been limited. As Jaynes (Jaynes and Haken, 1985) put it,
‘‘It is probably beyond our mathematical ability to do the
indicated calculations explicitly for any really nontrivial
problem; that is perhaps a task for the computers of the
next century.’’ However, MaxCal is readily applied to systems
having discrete dynamical states, as we show below.

A. Filyukov and Karpov introduced the maximization of path

entropies over discrete paths

A practical approach to path entropy maximization was
formulated early by Filyukov and Karpov (1967a, 1967b) and
Filyukov (1968). Closely related ideas were independently
developed by Zubarev (Zubarev and Zubarev, 1961; Zubarev,
1971), Attard (2009), and later proposed by Evans and co-
workers (Evans, 2004a, 2004b, 2005). Rather than continuous
paths, Filyukov and Karpov considered trajectories composed
of discrete time steps. They also considered coarse-grained
trajectories that follow a stochastic dynamics, instead of
following deterministic Hamiltonian equations of motion.
Such methods also were developed by others (Gaspard,
2004; Lecomte, Appert-Rolland, and van Wijland, 2007;
Monthus, 2011; Smith, 2011). Following Jaynes (Jaynes
and Haken, 1985), we collectively refer to these path entropy
maximization methods as MaxCal.

In this approach, the observable dynamical properties of a
system are estimated from MaxCal as averages over different
discrete pathways the system can take.We call the collection of

these pathways an ensemble of paths. A particular pathway
having a total of T time steps is described by a sequence C ¼
fi0; i1; . . . iTg, where ix is the state occupied by the system at
time x (Filyukov and Karpov, 1967a,1967b; Filyukov, 1968).
An example of such a pathway is shown in Fig. 2.

The path entropy for a discrete trajectory having probabil-
ity pC ¼ pi0;...;iT is given by Eq. (66). We refer to a particular

sequence of states visited in time i0; . . . ; iT as a microtrajec-
tory. For the example given in Fig. 2, the sum in the path
entropy formula is over all paths which coincide with all
states (open or closed, in this case) that can be occupied at the
discrete times 0; 1; . . . ; T. The entropy for the discrete time
process, the discrete time analog of Eq. (66), is then

HðTÞ ¼ � X
i0;i1;...;iT

pi0i1;...;iT logpi0i1;...;iT : (72)

Filyukov and Karpov (1967a, 1967b) and Filyukov, (1968)
assumed a stationary first-order Markov process,

pC ¼ pi0pi0!i1pi1!i2 . . .piT�1!iT ; (73)

where pi!j is a transition probability from state i to state j and

pi is a single state occupation probability. Inserting Eq. (73)
into Eq. (72) gives an expression for the path entropy,

HðTÞ ¼ � X
fi0;i1;...iT g

pi0pi0!i1pi1!i2 . . .piT�1!iT

	 logpi0pi0!i1pi1!i2 . . .piT�1!iT : (74)

Expressing the logarithm of the product in Eq. (74) as a sum
over logarithmic terms we obtain

HðTÞ ¼ � X
fi0;i1;...iT g

pi0pi0!i1pi1!i2 . . .piT�1!iT logpi0

� X
fi0;i1;...iT g

pi0pi0!i1pi1!i2 . . .piT�1!iT

	 logpi0!i1 þ � � � : (75)

We now simplify the entropy above for the special case of
stationary state occupation and transition probabilities.9We do
so by performingmultiple sums in Eq. (75) using the following
normalization and balance conditions:X

j

pi!j ¼ 1;
X
i

pipi!j ¼ pj: (76)

FIG. 2. One possible stochastic trajectory of a single ion-channel

transitioning between open (conducting) and closed (nonconducting)

states (Phillips,Kondev, andTheriot, 2009;Dill andBromberg, 2011).

8The term MaxCal was coined by Jaynes (Jaynes and

Rabinovitch, 1980; Jaynes and Haken, 1985), with a meaning that

is loosely related to the bore diameters of guns, from which the term

caliber derives.

9See Lee and Pressé (2012a) for a derivation for when state

occupation and transition probabilities can be assumed stationary.
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In the first term on the right-hand side of Eq. (75), the summa-
tion over all indices except i0 yields �Pipi logpi where we
simplified the notation on the dummy indices. In the second
term, all indices except i0 and i1 can be summed over. The
second term reduces to �Pi;jpipi!j logpi!j. All other terms

on the right-hand side of Eq. (75) are treated similarly to the
second.

This yields

HðTÞ ¼ �X
i

pi logpi � T
X
i;j

pipi!j logpi!j: (77)

For large T, the first term is negligible and the path entropy is
approximated as

HðTÞ ¼ TH1; (78)

where

H1 ¼ �
X
i;j

pipi!j logpi!j (79)

is the path entropy per step.
In contrast, when constraints are imposed on singlet-state

occupation probabilities, as is the case of equilibrium statis-
tical mechanics, the entropy is

HðTÞ ¼ �TX
i

pi logpi: (80)

Comparing Eqs. (80) and (79), we find that the entropy
of Eq. (79) reduces to Eq. (80), when

pi!j ¼ pj: (81)

Physically, Eq. (81) is interpreted as instant equilibration.
Next, we consider the more interesting situation, a reversal

of this logic. That is, rather than assuming Markov-chain
kinetics and deriving the form of path entropy, we begin by
assuming MaxCal (the maximization of path entropy) to be
the most basic prediction principle of dynamics, and we show
that the nature of what experimental data are observed dic-
tates whether a process can be modeled as Markovian or not.
If data take the form of two-point constraints (for example,
the numbers of point-to-point transition events), then it fol-
lows that first-order Markov models are the unique solution to
the question of what type of model maximizes the caliber. It
says that Markov models are not the first principle; MaxCal
and the form of the experimental data are the first principle. It
says that the structure of the data is sufficient to dictate how
the dynamical process should be modeled. Going further, if
the data appear instead in the form of three-point information
or higher, then maximizing the caliber uniquely infers in-
creasingly complex models. Thus MaxCal gives a principled
and systematic way of modeling dynamics directly derived
from the underlying nature of the data themselves (Ge et al.,
2012; Lee and Pressé, 2012a). This derivation is given below.

B. Markov processes follow from the principle of MaxCal

What is the justification for asserting a Markov model as
the first step in modeling a kinetic process? We show here that
first-order Markov processes are the unique solution to the
question of what types of physical processes maximize
the caliber (i.e., that maximize the path entropy subject to
constraints) when the data count the number of transitions

(Ge et al., 2012); see Lee and Pressé (2012a) for a more
general discussion on pairwise constraints and Markovianity.

For a discrete time process, the path entropy is

HðTÞ ¼ � X
i0;i1;...;iT

pi0i1;...;iT logpi0i1;...;iT : (82)

Now, we impose pairwise constraints for each step m! n
over the time period ½0; T�, i.e.,
hNm!ni ¼

X
i0;...;iT

pi0...;iTNm!nði0; . . . ; iTÞ; (83)

where Nm!nði0; . . . ; iTÞ �
P

T�1
k¼0 �ik;m�ikþ1;n counts the num-

ber of m! n transitions. We verify that
P

m;nNm!n ¼ T.

We then maximize the path entropy, Eq. (72), with the
constraints given by Eq. (83) using �mn as the Lagrange
multiplier to constrain hNm!ni. This yields

pi0;...;iT ¼
YT�1
k¼0

pik!ikþ1 / e
�P

m;n

�mn

P
T�1
k¼0 �ik;m

�ikþ1 ;n
; (84)

where, from the second proportionality, we have pik!ikþ1 /
e��ikikþ1 and the probability pik!ikþ1 is understood as the

conditional probability pðikþ1jikÞ. Thus, under the constraints
imposed by Eq. (83), the joint probability distribution pi0���iT
given by Eq. (84) is a first-order Markov process. That is, it
can be rewritten as the product of transition probabilities
which describe the probability of being in a state at some
time kþ 1 as depending only on the state at time k.

The following dynamical partition function determines the
proportionality constant of Eq. (84):

QðTÞ ¼ X
i0;...;iT

e
�P

m;n

�mn

P
T�1
k¼0 �ik;m

�ikþ1 ;n
: (85)

Derivatives of this dynamical partition function readily yield
quantities such as the average number of m! n transitions,
hNm!nði0; . . . ; iTÞi ¼ �@ logQðTÞ=@�mn. This resembles the
way that taking derivatives of equilibrium partition functions
yield equilibrium averages as well as higher cumulants.

C. MaxCal resembles MaxEnt in its mathematical structure:

partition functions and their derivatives

The procedural logic of MaxCal for path distributions is
similar to that of MaxEnt. MaxEnt starts with experimental
constraints. Maximizing the entropy over microstates gives
the Boltzmann statistical weights for the accessible states
parametrized by data. The partition function is the sum
over these statistical weights. Derivatives of the partition
function give information about moments of the distribution
that were not used to parametrize the model.

Similarly MaxCal starts with experimental constraints.
Maximizing the entropy over pathways gives statistical
weights for the various trajectories. The dynamical partition
function is the sum over these statistical weights. Derivatives
of this partition function give information about moments of
the dynamical distribution. Next, we show this in more detail.
To keep it simple, we derive results only for Markov
processes.

We can generalize our previous discussion on pairwise
statistics to include singlet constraints as well, which we
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constrain using Lagrange multipliers f�g. For the trajectory
probabilities, this yields

pi0i1...iT / e
�P

m

�m

P
T
k¼0 �ik;m

�P
m;n

�mn

P
T�1
k¼0 �ik;m

�ikþ1 ;n
: (86)

Singlet and pairwise constraints have been interpreted as
constraints on energy and flux, respectively, in the literature
(Monthus, 2011). For systems having more complex behav-
ior, for which singlet or pairwise statistics may be correlated,
such correlations can also be included as constraints for
modeling the dynamics (Schneidman et al., 2006; Pressé,
Ghosh, and Dill, 2011).

The dynamical partition function for Eq. (86) is the sum
over path weights,

Qðf�m;�mngÞ¼
X

i0i1...iT

e
�P

m

�m

P
T
k¼0�ik;m

�P
m;n

�mn

P
T�1
k¼0 �ik;m

�ikþ1 ;n

¼ X
i0i1���iT

e
�P

m

�mNmði0;...;iT Þ�
P
m;n

�mnNm!nði0;...;iT Þ
;

(87)

where
P

T
k¼0 �ik;m is, as before, the total count of dwells in

state m over a total time T, which we denote Nmði0; . . . ; iTÞ.
Likewise,

P
T�1
k¼0 �ik;m�ikþ1;n is the total number of transitions

from states m to n over a total time T which we denote
Nm!nði0; . . . ; iTÞ.

The dynamical partition function above can be rewritten
using standard transfer matrix methods (Monthus, 2011),

Qðf�m; �mngÞ ¼ vy �GT � v; (88)

where

vi ¼ expð�1
2�iÞ; Gij ¼ exp½�1

2ð�i þ �jÞ � �ij�:
(89)

GT denotes the transfer matrix raised to the Tth power and vy
denotes the transpose of v.

Initial and final conditions are unspecified in the dynamical
partition function, Eq. (88). We can specify these as addi-
tional constraints just as we constrained observed transitions
(Lee and Pressé, 2012a). In the dynamical partition function,
Eq. (88), specifying an initial condition is equivalent to
replacing vy by a specified row vector ay as follows:

Qðf�m; �mngÞ ¼ ay �GT � v: (90)

Similarly, arbitrary final conditions can be incorporated by
replacing v by an arbitrary column vector b.

Fluctuations as well as higher order cumulants of relevant
physical quantities such as Nmði0; i1; . . . ; iTÞ and
Nm!nði0; i1; . . . ; iTÞ are then readily inferred as higher deriva-
tives of the dynamical partition function,

hNmði0; . . . ; iTÞkic ¼ ð�Þk @k

@�k
m

logQðf�m; �mngÞ; (91)

hNm!nði0;...;iTÞkic¼ð�Þk @k

@�k
mn

logQðf�m;�mngÞ; (92)

where the subscripted c is used to denote cumulants.

Following reasoning similar to that of Sec. VI, in the limit
of long trajectories T ! 1, second and higher moment con-
straints will not substantially contribute to determining the
model for the trajectory distribution. Hence, dynamical con-
straints in MaxCal will take the form of simple first-moment
averages, such as the average flux hJi, provided the trajecto-
ries are long enough.

We return to the metaphor of Tisza cells. We noted earlier
that entropy and its maximization apply to any type of Tisza
cell: dice rolls having scores, pixels having light intensities,
or messages composed from alphabets, just as readily as it
applies to particles having equilibrium energies or volumes.
Here we can consider our Tisza cell a single time step in the
trajectory of a particle. The maximization of the path entropy
in the MaxCal procedure simply ensures that the predicted
pathway probability distribution factorizes into independent
probabilities when a constraint does not couple paths.
However, if time steps are much shorter than typical relaxa-
tion times of the particles, the data in different Tisza cells can
be highly correlated over distant parts of the trajectory. In
thermodynamics, it is in these types of situations where
entropies such as Tsallis’ entropy which do not satisfy the
system-independence axiom (Tsallis, 1988; Tsallis, Abe, and
Okamoto, 2001; Tsallis, Gell-Mann, and Sato, 2005) were
applied. Furthermore time correlations or spatial correlations,
from which memory in the system emerges, can also be used
as constraints and are important aspects of the range of
applicability of MaxCal (see the toggle switch in Sec. XI.E,
for example); see also Harris and Touchette (2009) and Ge
et al. (2012).

D. The master equation follows from the principle of MaxCal

A common strategy in modeling kinetic processes is to
begin by asserting a master equation, then computing result-
ing dynamical properties of interest. Here we follow a logic
similar to Sec. IX.B on Markov processes and show that the
master equation follows from MaxCal.

As discussed in Sec. IX.B, MaxCal under pairwise con-
straints results in a first-order Markov process. However, the
resulting transition probability pða! b; tÞ and the state oc-
cupation probability pða; tÞ predicted from MaxCal are time
dependent in general (Lee and Pressé, 2012a). The master
equation describes the situation where the transition proba-
bility pða! bÞ is time independent, but the occupation
probability pða; tÞ is time dependent. We derive the master
equation by generalizing the previous arguments and keeping
all time dependence explicit.

We start with the joint probability distribution pi0i1;...;iT .

Under singlet and pairwise constraints, the joint probability
distribution is expressed using transfer matrix notation intro-
duced in Sec. IX.C,

pi0i1;...;iT ¼
vði0ÞGði0; i1ÞGði1; i2Þ � � �GðiT�1; iTÞvðiTÞ

vy �GT � v :

(93)

The m-point joint probability distribution is obtained from
Eq. (93) by summing over indices i0; . . . ; it�m; itþ1; . . . ; iT as
follows:
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pða1; . . . ; am; tÞ �
X

i0;...;it�m;itþ1;...;iT

pði0; i1; . . . ; it�m; a1; . . . ; am; itþ1; . . . ; iTÞ

¼ ½v
yGt�mþ1�ða1ÞGða1; a2ÞGða2; a3Þ � � �Gðam�1; amÞ½GT�tv�ðamÞ

vyGTv

¼ ½v
yGt�mþ1�ða1ÞGða1; a2ÞGða2; a3Þ � � �Gðam�1; amÞ½GT�tv�ðamÞ

vyGTv
; (94)

where ½vyGn�ðaÞ and ½Gnv�ðaÞ denote the ath components
of the row and column vectors vyGn andGnv, respectively.
Similarly we denote ½Gn�ða; bÞ the ða; bÞ component of the
matrix Gn. For notational convenience, since many of the
quantities considered here are explicitly time dependent,
we bring the state labels from the subscript into the main
brackets, namely, we write pða1; . . . ; am; tÞ not pa1;...;amðtÞ.

The time index in pða1; . . . ; am; tÞ is required, as this
probability depends on which indices in Eq. (94) are summed

over. As before, we obtain conditional or transition proba-
bilities from joint probabilities as follows:

pða1; . . . ; am; tÞpða1; . . . ; am ! amþ1; tÞ
¼ pða1; . . . ; amþ1; tþ 1Þ: (95)

Combining Eqs. (94) and (95), we have

pða1; . . . ; am ! amþ1; tÞ ¼ ½v
yGt�m�ða1ÞGða1; a2Þ � � �Gðam; amþ1Þ½GT�tv�ðamþ1Þ
½vyGt�m�ða1ÞGða1; a2Þ � � �Gðam�1; amÞ½GT�tþ1v�ðamÞ

¼ Gðam; amþ1Þ½GT�tv�ðamþ1Þ
½GT�tþ1v�ðamÞ

¼ pðam ! amþ1; tÞ: (96)

Thus, under singlet and pairwise constraints, the transition
probability pða1; . . . ; am ! amþ1; tÞ given by Eq. (96) re-
duces to that expected for a first-order Markov process,
pðam ! amþ1; tÞ. We made explicit above the time depen-
dence of the transition probability.

To derive the master equation, we must know under what
conditions state occupation probabilities are time dependent
and transition probabilities are time independent. To answer
this question we apply the Perron-Frobenius theorem to theG
transfer matrix, a square matrix of size N 	 N with positive
elements. According to the theorem, G satisfies the following
properties:

(1) G has a positive real eigenvalue r such that any other
eigenvalue � is strictly smaller than r in absolute value.

(2) There is a left eigenvector y, yyG ¼ ryy, where yi > 0
for all i. There is also a corresponding right eigenvec-
tor z, where Gz ¼ rz and zi > 0 for all i.

(3) Left and right eigenvectors with eigenvalue r are
nondegenerate.

(4) limT!1ðGT=rTÞ ¼ zyy.
The vector v has only nonnegative elements. From point (4)

above we have

lim
T!1

GTv

rT
¼ zðyyvÞ; lim

T!1
vyGT

rT
¼ ðvyzÞyy: (97)

Inserting Eq. (97) into Eq. (96) in the limit that T � t! 1,
we recover

pða ! bÞ ¼ Gða; bÞzðbÞ
rzðaÞ : (98)

That is, the transition probability is time independent in this
limit. However, from Eq. (94), the m-point joint probabilities
remain time dependent when T � t is large,

pða1; . . . ; am; tÞ ¼ ½v
yGt�mþ1�ða1ÞGða1; a2ÞGða2; a3Þ � � �Gðam�1; amÞzðamÞ

rtvyz
; (99)

and, in particular, this is true for the one-point occupation
probability

pða; tÞ ¼ ½v
yGt�ðaÞzðaÞ
rtvyz

: (100)

Thus we can maximize the path entropy under singlet and
pairwise constraints for a trajectory of infinite length. For a
finite time duration, when (T � t! 1), we obtain a time-
homogeneous Markov process which is here described by

(1) time-independent transition probabilities and (2) time-
dependent one-point occupation probabilities.

From Eqs. (98) and (100), we arrive at the evolution
equation for the time-dependent one-point occupation proba-
bility evolved according to time-independent transition prob-
abilities,

pða; tþ 1Þ ¼X
b

pðb; tÞpðb! aÞ: (101)

Subtracting pða; tÞ from both sides of Eq. (101), we get
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pða;tþ1Þ�pða;tÞ¼X
b

pðb;tÞpðb!aÞ�pða;tÞ: (102)

Substituting into Eq. (102), the normalization condition given
by Eq. (76) yields

pða; tþ 1Þ � pða; tÞ ¼X
b

pðb; tÞpðb! aÞ

�X
b

pða; tÞpða! bÞ: (103)

Taking the continuum limit by replacing tþ 1 for tþ �t in
Eq. (103) and defining the transition rates to be kb!a �
pðb! aÞ=�t, we get

pða; tþ �tÞ � pða; tÞ
�t

¼X
b

½pðb; tÞkb!a � pða; tÞka!b�:

(104)

In the limit that �t! 0, we obtain

_pða; tÞ ¼X
b

½pðb; tÞkb!a � pða; tÞka!b�: (105)

This is the master equation for single-particle trajectories
(Gillespie, 1977; van Kampen, 1981; Zwanzig, 2001).

It is also straightforward to derive the evolution equation
for a collection of M independent random walkers, which is
an example of the chemical master equation. For simplicity,
consider only two states A and B with pAðtÞ and pBðtÞ the
probabilities of occupying states A and B at time t, respec-
tively. The joint probability of havingM� n random walkers
in state A and n random walkers in state B at time t is

PðMÞðM� n; n; tÞ � M
n

� �
pAðtÞM�npBðtÞn: (106)

Using Eq. (101), we reexpress the populations pAðtÞ and pBðtÞ
in terms of their populations pAðt� 1Þ and pBðt� 1Þ to
derive an evolution equation. In this case, PðMÞðM� n; n; tÞ
is rewritten as

PðMÞðM� n; n; tÞ ¼ M

n

 !
½pAðt� 1Þð1� pA!BÞ

þ pBðt� 1ÞpB!A�M�n
	 ½pBðt� 1Þð1� pB!AÞ
þ pAðt� 1ÞpA!B�n: (107)

Taking the continuum limit once more by replacing t� 1 by
t� �t, pi!j by �tki!j, and letting �t! 0, we find

_PðMÞðM� n; n; tÞ
¼ ½�ðM� nÞkA!B � nkB!A�PðMÞðM� n; n; tÞ
þ ðM� nþ 1ÞkA!BP

ðMÞðM� nþ 1; n� 1; tÞ
þ ðnþ 1ÞkB!AP

ðMÞðM� n� 1; nþ 1; tÞ; (108)

which is the master equation for M random walkers (van
Kampen, 1981; Zwanzig, 2001; Stock, Ghosh, and Dill,
2008). This expression is easily generalized to more than
two states. When the walkers are not independent, and
thus when the joint probabilities are not expressible in the
simple form of Eq. (106), it is more difficult to compute the

dynamical partition function, the sum over all allowed micro-
trajectories, analytically. However, the master equation can
always be obtained from the discrete time evolution equation
by keeping leading-order terms in the transition probability,
just as we did in obtaining Eq. (108). Such modeling was
applied to complexation (Ghosh, 2011) and can be applied to
problems of self-catalysis, positive-feedback reactions in-
cluding those having nonunit stoichiometric coefficients,
and others.

The Fokker-Planck equation follows from the master equa-
tion in the limit of a large particle numbers (van Kampen,
1981; Zwanzig, 2001), or equivalently in the limit of small
fluctuations. That is, discrete differences in particle numbers
appearing on the right-hand side of the master equations are
turned into derivatives with respect to particle numbers. This
right-hand side of the Fokker-Planck equation is equivalent to
the divergence of the flux of a diffusion equation. The flux
landscape formulation of the Fokker-Planck equation (Wang,
Xu, and Wang, 2008, 2009; Wang and Zaman, 2009; Wang,
Li, and Wang, 2010; Wang et al., 2010) has proven useful for
explaining the robustness of biological clocks and oscillators
in the presence of small noise (Wang, Xu, and Wang, 2008,
2009). See Haken (1986) for a generalization of the MaxCal
treatment above to the case of a continuous state space and for
a derivation of the Fokker-Planck equation from this continu-
ous formalism; see Otten and Stock (2010) for a general-
ization of MaxCal incorporating time-dependent constraints.

X. NONEQUILIBRIUM STEADY STATES AND

FLUCTUATION THEOREMS

There are many important relationships in nonequilibrium
statistical mechanics, including the linear regression hypothe-
sis, Onsager relations, the Green-Kubo relations, and
fluctuation-dissipation theorems (Onsager, 1931a, 1931b;
Casimir, 1945; Callen and Welton, 1951; Onsager and
Machlup, 1953a, 1953b; Miller, 1956; Kubo, 1957;
Kawasaki and Yamada, 1967; Jaynes and Rosenkrantz,
1989; Evans, Cohen, and Morriss, 1993; Evans and Searles,
1994, 2002; Gallavotti and Cohen, 1995a, 1995b; Luzzi,
Vasconcellos, and Ramos, 2002; Fujisaki, Shiga, and
Kidera, 2010). A recent focus of activity has been on fluc-
tuation theorems (Evans, Cohen, and Morriss, 1993; Evans
and Searles, 1994, 2002; Jarzynski, 1997; Crooks, 1999;
Lebowitz and Spohn, 1999; Wang et al., 2002; Dewar,
2003; van Zon and Cohen, 2003; Bodineau and Derrida,
2004, 2007; Seifert, 2005a, 2005b; Derrida, 2007; Harris
and Schütz, 2007; Kurchan, 2007; Sevick et al., 2008;
Monthus, 2011). Dynamical quantities such as flux or current
also were used to construct distributions and describe fluctu-
ations away from equilibrium (Derrida and Lebowitz, 1998;
Maes, 1999; Bodineau and Derrida, 2004; Depken and
Stinchcombe, 2004; Bertini et al., 2006; Bodineau and
Derrida, 2007; Derrida, 2007; Hurtado and Garrido, 2009).

MaxCal gives insights into a flux fluctuation relationship
(Monthus, 2011). Monthus (2011) showed that if the average
flux hJi ¼ P

CPCJC is a constraint, where JC is the flux
associated with a trajectory C, then the probability of that
trajectory according to MaxCal is

PC 
 expð�JCÞ; (109)
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where � is the Lagrange multiplier that imposes the average
flux constraint.

From large-deviation theory (LDT) (Ellis, 2006; Harris and
Touchette, 2009; Touchette, 2009), we can assume the form
of the flux distribution is

PðJÞ 
 exp½�TIðjÞ�; (110)

where J is the integrated, or total, flux over an interval T and
j � J=T. For a brief summary of LDT see footnote.10

The form for IðjÞ, the ‘‘rate function’’ as it is called in
large-deviation theory, depends on the microscopic details.
For some problems, the detailed functional form of the large-
deviation function IðjÞ has been derived (Bodineau and
Derrida, 2007).

To express the ratio of the probability of a forward trajec-
tory PC to a reverse trajectory PCR

, we use Eq. (109),

PC

PCR

¼ expð2�JCÞ; (113)

where we used the fact that JC ¼ �JCR
for the reverse

path CR.
The probability PC for a specific microtrajectory is related

to the probability PðJÞ for observing flux J by a degeneracy
factor gðJÞ. That is,

PðJÞ ¼ gðJÞ expð�JÞ=Q;

Pð�JÞ ¼ gð�JÞ expð��JÞ=Q;

(114)

where gðJÞ is the number of trajectories that have flux J,
gð�JÞ is the number of trajectories having flux �J, and Q is
the dynamical partition function. For each forward trajectory,
we have a reverse trajectory and their fluxes have opposite
sign, so gðJÞ ¼ gð�JÞ. This yields

PðJÞ=Pð�JÞ ¼ expð2�JÞ: (115)

Combining Eq. (110) with Eq. (115) gives

IðjÞ ¼ Ið�jÞ � 2�j: (116)

Equation (116) is the fluctuation theorem for flux, as derived
from MaxCal (Monthus, 2011). Similar results were derived
from other approaches to path probabilities without explicitly
using MaxCal (Maes, 1999; Bodineau and Derrida, 2007;
Derrida, 2007). The advantage of the formulation above is
that all the model specifics are contained within the rate
function. Dewar has used similar arguments to derive a
fluctuation theorem for entropy production (Dewar, 2003).

XI. MAXIMUM CALIBER IS USEFUL IN INTERPRETING

EXPERIMENTS ON THE DYNAMICS OF FEW-PARTICLE

SYSTEMS

In the following sections, we describe some particular
applications of MaxCal in the analysis of experimental and
simulated data.

A. Using MaxCal to describe diffusion in few-particle systems

In this section, we illustrate the application of MaxCal to
few-particle diffusion. According to Fick’s law, in macro-
scopic many-particle diffusion, a quantity of principle interest
is the average flux hJi, which is proportional to the concen-
tration gradient. In one dimension we have

hJi ¼ �D@c=@x; (117)

whereD is the diffusion coefficient and c is the concentration.
However, in few-particle diffusion, additional quantities are
of interest but may not be accurately determinable from
experiments. Such quantities include the variance of the
flux hJ2ic � hJ2i � hJi2 that describes the more complete
dynamical distribution function. MaxCal is useful for infer-
ring quantities of this type from quantities that are measured.
Experimental methods are now available that can test pre-
dictions about such fluctuational quantities. As a simple
example, the flux fluctuations in the diffusion of small
numbers of particles were explored in a microfluidics diffu-
sion experiments performed by Rob Phillips and co-workers
at Caltech (Ghosh et al., 2006; Seitaridou et al., 2007).
Colloids were confined on one side of a gate [see Figs. 3(a)
and 3(b)]. When the gate was opened, the particles diffused
through the solvent in a tube and the location of the particles
was tracked in time. This is essentially a diffusion experiment
miniaturized to follow a small countable number of particles.

These experiments reveal more than just the average flux
hJi of particles; from one cross-sectional column x compart-
ment of the tube to the next, they monitor the full distribution
of the jumps from one compartment to the next between
neighboring time intervals, t and tþ �t. Imagine that there
are N1 beads in some thin cross-sectional slice, which we
refer to as state 1, and N2 in a neighboring cross-sectional
slice on its right at time t, which we call state 2. In this
problem, we consider pairwise constraints. There are no
constraints on single-state occupancies. That is, we constrain
transition probabilities between both states. Our dynamical
partition function after one time step with a given initial
condition,

a1 a2
� 	

;

10If a coin is tossed N times and the outcome each time is xi ¼
0; 1, where 0 is tails and 1 is heads, we can construct another

random variable XN , which is the average of these independent

random variables,

XN ¼ 1

N

XN
i¼1

xi: (111)

XN’s value lies between 0 and 1. In large-deviation theory we are

interested in the probability distribution PðXNÞ of the outcomes.

While much of probability theory focuses on small expansions near

the peak of the distribution, 
PðXN ¼ 0:5Þ in this case (for ex-

ample, near the point of 5000 heads out of 10 000 coin flips), LDT

instead focuses on larger deviations further away from the peak (for

example, around 7000 heads out of 10 000 coin flips) in the limit of

large N. LDT shows on general grounds that PðXNÞ must have the

form

PðXNÞ 
 exp½�NfðXNÞ�; (112)

where fðxÞ is a function that has a minimum, the detailed form of

which depends on the problem at hand. For example, fðxÞ ¼ log2þ
x logxþ ð1� xÞ logð1� xÞ (Harris and Touchette, 2009) for the

coin toss problem, with the minimum at x ¼ 1=2.
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takes the form of Eq. (90),

q ¼ a1 a2
� 	 e��11 e��21

e��12 e��22

� �
1
1

� �
: (118)

If the initial condition is

a1 a2
� 	 ¼ 1 0

� 	
;

then the microtrajectory starts from state 1. Alternatively, if

a1 a2
� 	 ¼ 0 1

� 	
;

then the microtrajectory starts from state 2. we denote by q1
and q2 the dynamical partition function for the microtrajec-
tory starting from states 1 and 2. Since there is no drift in the
fluid carrying the particles, we assume the following: e��11 ¼
e��22 and e��12 ¼ e��21 . Also, for shorthand, we denote p �
e��12=ðe��11 þ e��12 Þ. Knowing p is equivalent to knowing
the diffusion constant D, which would also be needed in
advance for any macroscopic study of diffusion.

For independent particles, the dynamical partition function
for N1 such particles starting from state 1 is

Q1 ¼ qN1

1 : (119)

The partition function in state 2 is similarly defined. For a
single time step, the total dynamical partition function for N1

particles in state 1 and N2 in state 2 is therefore

Q ¼ Q1Q2: (120)

Next we define the flux J � n1 � n2, where n1 is the sto-
chastic number of particles going from state 1 to 2 and vice
versa for n2. We are interested in knowing the probability

distribution of J predicted from MaxCal based on these
simple pairwise constraints. This distribution is computed
from

PðJÞ ¼ Q0=Q; (121)

where Q0 is the restricted sum over those microtrajectory
weights with net flux J while Q is the full dynamical partition
function. The details of the calculation are in Pressé et al.
(2010). The flux distribution then follows (Ghosh et al., 2006;
Seitaridou et al., 2007):

PðJÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�Npð1� pÞp exp

�
�½J � pðN1 � N2Þ�2

2Npð1� pÞ
�
;

(122)

where N ¼ N1 þ N2. Many properties can be inferred from
the parametrized flux distribution. Figure 3 shows various
experimental tests of the full flux distribution predicted in this
way, including variances. The model also predicts so-called
‘‘bad actors,’’ the small fraction of flows that, such as
Maxwell’s demon, flow up concentration gradients because
of the small-numbers fluctuations, rather than down concen-
tration gradients. Like fluctuation theorems (Evans, Cohen,
and Morriss, 1993; Evans and Searles, 1994, 2002; Jarzynski,
1997; Crooks, 1999; Lebowitz and Spohn, 1999;Wang et al.,
2002; Dewar, 2003; van Zon and Cohen, 2003; Seifert, 2005a,
2005b; Bodineau and Derrida, 2007; Derrida, 2007; Harris
and Schütz, 2007; Kurchan, 2007; Sevick et al., 2008;
Monthus, 2011), MaxCal makes predictions about the prob-
abilities of rare events. Figures 3(c)–3(e) show that the

FIG. 3 (color online). Microfluidics experiment on few-particle to test MaxCal. Colloids corralled on one side of a gate begin to diffuse at

time t ¼ 0 when the gate is opened. (a) Schematic of the microfluidics chip. (b) Particle diffusion. From Seitaridou et al., 2007. (c) The flux

distribution function 1
2 ln½hð�JÞ2i� þ log½PðJÞ� vs ðJ � hJiÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2hð�JÞ2ip
. (d) The average flux hJi is shown as a function of �N ¼ N1 � N2.

(e) The second cumulant h�J2i ¼ hJ2i � hJi2 vs the total number of particles N ¼ N1 þ N2. For (c), (d), and (e), circles show experimental

data; solid line shows MaxCal theory.
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agreement of the MaxCal inference with the experimental
data is excellent.

B. Using MaxCal to describe single-particle two-state

‘‘reaction’’ kinetics

In the previous example, we considered a situation involv-
ing multiple independent particles. Here we describe the
application of MaxCal to single-molecule two-state dynam-
ics. Consider the dynamics of a two-state reaction between
two states, 1 and 2, such as a chemical reaction, ion-channel
opening or closing, or a biomolecule undergoing cycles of
folding and unfolding; see Fig. 2. Rob Phillips and co-
workers (Wu et al., 2009) used dual laser traps to capture a
single colloidal particle in one of two energy wells. They
were able to control both the equilibrium and the kinetics by
varying the well depths and the barrier height between the
optical trap energies (Wu et al., 2009). The bead hops be-
tween two wells with a stochastic duration time in each
well. A time series of these hops defines the microtrajectories.
A typical energy landscape and microtrajectories are shown
in Fig. 4.

Our dynamical partition function is given by Eq. (90) and,
as with the previous problem, we constrain our pairwise
statistics N1!1, N1!2, N2!1, and N2!2. There are no singlet
constraints, only the pairwise constraints are given.

The MaxCal strategy is to first parametrize the four
Lagrange multipliers (�ij for i, j ¼ 1; 2) from averages

(hNi!ji for i, j ¼ 1; 2) taken from the raw trajectories

(Stock, Ghosh, and Dill, 2008; Otten and Stock, 2010).
Again, only two Lagrange multipliers are independent from
the normalization condition given in Eq. (76).

The Lagrange multipliers are parametrized through the
following relation:

hNi!ji ¼ @ logQ

@�ij

(123)

by setting hNi!ji equal to the measured average for i, j ¼
1; 2. Once the Lagrange multipliers are determined, the dy-
namical partition function and microtrajectory probabilities
are fully determined. With a parametrized dynamical parti-
tion function, the variance in transitions between sites can be
inferred from relations such as

hðN1!2Þ2i � hN1!2i2 ¼ @2 logQ

@�2
1!2

: (124)

Various higher cumulants were inferred in this way from the
dynamical averages measured in experiment (Wu et al.,
2009). Figure 5 shows the good agreement between the
MaxCal theory and the experiments.

C. MaxCal predicts far-from-equilibrium properties

of multistate cycles, such as molecular motors

MaxCal has been used to analyze the spinning noise in
biochemical cycles and motors that are far from equilibrium.
Consider a cycle having s states (Fig. 6 shows a cycle with
s ¼ 3 states). The cycle is driven to ‘‘spin’’ in a forward
direction, for example, by adenosine triphosphate (ATP)
hydrolysis. Examples of such cycles include the HSP90
chaperone protein complex, which assists in protein folding
(Southworth and Agard, 2008; Mickler et al., 2009); circa-
dian clock circuits, driven by changing phosphorylation states

FIG. 4. A dual-laser-trap experiment in which a colloidal particle

hops between two ‘‘sculpted’’ energy wells, back and forth, with

observed time trajectories as shown. From Wu et al., 2009.

FIG. 5 (color online). The x axes give the predicted second cumulants, covariance, and third cumulants from the MaxCal approach, based

on the known first moments. The y axes give the experimental values. The quantities are variance in N1, N1!2 [which in the figure from the

original source (Wu et al., 2009) read NB instead of N1 and Nba instead of N1!2], covariance of N1N1!2 and third cumulant of N1!2 from left

to right. We define N1 ¼ N1!1 þ N2!1 þ N0!1, where N0!1 ¼ �i0 ;1. The dashed lines are the best linear fits; fitting parameters are inset.

Each point represents one experimentally observed trajectory. Trajectories were 30 000 �t units long, and errors were calculated for around

600 trajectories. From Wu et al., 2009.
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(Rust et al., 2007); and Michaelis-Menten enzymes, which
can be regarded as performing a three-state cycle, E$ ES$
EP$ E, driven to spin in a particular direction by high
substrate concentrations.

Consider a simple cycle having two different types of
pairwise constraints: pairwise constraints coinciding with
forward motion along the cycle and backward motion along
the cycle. In other words, we consider

e��mn � 	þ �; e��nm � 	� �; (125)

where m and n are neighboring states along the cycle. The
Lagrange multiplier 	 is related to an intrinsic rate that is the
same in the forward and backward directions and � represents
some driving force, the degree to which detailed balance is
broken to drive the system in one direction. In biology, � may
depend on the amount of ATP concentration driving a motor,
for example. Given these two average rate quantities, MaxCal
gives a way to infer the full distribution of dynamical trajec-
tories including flux fluctuations (Pressé et al., 2010). For this
problem, MaxCal is complimentary to other methods (Qian
and Elson, 2002; Seifert, 2005a, 2005b; Astumian, 2007;
Andrieux and Gaspard, 2008), though the mathematics de-
scribing the dynamics are analogous to those of equilibrium
statistical mechanics. Figure 7 shows the prediction that the
fluctuational noise (for example, of occasional backward
fluctuations) diminishes as the system is driven further
away from equilibrium.

D. Path entropy maximization is useful for modeling neural

spike trains

Schneidman et al. (2006) used a path entropy maximiza-
tion procedure to infer a model for the firing patterns of arrays
of neurons. They used the probability of a neuronal spike for
each neuron as well as correlations in spiking behavior
between different neurons within a small time interval �t,
as their data constraints to build a model. They used a long-
range Ising model. In the language we used earlier, we would
speak of constraining single state occupancies (which micro-
scopically coincide with the ‘‘fire’’ or ‘‘not fire’’ state of the
neuron) as well as constraining single state occupancy corre-
lations. With single state occupancy correlations they infer
the probability of occurrence of a particular firing pattern for
a set of 10 neurons (see Fig. 8), which would be impossible to
predict by not constraining correlations. As an example of the
model’s predictive success, Schneidman et al. consider the
probability of occurrence of the firing pattern 1011001010,
where 1 stands for fired within �t ¼ 20 ms and 0 otherwise
for neurons 1 through 10. Schneidman et al. (2006) speak of
the rate of a firing pattern as its probability of occurrence
within the small time interval �t. They show that the rate of
occurrence of the firing pattern 1011001010 is well captured
by a long-range Ising model (predicting an average rate of
occurrence of this pattern of about once a minute) while the
independent Ising model errs by a factor of 106.

E. Application of MaxCal to a genetic toggle switch

For systems that have feedback, modeling few-particle
dynamics is challenging because particles are coupled. Here
we describe how MaxCal has been applied to a bistable
system (Bagowski and Ferrell, Jr., 2001; Paliwal et al.,
2007; Raj and van Oudenaarden, 2008), specifically the
synthetic genetic toggle switch of Gardner and co-workers
(Gardner, Cantor, and Collins, 2000).

FIG. 6. (a) One example of a time trajectory for a three-state

cycle. (b) A three-state cycle, showing the definitions of rates used

in the text.

FIG. 7 (color online). A plot of �s¼hJ2ic=hJi2 vs r¼½ð	þ�Þ=
ð	��Þ�2, where s denotes the number of states in the cycle.

FIG. 8 (color online). Rate of occurrence of firing patterns with

the approximated pattern rate vs the observed pattern rate. The solid

black line indicates strict agreement. The (darker) colored dots

coincide with the prediction made from the MaxEnt model where

correlations were used as constraints, model P2. The other (lighter)

colored dots coincide with those predictions made from the inde-

pendent Ising model, model P1, where only mean firing patterns of

each neuron are used as constraints.
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Figure 9 shows a cartoon of the gene circuit constructed by

Gardner and co-workers (Gardner, Cantor, and Collins,
2000). The circuit encodes two proteins, A (‘‘green’’) and B
(‘‘red’’). It has two negative feedback loops. When green

protein is made, red is suppressed, and when red protein is
made, green is suppressed (see time trace in Fig. 10). The

production of each protein is stochastic. An interesting aspect
of bistable systems is two very different time scales. A rare

fluctuation, which occurs on a fast time scale, can be strong
enough to transition the circuit from one state to the other

(green dominant or red dominant). The switch then remains
stable in that state over much longer time scales. It is of

interest to have a model that can explore how fluctuations can
toggle the system between these stable states.

The process described in Fig. 9 has three dynamical com-
ponents (Gardner, Cantor, and Collins, 2000; Lipshtat et al.,

2006). (1) Death processes: A! 
 indicates that A mole-
cules are degraded with rate dA; similarly for B. (2) Birth
processes: �! �þ A indicates that protein A is produced at
rate k� if the promoter � is active. Similarly �! �þ B
indicates that protein B is produced at rate k� if the promoter

� is active. (3) Binding events: Aþ �$ �� indicates that

protein A converts B’s active promoter � to inactive promoter
�� with rate fA. The backward rate is rA. Similarly, Bþ �$
�� indicates that protein B converts A’s active promoter � to

an inactive form �� with rate fB. The backward rate is rB.
Because the model treats only one gene, conservation re-
quires that ½�� þ ½��� ¼ 1 and ½�� þ ½��� ¼ 1, where the
brackets indicate the concentrations of the promoters. There
is an additional constraint ½��� þ ½��� � 1 because of the
system’s design as an exclusive toggle switch. With the latter
constraint, the only possible steady macroscopic states are
(high A and low B) or (low A and high B),

A!dA
; �!k� �þ A; Bþ �! 
fB

rB
��

B!dB
; �!k��þ B; Aþ �! 
fB

rB
��:

(126)

A model of the system dynamics was given by Gardner and
co-workers (Gardner, Cantor, and Collins, 2000). They ex-
pressed the kinetics as a set of coupled differential equations
using Hill-cooperativity terms to capture the bistable macro-
scopic state,

du=dt ¼ �1=ð1þ v�Þ � u;

dv=dt ¼ �2=ð1þ u�Þ � v;
(127)

where �1 is the synthesis rate of the protein that has concen-
tration uðtÞ and �2 is the synthesis rate of the protein having
concentration vðtÞ. � and � are adjustable Hill exponents.
With this approach, however, (a) the mechanism must be
known in advance [see Eq. (126)]; (b) the choices of non-
linear functional forms are arbitrary, and normally not ob-
tainable by independent experiments; and (c) the fit
parameters only guarantee agreement with average rates,
not with the full rate distribution. No information about the
fluctuations is obtained from such a model.

The MaxCal procedure is different. The dynamical parti-
tion function we construct here is a slight generalization of
that given in Eq. (87). We have flux of production and
degradation for each species. We impose these constraints
by two binary indicator variables for each species; one for
production and one for degradation. We let ‘� (or ‘�) be 0

when A (or B) is not produced within a small interval of time
�t, or 1 otherwise. We choose the time interval �t to be
sufficiently small that no more than a single A or B is

FIG. 9. The genetic toggle switch. The DNA plasmid is shown

with promoters pA and pB of genes gA and gB that, when tran-

scribed, produce proteins A and B, respectively. In this gene circuit,

production of A inhibits production of B. And production of B
inhibits A.

FIG. 10 (color online). Time trajectories of the toggle switch. (a) Gillespie simulation (Gillespie, 1977) of the model using d ¼ 0:005,
k ¼ 0:1, f ¼ 100, and r ¼ 2. This acts as our ‘‘experimental data,’’ with fully known underlying behavior. (b) MaxCal time trace of the

model that we then extracted from the averages of the ‘‘experiment.’’ This figure only validates that the parameters extracted by MaxCal do

give trajectories resembling those from which they are extracted. The main quantitative tests, described in text and in the following figures,

are the inference of entire statistical distributions.
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produced within it. We assign variables ‘i;A and ‘i;B to each of

the i individual protein molecules of type A and B, respec-
tively. The variable ‘i;A or ‘i;B equals 1 when the ith particle

is not degraded within interval �t, or 0 otherwise.
Thus, the dynamical partition function is

Q ¼ X
‘�;‘�
f‘A g;f‘B g

Zð‘�; ‘�; f‘Ag; f‘BgÞ exp
�
h�‘� þ h�‘�

þ hA
XNA

i¼1
‘i;A þ hB

XNB

i¼1
‘i;B

�
: (128)

The Lagrange multipliers ðh�; hAÞ enforce the average ob-
served production and degradation rates of protein A; simi-
larly for B. The first two terms do not have summation
because there is only one promoter for gene A and B.
However, in our earlier discussion all particles were indepen-
dent hence Z was assumed to be unity. In this example where
one species regulates the other, we need to further impose
constraints between different species. This is done by the
function Z expressing the observed correlations between A
and B,

Z ¼ exp

�
KA�

X
i

‘�‘i;A þ KB�

X
i

‘�‘i;B

�
; (129)

where KA� and KB� are the correlation coupling parameters

capturing the observation that high [B] is associated with low
[A] and vice versa (Pressé, Ghosh, and Dill, 2011). Written in
the form of a partition function, Q ¼ P

expð�H Þ with a
Hamiltonian-like quantity H , we have

H ¼ h�‘� þ h�‘� þ hA
XNA

i¼1
‘i;A þ hB

XNB

i¼1
‘i;B

þ KA�

X
i

‘�‘i;A þ KB�

X
i

‘�‘i;B: (130)

Our dynamical partition function resembles a long-range
Ising model.

In short, in the MaxCal procedure the data trace is used
directly to extract the Lagrange multipliers for production,
degradation, and the correlations of the two species.
Combined with the partition function, the data trace now
gives the full dynamics [averages, fluctuations, higher cumu-
lants, etc. (Pressé, Ghosh, and Dill, 2011)]. The quantities
obtained in this way are not necessarily identical to those of a
mass-action model having particular parameters, but they are
more useful insofar as they do specify the full kinetic behav-
ior of the system, they do so uniquely, and they do not require
arbitrary invention of reaction topologies or functional forms
in advance. This is evident by construction of an effective
Hamiltonian, Eq. (130), that is independent of network to-
pology and approximates the effects of the topology via the
data used to constrain the model. Thus, MaxCal provides a
powerful way to map a wide range of network topologies and
reaction rates into an effective Hamiltonian-like function
which is as reliable as the data used to constrain it.
Combinations of different values of coupling constants ex-
plore the topology space such as negative or positive values of
K’s, corresponding to negative or positive feedback. The
fluctuation spectrum which determines the statistics of

switching from one state to another is inferred, not imposed
by hand.

In Fig. 11 we show how MaxCal captures such nontrivial
dynamical distributions quite accurately (Pressé, Ghosh, and
Dill, 2011). Such distributions are not obtainable from mass-
action models. MaxCal has other advantages: (1) it needs
fewer parameters (3 for MaxCal vs 4 for the chemical master
equation for the symmetric double negative feedback case,
otherwise 6 for MaxCal and 8 for the asymmetric case),
(2) the model is unique (only one model arises from given
data), (3) much shorter time traces are required for MaxCal.
Unlike other approaches, many switching events need not be
observed to reasonably estimate the Lagrange multiplier
values. And (4) the MaxCal model is extracted more directly
from the data and less from an assumed model; degradation
and synthesis events of A and B as well as their correlations
are taken from direct observations over time. Given these
observables, MaxCal builds a model without assuming func-
tional forms or nonlinearities. It simply maps the direct
observables into an effective dynamical Hamiltonian; see
Eq. (130).

XII. CONCLUSIONS

We reviewed the principles of maximum entropy and
maximum caliber. The quantity H ¼ �P

pj logpj has been

used in variational principles across a variety of contexts.
Boltzmann and Gibbs applied it to predicting material equi-
libria. Shannon used it to compute channel capacities for
information transmission. Jaynes used it to frame physical
problems as matters of inference.

We also reviewed the work of Shore and Johnson and
others who showed more broadly in the 1980s that entropy
maximization is a unique and sound recipe for ensuring basic
consistency axioms when drawing inferences about distribu-
tion functions from observations. Entropy maximization is
neither restricted to thermal equilibria of materials nor to
matters of information transmission. Rather, it also provides a
sound foundation for applications, illustrated here, ranging
from image reconstruction to the inference of mathematical
models from experimental data. We described the basis for
the broad types of constraints that are allowable within such
variational principles. First-moment constraints are common
in physics, largely because physical systems commonly have

FIG. 11 (color online). Prediction of distributions by MaxCal and

comparison with synthetic data. (a) Distribution of particle numbers.

(b) Distribution of dwell times. Black (darker) curves: Gillespie

‘‘real data’’ simulations. Colored (lighter) curves: model predicted

typical trajectory using the parameters extracted by MaxCal using

Eq. (130). From Pressé, Ghosh, and Dill, 2011.
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a large number of particles. But entropy maximization prin-

ciples are not limited to those types of constraints; other

constraints are relevant in image reconstruction, for example.

We also discussed how entropy maximization sometimes

gives a useful inversion of logic in modeling: rather than

assuming a model and fitting its parameters, MaxEnt methods

are sometimes used more directly to invert the data, with

fewer model assumptions required up front.
We described maximum caliber in some detail, a MaxEnt-

like variational principle that is useful for predicting physical

dynamics, including for systems far from equilibrium. In

maximum caliber, the populations pj of dynamical pathways

are predicted through a procedure of maximizing a route

entropy subject to dynamical constraints, such as average

rates or fluxes. We also showed that taking maximum caliber

as a foundational principle gives insights into the roots of

Markovian and master-equation approaches. Finally, we de-

scribed several applications of MaxCal to single-molecule

and few-particle dynamics experiments in biology and

nanotechnology.
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Pressé et al.: Principles of maximum entropy and maximum . . . 1139

Rev. Mod. Phys., Vol. 85, No. 3, July–September 2013

http://dx.doi.org/10.1016/S0375-9601(00)00337-6
http://dx.doi.org/10.1103/PhysRevE.63.061105
http://dx.doi.org/10.1063/1.2894475
http://dx.doi.org/10.1021/j100003a020
http://dx.doi.org/10.1073/pnas.0708040104
http://dx.doi.org/10.1039/b802697c
http://dx.doi.org/10.1039/b802697c
http://dx.doi.org/10.1016/S0960-9822(01)00330-X
http://dx.doi.org/10.1007/s10955-006-9056-4
http://dx.doi.org/10.1103/PhysRevLett.92.180601
http://dx.doi.org/10.1016/j.crhy.2007.04.014
http://dx.doi.org/10.1073/pnas.0503858102
http://dx.doi.org/10.1073/pnas.0503858102
http://dx.doi.org/10.1007/BF02427376
http://dx.doi.org/10.1016/j.cell.2011.01.033
http://dx.doi.org/10.1016/j.cell.2011.01.033
http://dx.doi.org/10.1016/j.cell.2009.07.046
http://dx.doi.org/10.1103/PhysRev.83.34
http://dx.doi.org/10.1021/jp803347m
http://dx.doi.org/10.1103/RevModPhys.17.343
http://dx.doi.org/10.1103/PhysRevE.70.046127
http://dx.doi.org/10.1126/science.1116702
http://dx.doi.org/10.1103/PhysRevLett.82.2520
http://dx.doi.org/10.1038/35042534
http://dx.doi.org/10.1126/science.298.5596.1172
http://dx.doi.org/10.1140/epjb/e2009-00278-0
http://dx.doi.org/10.1140/epjb/e2009-00278-0
http://dx.doi.org/10.1140/epjb/e2009-00053-3
http://dx.doi.org/10.1002/andp.18501550306
http://dx.doi.org/10.1002/andp.18501550403
http://dx.doi.org/10.1119/1.1990764
http://dx.doi.org/10.1103/PhysRevE.60.2721
http://dx.doi.org/10.1214/aos/1176348385
http://dx.doi.org/10.1103/PhysRevLett.93.040602
http://dx.doi.org/10.1103/PhysRevLett.93.040602
http://dx.doi.org/10.1088/1742-5468/2007/07/P07023
http://dx.doi.org/10.1103/PhysRevLett.80.209
http://dx.doi.org/10.1088/0305-4470/36/3/303
http://dx.doi.org/10.1088/0305-4470/38/21/L01
http://dx.doi.org/10.3390/e11040931
http://dx.doi.org/10.1038/nature09326
http://dx.doi.org/10.1126/science.1070919
http://dx.doi.org/10.1002/rnc.1018
http://dx.doi.org/10.1088/0266-5611/5/4/007
http://dx.doi.org/10.1103/PhysRevLett.71.2401
http://dx.doi.org/10.1103/PhysRevLett.71.2401
http://dx.doi.org/10.1103/PhysRevE.50.1645
http://dx.doi.org/10.1080/00018730210155133
http://dx.doi.org/10.1103/PhysRevLett.92.150601
http://dx.doi.org/10.1016/j.physa.2004.04.028


Evans, R.M. L., 2005, J. Phys. A 38, 293.

Feinstein, A., 1958, Foundations of Information Theory (McGraw-

Hill, New York).

Filyukov, A. A., 1968, J. Eng. Phys. Thermophys. 14, 814.

Filyukov, A. A., and V.Y. Karpov, 1967a, J. Eng. Phys. 13, 624.

Filyukov, A. A., and V.Y. Karpov, 1967b, J. Eng. Phys. 13, 798.

Flomenbom, O., J. Klafter, and A. Szabo, 2005, Biophys. J. 88,

3780.

Flomenbom, O., and R. J. Silbey, 2006, Proc. Natl. Acad. Sci.

U.S.A. 103, 10907.

Fowler, R. H., 1938, Statistical Mechanics (Cambridge University

Press, Cambridge, England).

Fujisaki, H., M. Shiga, and A. Kidera, 2010, J. Chem. Phys. 132,

134101.

Gallavotti, G., and E.G.D. Cohen, 1995a, J. Stat. Phys. 80, 931.

Gallavotti, G., and E.G. D. Cohen, 1995b, Phys. Rev. Lett. 74,

2694.

Gardner, T. S., C. R. Cantor, and J. J. Collins, 2000, Nature (London)

403, 339.

Gaspard, P., 2004, J. Stat. Phys. 117, 599.
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Lee, J., and S. Pressé, 2012b, Phys. Rev. E 86, 041126.

Lezon, T. R., J. R. Banavar, M. Cieplak, A. Maritan, and N.V.

Federoff, 2006, Proc. Natl. Acad. Sci. U.S.A. 103, 19 033.

Lindley, D., 2001, Boltzmann’s Atom: The Great Debate That

Launched a Revolution in Physics (Free Press, New York).

Liphardt, J., B. Onoa, S. B. Smith, I. Tinoco, and C. Bustamante,

2001, Science 292, 733.

Lipshtat, A., A. Loinger, N.Q. Balaban, and O. Biham, 2006, Phys.

Rev. Lett. 96, 188101.

Livesey, A. K., and J. C. Brochon, 1987, Biophys. J. 52, 693.

Livesey, A.K., and J. Skilling, 1985, Acta Crystallogr. Sect. A 41,

113.

Locasale, J.W., and A. Wolf-Yadlin, 2009, PLoS ONE 4, e6522.

Lu, H. P., L. Xun, and X. S. Xie, 1998, Science 282, 1877.

Luzzi, R., A. R. Vasconcellos, and J. G. Ramos, 2002, Predictive

Statistical Mechanics: A Nonequilibrium Ensemble Formalism

(Kluwer Academic, Boston)

Maes, C., 1999, J. Stat. Phys. 95, 367.

McKinney, S. A., C. Joo, and T. Ha, 2006, Biophys. J. 91,

1941.

McQuarrie, D. A., 2000, Statistical Mechanics (University Science,

Sausalito).

Meinel, E. S., 1988, J. Opt. Soc. Am. A 5, 25.

Methfessel, C., V. Witzemann, T. Takahashi, M. Mishina, S. Numa,

and B. Sakmann, 1986, Pflügers Arch. 407, 577.
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1140 Pressé et al.: Principles of maximum entropy and maximum . . .

Rev. Mod. Phys., Vol. 85, No. 3, July–September 2013

http://dx.doi.org/10.1088/0305-4470/38/2/001
http://dx.doi.org/10.1529/biophysj.104.055905
http://dx.doi.org/10.1529/biophysj.104.055905
http://dx.doi.org/10.1073/pnas.0604546103
http://dx.doi.org/10.1073/pnas.0604546103
http://dx.doi.org/10.1063/1.3372802
http://dx.doi.org/10.1063/1.3372802
http://dx.doi.org/10.1007/BF02179860
http://dx.doi.org/10.1103/PhysRevLett.74.2694
http://dx.doi.org/10.1103/PhysRevLett.74.2694
http://dx.doi.org/10.1038/35002131
http://dx.doi.org/10.1038/35002131
http://dx.doi.org/10.1007/s10955-004-3455-1
http://dx.doi.org/10.1063/1.3681941
http://dx.doi.org/10.1063/1.3681941
http://dx.doi.org/10.1063/1.3590918
http://dx.doi.org/10.1119/1.2142789
http://dx.doi.org/10.1021/j100540a008
http://dx.doi.org/10.1038/272686a0
http://dx.doi.org/10.1007/BF01726199
http://dx.doi.org/10.1007/BF00656997
http://dx.doi.org/10.1088/1742-5468/2007/07/P07020
http://dx.doi.org/10.1088/1751-8113/42/34/342001
http://dx.doi.org/10.1063/1.1732447
http://dx.doi.org/10.1021/nl010010d
http://dx.doi.org/10.1021/nl010027w
http://dx.doi.org/10.1016/0166-2236(94)90157-0
http://dx.doi.org/10.1016/j.ydbio.2007.02.036
http://dx.doi.org/10.1016/j.ydbio.2007.02.036
http://dx.doi.org/10.1088/1742-5468/2009/02/P02032
http://dx.doi.org/10.1103/PhysRevLett.78.2690
http://dx.doi.org/10.1103/PhysRev.106.620
http://dx.doi.org/10.1103/PhysRev.108.171
http://dx.doi.org/10.1109/TSSC.1968.300117
http://dx.doi.org/10.1098/rspa.1946.0056
http://dx.doi.org/10.1038/nrg1615
http://dx.doi.org/10.1038/nrg1615
http://dx.doi.org/10.1021/jp051490q
http://dx.doi.org/10.1143/JPSJ.12.570
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1088/1742-5468/2007/07/P07005
http://dx.doi.org/10.1038/238229a0
http://dx.doi.org/10.1007/BF01017372
http://dx.doi.org/10.1023/A:1004589714161
http://dx.doi.org/10.1007/s10955-006-9254-0
http://dx.doi.org/10.1007/s10955-006-9254-0
http://dx.doi.org/10.1063/1.4743955
http://dx.doi.org/10.1103/PhysRevE.86.041126
http://dx.doi.org/10.1073/pnas.0609152103
http://dx.doi.org/10.1126/science.1058498
http://dx.doi.org/10.1103/PhysRevLett.96.188101
http://dx.doi.org/10.1103/PhysRevLett.96.188101
http://dx.doi.org/10.1016/S0006-3495(87)83264-2
http://dx.doi.org/10.1107/S0108767385000241
http://dx.doi.org/10.1107/S0108767385000241
http://dx.doi.org/10.1371/journal.pone.0006522
http://dx.doi.org/10.1126/science.282.5395.1877
http://dx.doi.org/10.1023/A:1004541830999
http://dx.doi.org/10.1529/biophysj.106.082487
http://dx.doi.org/10.1529/biophysj.106.082487
http://dx.doi.org/10.1364/JOSAA.5.000025
http://dx.doi.org/10.1007/BF00582635
http://dx.doi.org/10.1038/nsmb.1557
http://dx.doi.org/10.1529/biophysj.104.053256
http://dx.doi.org/10.1119/1.1934260
http://dx.doi.org/10.1038/nature07637
http://dx.doi.org/10.1038/nature07637
http://dx.doi.org/10.1088/1742-5468/2011/03/P03008
http://dx.doi.org/10.1038/msb.2009.75
http://dx.doi.org/10.1038/msb.2009.75
http://dx.doi.org/10.1103/PhysRev.37.405
http://dx.doi.org/10.1103/PhysRev.38.2265
http://dx.doi.org/10.1103/PhysRev.91.1505
http://dx.doi.org/10.1103/PhysRev.91.1505
http://dx.doi.org/10.1063/1.3455333
http://dx.doi.org/10.1038/nature05561
http://dx.doi.org/10.1038/nature02257
http://dx.doi.org/10.1016/j.plrev.2005.03.003


Phillips, R., J. Kondev, and J. Theriot, 2009, Physical Biology of the

Cell (Garland Science, New York).
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